blob: 2990f7ba52fa1f5dea7d25eeff7e29c7b1d92904 [file] [log] [blame]
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */
var glMatrix = require("./common.js");
var mat3 = require("./mat3.js");
var vec3 = require("./vec3.js");
var vec4 = require("./vec4.js");
/**
* @class Quaternion
* @name quat
*/
var quat = {};
/**
* Creates a new identity quat
*
* @returns {quat} a new quaternion
*/
quat.create = function() {
var out = new glMatrix.ARRAY_TYPE(4);
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
return out;
};
/**
* Sets a quaternion to represent the shortest rotation from one
* vector to another.
*
* Both vectors are assumed to be unit length.
*
* @param {quat} out the receiving quaternion.
* @param {vec3} a the initial vector
* @param {vec3} b the destination vector
* @returns {quat} out
*/
quat.rotationTo = (function() {
var tmpvec3 = vec3.create();
var xUnitVec3 = vec3.fromValues(1,0,0);
var yUnitVec3 = vec3.fromValues(0,1,0);
return function(out, a, b) {
var dot = vec3.dot(a, b);
if (dot < -0.999999) {
vec3.cross(tmpvec3, xUnitVec3, a);
if (vec3.length(tmpvec3) < 0.000001)
vec3.cross(tmpvec3, yUnitVec3, a);
vec3.normalize(tmpvec3, tmpvec3);
quat.setAxisAngle(out, tmpvec3, Math.PI);
return out;
} else if (dot > 0.999999) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
return out;
} else {
vec3.cross(tmpvec3, a, b);
out[0] = tmpvec3[0];
out[1] = tmpvec3[1];
out[2] = tmpvec3[2];
out[3] = 1 + dot;
return quat.normalize(out, out);
}
};
})();
/**
* Sets the specified quaternion with values corresponding to the given
* axes. Each axis is a vec3 and is expected to be unit length and
* perpendicular to all other specified axes.
*
* @param {vec3} view the vector representing the viewing direction
* @param {vec3} right the vector representing the local "right" direction
* @param {vec3} up the vector representing the local "up" direction
* @returns {quat} out
*/
quat.setAxes = (function() {
var matr = mat3.create();
return function(out, view, right, up) {
matr[0] = right[0];
matr[3] = right[1];
matr[6] = right[2];
matr[1] = up[0];
matr[4] = up[1];
matr[7] = up[2];
matr[2] = -view[0];
matr[5] = -view[1];
matr[8] = -view[2];
return quat.normalize(out, quat.fromMat3(out, matr));
};
})();
/**
* Creates a new quat initialized with values from an existing quaternion
*
* @param {quat} a quaternion to clone
* @returns {quat} a new quaternion
* @function
*/
quat.clone = vec4.clone;
/**
* Creates a new quat initialized with the given values
*
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @param {Number} w W component
* @returns {quat} a new quaternion
* @function
*/
quat.fromValues = vec4.fromValues;
/**
* Copy the values from one quat to another
*
* @param {quat} out the receiving quaternion
* @param {quat} a the source quaternion
* @returns {quat} out
* @function
*/
quat.copy = vec4.copy;
/**
* Set the components of a quat to the given values
*
* @param {quat} out the receiving quaternion
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @param {Number} w W component
* @returns {quat} out
* @function
*/
quat.set = vec4.set;
/**
* Set a quat to the identity quaternion
*
* @param {quat} out the receiving quaternion
* @returns {quat} out
*/
quat.identity = function(out) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
return out;
};
/**
* Sets a quat from the given angle and rotation axis,
* then returns it.
*
* @param {quat} out the receiving quaternion
* @param {vec3} axis the axis around which to rotate
* @param {Number} rad the angle in radians
* @returns {quat} out
**/
quat.setAxisAngle = function(out, axis, rad) {
rad = rad * 0.5;
var s = Math.sin(rad);
out[0] = s * axis[0];
out[1] = s * axis[1];
out[2] = s * axis[2];
out[3] = Math.cos(rad);
return out;
};
/**
* Adds two quat's
*
* @param {quat} out the receiving quaternion
* @param {quat} a the first operand
* @param {quat} b the second operand
* @returns {quat} out
* @function
*/
quat.add = vec4.add;
/**
* Multiplies two quat's
*
* @param {quat} out the receiving quaternion
* @param {quat} a the first operand
* @param {quat} b the second operand
* @returns {quat} out
*/
quat.multiply = function(out, a, b) {
var ax = a[0], ay = a[1], az = a[2], aw = a[3],
bx = b[0], by = b[1], bz = b[2], bw = b[3];
out[0] = ax * bw + aw * bx + ay * bz - az * by;
out[1] = ay * bw + aw * by + az * bx - ax * bz;
out[2] = az * bw + aw * bz + ax * by - ay * bx;
out[3] = aw * bw - ax * bx - ay * by - az * bz;
return out;
};
/**
* Alias for {@link quat.multiply}
* @function
*/
quat.mul = quat.multiply;
/**
* Scales a quat by a scalar number
*
* @param {quat} out the receiving vector
* @param {quat} a the vector to scale
* @param {Number} b amount to scale the vector by
* @returns {quat} out
* @function
*/
quat.scale = vec4.scale;
/**
* Rotates a quaternion by the given angle about the X axis
*
* @param {quat} out quat receiving operation result
* @param {quat} a quat to rotate
* @param {number} rad angle (in radians) to rotate
* @returns {quat} out
*/
quat.rotateX = function (out, a, rad) {
rad *= 0.5;
var ax = a[0], ay = a[1], az = a[2], aw = a[3],
bx = Math.sin(rad), bw = Math.cos(rad);
out[0] = ax * bw + aw * bx;
out[1] = ay * bw + az * bx;
out[2] = az * bw - ay * bx;
out[3] = aw * bw - ax * bx;
return out;
};
/**
* Rotates a quaternion by the given angle about the Y axis
*
* @param {quat} out quat receiving operation result
* @param {quat} a quat to rotate
* @param {number} rad angle (in radians) to rotate
* @returns {quat} out
*/
quat.rotateY = function (out, a, rad) {
rad *= 0.5;
var ax = a[0], ay = a[1], az = a[2], aw = a[3],
by = Math.sin(rad), bw = Math.cos(rad);
out[0] = ax * bw - az * by;
out[1] = ay * bw + aw * by;
out[2] = az * bw + ax * by;
out[3] = aw * bw - ay * by;
return out;
};
/**
* Rotates a quaternion by the given angle about the Z axis
*
* @param {quat} out quat receiving operation result
* @param {quat} a quat to rotate
* @param {number} rad angle (in radians) to rotate
* @returns {quat} out
*/
quat.rotateZ = function (out, a, rad) {
rad *= 0.5;
var ax = a[0], ay = a[1], az = a[2], aw = a[3],
bz = Math.sin(rad), bw = Math.cos(rad);
out[0] = ax * bw + ay * bz;
out[1] = ay * bw - ax * bz;
out[2] = az * bw + aw * bz;
out[3] = aw * bw - az * bz;
return out;
};
/**
* Calculates the W component of a quat from the X, Y, and Z components.
* Assumes that quaternion is 1 unit in length.
* Any existing W component will be ignored.
*
* @param {quat} out the receiving quaternion
* @param {quat} a quat to calculate W component of
* @returns {quat} out
*/
quat.calculateW = function (out, a) {
var x = a[0], y = a[1], z = a[2];
out[0] = x;
out[1] = y;
out[2] = z;
out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
return out;
};
/**
* Calculates the dot product of two quat's
*
* @param {quat} a the first operand
* @param {quat} b the second operand
* @returns {Number} dot product of a and b
* @function
*/
quat.dot = vec4.dot;
/**
* Performs a linear interpolation between two quat's
*
* @param {quat} out the receiving quaternion
* @param {quat} a the first operand
* @param {quat} b the second operand
* @param {Number} t interpolation amount between the two inputs
* @returns {quat} out
* @function
*/
quat.lerp = vec4.lerp;
/**
* Performs a spherical linear interpolation between two quat
*
* @param {quat} out the receiving quaternion
* @param {quat} a the first operand
* @param {quat} b the second operand
* @param {Number} t interpolation amount between the two inputs
* @returns {quat} out
*/
quat.slerp = function (out, a, b, t) {
// benchmarks:
// http://jsperf.com/quaternion-slerp-implementations
var ax = a[0], ay = a[1], az = a[2], aw = a[3],
bx = b[0], by = b[1], bz = b[2], bw = b[3];
var omega, cosom, sinom, scale0, scale1;
// calc cosine
cosom = ax * bx + ay * by + az * bz + aw * bw;
// adjust signs (if necessary)
if ( cosom < 0.0 ) {
cosom = -cosom;
bx = - bx;
by = - by;
bz = - bz;
bw = - bw;
}
// calculate coefficients
if ( (1.0 - cosom) > 0.000001 ) {
// standard case (slerp)
omega = Math.acos(cosom);
sinom = Math.sin(omega);
scale0 = Math.sin((1.0 - t) * omega) / sinom;
scale1 = Math.sin(t * omega) / sinom;
} else {
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0 - t;
scale1 = t;
}
// calculate final values
out[0] = scale0 * ax + scale1 * bx;
out[1] = scale0 * ay + scale1 * by;
out[2] = scale0 * az + scale1 * bz;
out[3] = scale0 * aw + scale1 * bw;
return out;
};
/**
* Performs a spherical linear interpolation with two control points
*
* @param {quat} out the receiving quaternion
* @param {quat} a the first operand
* @param {quat} b the second operand
* @param {quat} c the third operand
* @param {quat} d the fourth operand
* @param {Number} t interpolation amount
* @returns {quat} out
*/
quat.sqlerp = (function () {
var temp1 = quat.create();
var temp2 = quat.create();
return function (out, a, b, c, d, t) {
quat.slerp(temp1, a, d, t);
quat.slerp(temp2, b, c, t);
quat.slerp(out, temp1, temp2, 2 * t * (1 - t));
return out;
};
}());
/**
* Calculates the inverse of a quat
*
* @param {quat} out the receiving quaternion
* @param {quat} a quat to calculate inverse of
* @returns {quat} out
*/
quat.invert = function(out, a) {
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
dot = a0*a0 + a1*a1 + a2*a2 + a3*a3,
invDot = dot ? 1.0/dot : 0;
// TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
out[0] = -a0*invDot;
out[1] = -a1*invDot;
out[2] = -a2*invDot;
out[3] = a3*invDot;
return out;
};
/**
* Calculates the conjugate of a quat
* If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
*
* @param {quat} out the receiving quaternion
* @param {quat} a quat to calculate conjugate of
* @returns {quat} out
*/
quat.conjugate = function (out, a) {
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
out[3] = a[3];
return out;
};
/**
* Calculates the length of a quat
*
* @param {quat} a vector to calculate length of
* @returns {Number} length of a
* @function
*/
quat.length = vec4.length;
/**
* Alias for {@link quat.length}
* @function
*/
quat.len = quat.length;
/**
* Calculates the squared length of a quat
*
* @param {quat} a vector to calculate squared length of
* @returns {Number} squared length of a
* @function
*/
quat.squaredLength = vec4.squaredLength;
/**
* Alias for {@link quat.squaredLength}
* @function
*/
quat.sqrLen = quat.squaredLength;
/**
* Normalize a quat
*
* @param {quat} out the receiving quaternion
* @param {quat} a quaternion to normalize
* @returns {quat} out
* @function
*/
quat.normalize = vec4.normalize;
/**
* Creates a quaternion from the given 3x3 rotation matrix.
*
* NOTE: The resultant quaternion is not normalized, so you should be sure
* to renormalize the quaternion yourself where necessary.
*
* @param {quat} out the receiving quaternion
* @param {mat3} m rotation matrix
* @returns {quat} out
* @function
*/
quat.fromMat3 = function(out, m) {
// Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
// article "Quaternion Calculus and Fast Animation".
var fTrace = m[0] + m[4] + m[8];
var fRoot;
if ( fTrace > 0.0 ) {
// |w| > 1/2, may as well choose w > 1/2
fRoot = Math.sqrt(fTrace + 1.0); // 2w
out[3] = 0.5 * fRoot;
fRoot = 0.5/fRoot; // 1/(4w)
out[0] = (m[5]-m[7])*fRoot;
out[1] = (m[6]-m[2])*fRoot;
out[2] = (m[1]-m[3])*fRoot;
} else {
// |w| <= 1/2
var i = 0;
if ( m[4] > m[0] )
i = 1;
if ( m[8] > m[i*3+i] )
i = 2;
var j = (i+1)%3;
var k = (i+2)%3;
fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0);
out[i] = 0.5 * fRoot;
fRoot = 0.5 / fRoot;
out[3] = (m[j*3+k] - m[k*3+j]) * fRoot;
out[j] = (m[j*3+i] + m[i*3+j]) * fRoot;
out[k] = (m[k*3+i] + m[i*3+k]) * fRoot;
}
return out;
};
/**
* Returns a string representation of a quatenion
*
* @param {quat} vec vector to represent as a string
* @returns {String} string representation of the vector
*/
quat.str = function (a) {
return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
};
module.exports = quat;