blob: 0d9e82bf443762f4cb11fcb3b5675db5c9cadd56 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_stream_sequencer.h"
#include <utility>
#include <vector>
#include "base/logging.h"
#include "base/rand_util.h"
#include "net/base/ip_endpoint.h"
#include "net/quic/quic_utils.h"
#include "net/quic/reliable_quic_stream.h"
#include "net/quic/test_tools/quic_stream_sequencer_peer.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "net/test/gtest_util.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using base::StringPiece;
using std::map;
using std::min;
using std::pair;
using std::vector;
using testing::_;
using testing::AnyNumber;
using testing::InSequence;
using testing::Return;
using testing::StrEq;
namespace net {
namespace test {
class MockStream : public ReliableQuicStream {
public:
MockStream(QuicSession* session, QuicStreamId id)
: ReliableQuicStream(id, session) {
}
MOCK_METHOD0(OnFinRead, void());
MOCK_METHOD2(ProcessRawData, uint32(const char* data, uint32 data_len));
MOCK_METHOD2(CloseConnectionWithDetails, void(QuicErrorCode error,
const string& details));
MOCK_METHOD1(Reset, void(QuicRstStreamErrorCode error));
MOCK_METHOD0(OnCanWrite, void());
virtual QuicPriority EffectivePriority() const OVERRIDE {
return QuicUtils::HighestPriority();
}
virtual bool IsFlowControlEnabled() const {
return true;
}
};
namespace {
static const char kPayload[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
class QuicStreamSequencerTest : public ::testing::Test {
protected:
QuicStreamSequencerTest()
: connection_(new MockConnection(false)),
session_(connection_),
stream_(&session_, 1),
sequencer_(new QuicStreamSequencer(&stream_)),
buffered_frames_(
QuicStreamSequencerPeer::GetBufferedFrames(sequencer_.get())) {
}
bool VerifyReadableRegions(const char** expected, size_t num_expected) {
iovec iovecs[5];
size_t num_iovecs = sequencer_->GetReadableRegions(iovecs,
arraysize(iovecs));
return VerifyIovecs(iovecs, num_iovecs, expected, num_expected);
}
bool VerifyIovecs(iovec* iovecs,
size_t num_iovecs,
const char** expected,
size_t num_expected) {
if (num_expected != num_iovecs) {
LOG(ERROR) << "Incorrect number of iovecs. Expected: "
<< num_expected << " Actual: " << num_iovecs;
return false;
}
for (size_t i = 0; i < num_expected; ++i) {
if (!VerifyIovec(iovecs[i], expected[i])) {
return false;
}
}
return true;
}
bool VerifyIovec(const iovec& iovec, StringPiece expected) {
if (iovec.iov_len != expected.length()) {
LOG(ERROR) << "Invalid length: " << iovec.iov_len
<< " vs " << expected.length();
return false;
}
if (memcmp(iovec.iov_base, expected.data(), expected.length()) != 0) {
LOG(ERROR) << "Invalid data: " << static_cast<char*>(iovec.iov_base)
<< " vs " << expected.data();
return false;
}
return true;
}
bool OnFinFrame(QuicStreamOffset byte_offset, const char* data) {
QuicStreamFrame frame;
frame.stream_id = 1;
frame.offset = byte_offset;
frame.data.Append(const_cast<char*>(data), strlen(data));
frame.fin = true;
return sequencer_->OnStreamFrame(frame);
}
bool OnFrame(QuicStreamOffset byte_offset, const char* data) {
QuicStreamFrame frame;
frame.stream_id = 1;
frame.offset = byte_offset;
frame.data.Append(const_cast<char*>(data), strlen(data));
frame.fin = false;
return sequencer_->OnStreamFrame(frame);
}
MockConnection* connection_;
MockSession session_;
testing::StrictMock<MockStream> stream_;
scoped_ptr<QuicStreamSequencer> sequencer_;
map<QuicStreamOffset, string>* buffered_frames_;
};
TEST_F(QuicStreamSequencerTest, RejectOldFrame) {
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_TRUE(OnFrame(0, "abc"));
EXPECT_EQ(0u, buffered_frames_->size());
EXPECT_EQ(3u, sequencer_->num_bytes_consumed());
// Ignore this - it matches a past sequence number and we should not see it
// again.
EXPECT_TRUE(OnFrame(0, "def"));
EXPECT_EQ(0u, buffered_frames_->size());
}
TEST_F(QuicStreamSequencerTest, RejectBufferedFrame) {
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3));
EXPECT_TRUE(OnFrame(0, "abc"));
EXPECT_EQ(1u, buffered_frames_->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
// Ignore this - it matches a buffered frame.
// Right now there's no checking that the payload is consistent.
EXPECT_TRUE(OnFrame(0, "def"));
EXPECT_EQ(1u, buffered_frames_->size());
}
TEST_F(QuicStreamSequencerTest, FullFrameConsumed) {
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_TRUE(OnFrame(0, "abc"));
EXPECT_EQ(0u, buffered_frames_->size());
EXPECT_EQ(3u, sequencer_->num_bytes_consumed());
}
TEST_F(QuicStreamSequencerTest, BlockedThenFullFrameConsumed) {
sequencer_->SetBlockedUntilFlush();
EXPECT_TRUE(OnFrame(0, "abc"));
EXPECT_EQ(1u, buffered_frames_->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
sequencer_->FlushBufferedFrames();
EXPECT_EQ(0u, buffered_frames_->size());
EXPECT_EQ(3u, sequencer_->num_bytes_consumed());
EXPECT_CALL(stream_, ProcessRawData(StrEq("def"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, OnFinRead());
EXPECT_TRUE(OnFinFrame(3, "def"));
}
TEST_F(QuicStreamSequencerTest, BlockedThenFullFrameAndFinConsumed) {
sequencer_->SetBlockedUntilFlush();
EXPECT_TRUE(OnFinFrame(0, "abc"));
EXPECT_EQ(1u, buffered_frames_->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, OnFinRead());
sequencer_->FlushBufferedFrames();
EXPECT_EQ(0u, buffered_frames_->size());
EXPECT_EQ(3u, sequencer_->num_bytes_consumed());
}
TEST_F(QuicStreamSequencerTest, EmptyFrame) {
EXPECT_CALL(stream_,
CloseConnectionWithDetails(QUIC_INVALID_STREAM_FRAME, _));
EXPECT_FALSE(OnFrame(0, ""));
EXPECT_EQ(0u, buffered_frames_->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
}
TEST_F(QuicStreamSequencerTest, EmptyFinFrame) {
EXPECT_CALL(stream_, OnFinRead());
EXPECT_TRUE(OnFinFrame(0, ""));
EXPECT_EQ(0u, buffered_frames_->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
}
TEST_F(QuicStreamSequencerTest, PartialFrameConsumed) {
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(2));
EXPECT_TRUE(OnFrame(0, "abc"));
EXPECT_EQ(1u, buffered_frames_->size());
EXPECT_EQ(2u, sequencer_->num_bytes_consumed());
EXPECT_EQ("c", buffered_frames_->find(2)->second);
}
TEST_F(QuicStreamSequencerTest, NextxFrameNotConsumed) {
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(0));
EXPECT_TRUE(OnFrame(0, "abc"));
EXPECT_EQ(1u, buffered_frames_->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
EXPECT_EQ("abc", buffered_frames_->find(0)->second);
}
TEST_F(QuicStreamSequencerTest, FutureFrameNotProcessed) {
EXPECT_TRUE(OnFrame(3, "abc"));
EXPECT_EQ(1u, buffered_frames_->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
EXPECT_EQ("abc", buffered_frames_->find(3)->second);
}
TEST_F(QuicStreamSequencerTest, OutOfOrderFrameProcessed) {
// Buffer the first
EXPECT_TRUE(OnFrame(6, "ghi"));
EXPECT_EQ(1u, buffered_frames_->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
EXPECT_EQ(3u, sequencer_->num_bytes_buffered());
// Buffer the second
EXPECT_TRUE(OnFrame(3, "def"));
EXPECT_EQ(2u, buffered_frames_->size());
EXPECT_EQ(0u, sequencer_->num_bytes_consumed());
EXPECT_EQ(6u, sequencer_->num_bytes_buffered());
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, ProcessRawData(StrEq("def"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, ProcessRawData(StrEq("ghi"), 3)).WillOnce(Return(3));
// Ack right away
EXPECT_TRUE(OnFrame(0, "abc"));
EXPECT_EQ(9u, sequencer_->num_bytes_consumed());
EXPECT_EQ(0u, sequencer_->num_bytes_buffered());
EXPECT_EQ(0u, buffered_frames_->size());
}
TEST_F(QuicStreamSequencerTest, BasicHalfCloseOrdered) {
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, OnFinRead());
EXPECT_TRUE(OnFinFrame(0, "abc"));
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
}
TEST_F(QuicStreamSequencerTest, BasicHalfCloseUnorderedWithFlush) {
OnFinFrame(6, "");
EXPECT_EQ(6u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, ProcessRawData(StrEq("def"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, OnFinRead());
EXPECT_TRUE(OnFrame(3, "def"));
EXPECT_TRUE(OnFrame(0, "abc"));
}
TEST_F(QuicStreamSequencerTest, BasicHalfUnordered) {
OnFinFrame(3, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
InSequence s;
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(3));
EXPECT_CALL(stream_, OnFinRead());
EXPECT_TRUE(OnFrame(0, "abc"));
}
TEST_F(QuicStreamSequencerTest, TerminateWithReadv) {
char buffer[3];
OnFinFrame(3, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
EXPECT_FALSE(sequencer_->IsClosed());
EXPECT_CALL(stream_, ProcessRawData(StrEq("abc"), 3)).WillOnce(Return(0));
EXPECT_TRUE(OnFrame(0, "abc"));
iovec iov = {&buffer[0], 3};
int bytes_read = sequencer_->Readv(&iov, 1);
EXPECT_EQ(3, bytes_read);
EXPECT_TRUE(sequencer_->IsClosed());
}
TEST_F(QuicStreamSequencerTest, MutipleOffsets) {
OnFinFrame(3, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
EXPECT_CALL(stream_, Reset(QUIC_MULTIPLE_TERMINATION_OFFSETS));
OnFinFrame(5, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
EXPECT_CALL(stream_, Reset(QUIC_MULTIPLE_TERMINATION_OFFSETS));
OnFinFrame(1, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
OnFinFrame(3, "");
EXPECT_EQ(3u, QuicStreamSequencerPeer::GetCloseOffset(sequencer_.get()));
}
class QuicSequencerRandomTest : public QuicStreamSequencerTest {
public:
typedef pair<int, string> Frame;
typedef vector<Frame> FrameList;
void CreateFrames() {
int payload_size = arraysize(kPayload) - 1;
int remaining_payload = payload_size;
while (remaining_payload != 0) {
int size = min(OneToN(6), remaining_payload);
int index = payload_size - remaining_payload;
list_.push_back(make_pair(index, string(kPayload + index, size)));
remaining_payload -= size;
}
}
QuicSequencerRandomTest() {
CreateFrames();
}
int OneToN(int n) {
return base::RandInt(1, n);
}
int MaybeProcessMaybeBuffer(const char* data, uint32 len) {
int to_process = len;
if (base::RandUint64() % 2 != 0) {
to_process = base::RandInt(0, len);
}
output_.append(data, to_process);
return to_process;
}
string output_;
FrameList list_;
};
// All frames are processed as soon as we have sequential data.
// Infinite buffering, so all frames are acked right away.
TEST_F(QuicSequencerRandomTest, RandomFramesNoDroppingNoBackup) {
InSequence s;
for (size_t i = 0; i < list_.size(); ++i) {
string* data = &list_[i].second;
EXPECT_CALL(stream_, ProcessRawData(StrEq(*data), data->size()))
.WillOnce(Return(data->size()));
}
while (!list_.empty()) {
int index = OneToN(list_.size()) - 1;
LOG(ERROR) << "Sending index " << index << " " << list_[index].second;
EXPECT_TRUE(OnFrame(list_[index].first, list_[index].second.data()));
list_.erase(list_.begin() + index);
}
}
TEST_F(QuicStreamSequencerTest, FrameOverlapsBufferedData) {
// Ensure that FrameOverlapsBufferedData returns appropriate responses when
// there is existing data buffered.
map<QuicStreamOffset, string>* buffered_frames =
QuicStreamSequencerPeer::GetBufferedFrames(sequencer_.get());
const int kBufferedOffset = 10;
const int kBufferedDataLength = 3;
const int kNewDataLength = 3;
IOVector data = MakeIOVector(string(kNewDataLength, '.'));
// No overlap if no buffered frames.
EXPECT_TRUE(buffered_frames_->empty());
EXPECT_FALSE(sequencer_->FrameOverlapsBufferedData(
QuicStreamFrame(1, false, kBufferedOffset - 1, data)));
// Add a buffered frame.
buffered_frames->insert(
make_pair(kBufferedOffset, string(kBufferedDataLength, '.')));
// New byte range partially overlaps with buffered frame, start offset
// preceeding buffered frame.
EXPECT_TRUE(sequencer_->FrameOverlapsBufferedData(
QuicStreamFrame(1, false, kBufferedOffset - 1, data)));
EXPECT_TRUE(sequencer_->FrameOverlapsBufferedData(
QuicStreamFrame(1, false, kBufferedOffset - kNewDataLength + 1, data)));
// New byte range partially overlaps with buffered frame, start offset
// inside existing buffered frame.
EXPECT_TRUE(sequencer_->FrameOverlapsBufferedData(
QuicStreamFrame(1, false, kBufferedOffset + 1, data)));
EXPECT_TRUE(sequencer_->FrameOverlapsBufferedData(QuicStreamFrame(
1, false, kBufferedOffset + kBufferedDataLength - 1, data)));
// New byte range entirely outside of buffered frames, start offset preceeding
// buffered frame.
EXPECT_FALSE(sequencer_->FrameOverlapsBufferedData(
QuicStreamFrame(1, false, kBufferedOffset - kNewDataLength, data)));
// New byte range entirely outside of buffered frames, start offset later than
// buffered frame.
EXPECT_FALSE(sequencer_->FrameOverlapsBufferedData(QuicStreamFrame(
1, false, kBufferedOffset + kBufferedDataLength, data)));
}
TEST_F(QuicStreamSequencerTest, DontAcceptOverlappingFrames) {
// The peer should never send us non-identical stream frames which contain
// overlapping byte ranges - if they do, we close the connection.
QuicStreamFrame frame1(kClientDataStreamId1, false, 1, MakeIOVector("hello"));
sequencer_->OnStreamFrame(frame1);
QuicStreamFrame frame2(kClientDataStreamId1, false, 2, MakeIOVector("hello"));
EXPECT_TRUE(sequencer_->FrameOverlapsBufferedData(frame2));
EXPECT_CALL(stream_, CloseConnectionWithDetails(QUIC_INVALID_STREAM_FRAME, _))
.Times(1);
sequencer_->OnStreamFrame(frame2);
}
} // namespace
} // namespace test
} // namespace net