blob: e5c759d5711cfe8c145b829ef678b9fe54c74b06 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#define _CRT_SECURE_NO_WARNINGS
#include "base/process/memory.h"
#include <limits>
#include "base/compiler_specific.h"
#include "base/debug/alias.h"
#include "base/strings/stringprintf.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_WIN)
#include <windows.h>
#endif
#if defined(OS_POSIX)
#include <errno.h>
#endif
#if defined(OS_MACOSX)
#include <malloc/malloc.h>
#include "base/process/memory_unittest_mac.h"
#endif
#if defined(OS_LINUX)
#include <malloc.h>
#endif
#if defined(OS_WIN)
// HeapQueryInformation function pointer.
typedef BOOL (WINAPI* HeapQueryFn) \
(HANDLE, HEAP_INFORMATION_CLASS, PVOID, SIZE_T, PSIZE_T);
const int kConstantInModule = 42;
TEST(ProcessMemoryTest, GetModuleFromAddress) {
// Since the unit tests are their own EXE, this should be
// equivalent to the EXE's HINSTANCE.
//
// kConstantInModule is a constant in this file and
// therefore within the unit test EXE.
EXPECT_EQ(::GetModuleHandle(NULL),
base::GetModuleFromAddress(
const_cast<int*>(&kConstantInModule)));
// Any address within the kernel32 module should return
// kernel32's HMODULE. Our only assumption here is that
// kernel32 is larger than 4 bytes.
HMODULE kernel32 = ::GetModuleHandle(L"kernel32.dll");
HMODULE kernel32_from_address =
base::GetModuleFromAddress(reinterpret_cast<DWORD*>(kernel32) + 1);
EXPECT_EQ(kernel32, kernel32_from_address);
}
TEST(ProcessMemoryTest, EnableLFH) {
ASSERT_TRUE(base::EnableLowFragmentationHeap());
if (IsDebuggerPresent()) {
// Under these conditions, LFH can't be enabled. There's no point to test
// anything.
const char* no_debug_env = getenv("_NO_DEBUG_HEAP");
if (!no_debug_env || strcmp(no_debug_env, "1"))
return;
}
HMODULE kernel32 = GetModuleHandle(L"kernel32.dll");
ASSERT_TRUE(kernel32 != NULL);
HeapQueryFn heap_query = reinterpret_cast<HeapQueryFn>(GetProcAddress(
kernel32,
"HeapQueryInformation"));
// On Windows 2000, the function is not exported. This is not a reason to
// fail but we won't be able to retrieves information about the heap, so we
// should stop here.
if (heap_query == NULL)
return;
HANDLE heaps[1024] = { 0 };
unsigned number_heaps = GetProcessHeaps(1024, heaps);
EXPECT_GT(number_heaps, 0u);
for (unsigned i = 0; i < number_heaps; ++i) {
ULONG flag = 0;
SIZE_T length;
ASSERT_NE(0, heap_query(heaps[i],
HeapCompatibilityInformation,
&flag,
sizeof(flag),
&length));
// If flag is 0, the heap is a standard heap that does not support
// look-asides. If flag is 1, the heap supports look-asides. If flag is 2,
// the heap is a low-fragmentation heap (LFH). Note that look-asides are not
// supported on the LFH.
// We don't have any documented way of querying the HEAP_NO_SERIALIZE flag.
EXPECT_LE(flag, 2u);
EXPECT_NE(flag, 1u);
}
}
#endif // defined(OS_WIN)
#if defined(OS_MACOSX)
// For the following Mac tests:
// Note that base::EnableTerminationOnHeapCorruption() is called as part of
// test suite setup and does not need to be done again, else mach_override
// will fail.
#if !defined(ADDRESS_SANITIZER)
// The following code tests the system implementation of malloc() thus no need
// to test it under AddressSanitizer.
TEST(ProcessMemoryTest, MacMallocFailureDoesNotTerminate) {
// Test that ENOMEM doesn't crash via CrMallocErrorBreak two ways: the exit
// code and lack of the error string. The number of bytes is one less than
// MALLOC_ABSOLUTE_MAX_SIZE, more than which the system early-returns NULL and
// does not call through malloc_error_break(). See the comment at
// EnableTerminationOnOutOfMemory() for more information.
void* buf = NULL;
ASSERT_EXIT(
{
base::EnableTerminationOnOutOfMemory();
buf = malloc(std::numeric_limits<size_t>::max() - (2 * PAGE_SIZE) - 1);
},
testing::KilledBySignal(SIGTRAP),
"\\*\\*\\* error: can't allocate region.*"
"(Terminating process due to a potential for future heap "
"corruption){0}");
base::debug::Alias(buf);
}
#endif // !defined(ADDRESS_SANITIZER)
TEST(ProcessMemoryTest, MacTerminateOnHeapCorruption) {
// Assert that freeing an unallocated pointer will crash the process.
char buf[9];
asm("" : "=r" (buf)); // Prevent clang from being too smart.
#if ARCH_CPU_64_BITS
// On 64 bit Macs, the malloc system automatically abort()s on heap corruption
// but does not output anything.
ASSERT_DEATH(free(buf), "");
#elif defined(ADDRESS_SANITIZER)
// AddressSanitizer replaces malloc() and prints a different error message on
// heap corruption.
ASSERT_DEATH(free(buf), "attempting free on address which "
"was not malloc\\(\\)-ed");
#else
ASSERT_DEATH(free(buf), "being freed.*"
"\\*\\*\\* set a breakpoint in malloc_error_break to debug.*"
"Terminating process due to a potential for future heap corruption");
#endif // ARCH_CPU_64_BITS || defined(ADDRESS_SANITIZER)
}
#endif // defined(OS_MACOSX)
// Android doesn't implement set_new_handler, so we can't use the
// OutOfMemoryTest cases.
// OpenBSD does not support these tests either.
// AddressSanitizer and ThreadSanitizer define the malloc()/free()/etc.
// functions so that they don't crash if the program is out of memory, so the
// OOM tests aren't supposed to work.
// TODO(vandebo) make this work on Windows too.
#if !defined(OS_ANDROID) && !defined(OS_OPENBSD) && \
!defined(OS_WIN) && \
!defined(ADDRESS_SANITIZER) && !defined(THREAD_SANITIZER)
#if defined(USE_TCMALLOC)
extern "C" {
int tc_set_new_mode(int mode);
}
#endif // defined(USE_TCMALLOC)
class OutOfMemoryDeathTest : public testing::Test {
public:
OutOfMemoryDeathTest()
: value_(NULL),
// Make test size as large as possible minus a few pages so
// that alignment or other rounding doesn't make it wrap.
test_size_(std::numeric_limits<std::size_t>::max() - 12 * 1024),
signed_test_size_(std::numeric_limits<ssize_t>::max()) {
}
#if defined(USE_TCMALLOC)
virtual void SetUp() OVERRIDE {
tc_set_new_mode(1);
}
virtual void TearDown() OVERRIDE {
tc_set_new_mode(0);
}
#endif // defined(USE_TCMALLOC)
void SetUpInDeathAssert() {
// Must call EnableTerminationOnOutOfMemory() because that is called from
// chrome's main function and therefore hasn't been called yet.
// Since this call may result in another thread being created and death
// tests shouldn't be started in a multithread environment, this call
// should be done inside of the ASSERT_DEATH.
base::EnableTerminationOnOutOfMemory();
}
void* value_;
size_t test_size_;
ssize_t signed_test_size_;
};
TEST_F(OutOfMemoryDeathTest, New) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = operator new(test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, NewArray) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = new char[test_size_];
}, "");
}
TEST_F(OutOfMemoryDeathTest, Malloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = malloc(test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, Realloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = realloc(NULL, test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, Calloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = calloc(1024, test_size_ / 1024L);
}, "");
}
TEST_F(OutOfMemoryDeathTest, Valloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = valloc(test_size_);
}, "");
}
#if defined(OS_LINUX)
TEST_F(OutOfMemoryDeathTest, Pvalloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = pvalloc(test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, Memalign) {
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = memalign(4, test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, ViaSharedLibraries) {
// This tests that the run-time symbol resolution is overriding malloc for
// shared libraries (including libc itself) as well as for our code.
std::string format = base::StringPrintf("%%%zud", test_size_);
char *value = NULL;
ASSERT_DEATH({
SetUpInDeathAssert();
EXPECT_EQ(-1, asprintf(&value, format.c_str(), 0));
}, "");
}
#endif // OS_LINUX
// Android doesn't implement posix_memalign().
#if defined(OS_POSIX) && !defined(OS_ANDROID)
TEST_F(OutOfMemoryDeathTest, Posix_memalign) {
// Grab the return value of posix_memalign to silence a compiler warning
// about unused return values. We don't actually care about the return
// value, since we're asserting death.
ASSERT_DEATH({
SetUpInDeathAssert();
EXPECT_EQ(ENOMEM, posix_memalign(&value_, 8, test_size_));
}, "");
}
#endif // defined(OS_POSIX) && !defined(OS_ANDROID)
#if defined(OS_MACOSX)
// Purgeable zone tests
TEST_F(OutOfMemoryDeathTest, MallocPurgeable) {
malloc_zone_t* zone = malloc_default_purgeable_zone();
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = malloc_zone_malloc(zone, test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, ReallocPurgeable) {
malloc_zone_t* zone = malloc_default_purgeable_zone();
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = malloc_zone_realloc(zone, NULL, test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, CallocPurgeable) {
malloc_zone_t* zone = malloc_default_purgeable_zone();
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = malloc_zone_calloc(zone, 1024, test_size_ / 1024L);
}, "");
}
TEST_F(OutOfMemoryDeathTest, VallocPurgeable) {
malloc_zone_t* zone = malloc_default_purgeable_zone();
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = malloc_zone_valloc(zone, test_size_);
}, "");
}
TEST_F(OutOfMemoryDeathTest, PosixMemalignPurgeable) {
malloc_zone_t* zone = malloc_default_purgeable_zone();
ASSERT_DEATH({
SetUpInDeathAssert();
value_ = malloc_zone_memalign(zone, 8, test_size_);
}, "");
}
// Since these allocation functions take a signed size, it's possible that
// calling them just once won't be enough to exhaust memory. In the 32-bit
// environment, it's likely that these allocation attempts will fail because
// not enough contiguous address space is available. In the 64-bit environment,
// it's likely that they'll fail because they would require a preposterous
// amount of (virtual) memory.
TEST_F(OutOfMemoryDeathTest, CFAllocatorSystemDefault) {
ASSERT_DEATH({
SetUpInDeathAssert();
while ((value_ =
base::AllocateViaCFAllocatorSystemDefault(signed_test_size_))) {}
}, "");
}
TEST_F(OutOfMemoryDeathTest, CFAllocatorMalloc) {
ASSERT_DEATH({
SetUpInDeathAssert();
while ((value_ =
base::AllocateViaCFAllocatorMalloc(signed_test_size_))) {}
}, "");
}
TEST_F(OutOfMemoryDeathTest, CFAllocatorMallocZone) {
ASSERT_DEATH({
SetUpInDeathAssert();
while ((value_ =
base::AllocateViaCFAllocatorMallocZone(signed_test_size_))) {}
}, "");
}
#if !defined(ARCH_CPU_64_BITS)
// See process_util_unittest_mac.mm for an explanation of why this test isn't
// run in the 64-bit environment.
TEST_F(OutOfMemoryDeathTest, PsychoticallyBigObjCObject) {
ASSERT_DEATH({
SetUpInDeathAssert();
while ((value_ = base::AllocatePsychoticallyBigObjCObject())) {}
}, "");
}
#endif // !ARCH_CPU_64_BITS
#endif // OS_MACOSX
#endif // !defined(OS_ANDROID) && !defined(OS_OPENBSD) &&
// !defined(OS_WIN) && !defined(ADDRESS_SANITIZER)