blob: 6e9dbbd8c0b7d12e0a8a345791e793a06d3364c5 [file] [log] [blame]
PROGRAM ZBLAT3
*
* Test program for the COMPLEX*16 Level 3 Blas.
*
* The program must be driven by a short data file. The first 13 records
* of the file are read using list-directed input, the last 9 records
* are read using the format ( A12,L2 ). An annotated example of a data
* file can be obtained by deleting the first 3 characters from the
* following 22 lines:
* 'CBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE
* -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
* F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
* F LOGICAL FLAG, T TO STOP ON FAILURES.
* T LOGICAL FLAG, T TO TEST ERROR EXITS.
* 2 0 TO TEST COLUMN-MAJOR, 1 TO TEST ROW-MAJOR, 2 TO TEST BOTH
* 16.0 THRESHOLD VALUE OF TEST RATIO
* 6 NUMBER OF VALUES OF N
* 0 1 2 3 5 9 VALUES OF N
* 3 NUMBER OF VALUES OF ALPHA
* (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA
* 3 NUMBER OF VALUES OF BETA
* (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA
* ZGEMM T PUT F FOR NO TEST. SAME COLUMNS.
* ZHEMM T PUT F FOR NO TEST. SAME COLUMNS.
* ZSYMM T PUT F FOR NO TEST. SAME COLUMNS.
* ZTRMM T PUT F FOR NO TEST. SAME COLUMNS.
* ZTRSM T PUT F FOR NO TEST. SAME COLUMNS.
* ZHERK T PUT F FOR NO TEST. SAME COLUMNS.
* ZSYRK T PUT F FOR NO TEST. SAME COLUMNS.
* ZHER2K T PUT F FOR NO TEST. SAME COLUMNS.
* ZSYR2K T PUT F FOR NO TEST. SAME COLUMNS.
*
* See:
*
* Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S.
* A Set of Level 3 Basic Linear Algebra Subprograms.
*
* Technical Memorandum No.88 (Revision 1), Mathematics and
* Computer Science Division, Argonne National Laboratory, 9700
* South Cass Avenue, Argonne, Illinois 60439, US.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NSUBS
PARAMETER ( NSUBS = 9 )
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO, RHALF, RONE
PARAMETER ( RZERO = 0.0D0, RHALF = 0.5D0, RONE = 1.0D0 )
INTEGER NMAX
PARAMETER ( NMAX = 65 )
INTEGER NIDMAX, NALMAX, NBEMAX
PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 )
* .. Local Scalars ..
DOUBLE PRECISION EPS, ERR, THRESH
INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NTRA,
$ LAYOUT
LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE,
$ TSTERR, CORDER, RORDER
CHARACTER*1 TRANSA, TRANSB
CHARACTER*12 SNAMET
CHARACTER*32 SNAPS
* .. Local Arrays ..
COMPLEX*16 AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ),
$ ALF( NALMAX ), AS( NMAX*NMAX ),
$ BB( NMAX*NMAX ), BET( NBEMAX ),
$ BS( NMAX*NMAX ), C( NMAX, NMAX ),
$ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ),
$ W( 2*NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDMAX )
LOGICAL LTEST( NSUBS )
CHARACTER*12 SNAMES( NSUBS )
* .. External Functions ..
DOUBLE PRECISION DDIFF
LOGICAL LZE
EXTERNAL DDIFF, LZE
* .. External Subroutines ..
EXTERNAL ZCHK1, ZCHK2, ZCHK3, ZCHK4, ZCHK5,ZMMCH
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
CHARACTER*12 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Data statements ..
DATA SNAMES/'cblas_zgemm ', 'cblas_zhemm ',
$ 'cblas_zsymm ', 'cblas_ztrmm ', 'cblas_ztrsm ',
$ 'cblas_zherk ', 'cblas_zsyrk ', 'cblas_zher2k',
$ 'cblas_zsyr2k'/
* .. Executable Statements ..
*
NOUTC = NOUT
*
* Read name and unit number for snapshot output file and open file.
*
READ( NIN, FMT = * )SNAPS
READ( NIN, FMT = * )NTRA
TRACE = NTRA.GE.0
IF( TRACE )THEN
OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' )
END IF
* Read the flag that directs rewinding of the snapshot file.
READ( NIN, FMT = * )REWI
REWI = REWI.AND.TRACE
* Read the flag that directs stopping on any failure.
READ( NIN, FMT = * )SFATAL
* Read the flag that indicates whether error exits are to be tested.
READ( NIN, FMT = * )TSTERR
* Read the flag that indicates whether row-major data layout to be tested.
READ( NIN, FMT = * )LAYOUT
* Read the threshold value of the test ratio
READ( NIN, FMT = * )THRESH
*
* Read and check the parameter values for the tests.
*
* Values of N
READ( NIN, FMT = * )NIDIM
IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN
WRITE( NOUT, FMT = 9997 )'N', NIDMAX
GO TO 220
END IF
READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM )
DO 10 I = 1, NIDIM
IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN
WRITE( NOUT, FMT = 9996 )NMAX
GO TO 220
END IF
10 CONTINUE
* Values of ALPHA
READ( NIN, FMT = * )NALF
IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN
WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX
GO TO 220
END IF
READ( NIN, FMT = * )( ALF( I ), I = 1, NALF )
* Values of BETA
READ( NIN, FMT = * )NBET
IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN
WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX
GO TO 220
END IF
READ( NIN, FMT = * )( BET( I ), I = 1, NBET )
*
* Report values of parameters.
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM )
WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF )
WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET )
IF( .NOT.TSTERR )THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9984 )
END IF
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )THRESH
WRITE( NOUT, FMT = * )
RORDER = .FALSE.
CORDER = .FALSE.
IF (LAYOUT.EQ.2) THEN
RORDER = .TRUE.
CORDER = .TRUE.
WRITE( *, FMT = 10002 )
ELSE IF (LAYOUT.EQ.1) THEN
RORDER = .TRUE.
WRITE( *, FMT = 10001 )
ELSE IF (LAYOUT.EQ.0) THEN
CORDER = .TRUE.
WRITE( *, FMT = 10000 )
END IF
WRITE( *, FMT = * )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 20 I = 1, NSUBS
LTEST( I ) = .FALSE.
20 CONTINUE
30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT
DO 40 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 50
40 CONTINUE
WRITE( NOUT, FMT = 9990 )SNAMET
STOP
50 LTEST( I ) = LTESTT
GO TO 30
*
60 CONTINUE
CLOSE ( NIN )
*
* Compute EPS (the machine precision).
*
EPS = RONE
70 CONTINUE
IF( DDIFF( RONE + EPS, RONE ).EQ.RZERO )
$ GO TO 80
EPS = RHALF*EPS
GO TO 70
80 CONTINUE
EPS = EPS + EPS
WRITE( NOUT, FMT = 9998 )EPS
*
* Check the reliability of ZMMCH using exact data.
*
N = MIN( 32, NMAX )
DO 100 J = 1, N
DO 90 I = 1, N
AB( I, J ) = MAX( I - J + 1, 0 )
90 CONTINUE
AB( J, NMAX + 1 ) = J
AB( 1, NMAX + J ) = J
C( J, 1 ) = ZERO
100 CONTINUE
DO 110 J = 1, N
CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3
110 CONTINUE
* CC holds the exact result. On exit from ZMMCH CT holds
* the result computed by ZMMCH.
TRANSA = 'N'
TRANSB = 'N'
CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LZE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
TRANSB = 'C'
CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LZE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
DO 120 J = 1, N
AB( J, NMAX + 1 ) = N - J + 1
AB( 1, NMAX + J ) = N - J + 1
120 CONTINUE
DO 130 J = 1, N
CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 -
$ ( ( J + 1 )*J*( J - 1 ) )/3
130 CONTINUE
TRANSA = 'C'
TRANSB = 'N'
CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LZE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
TRANSB = 'C'
CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX,
$ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC,
$ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LZE( CC, CT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR
STOP
END IF
*
* Test each subroutine in turn.
*
DO 200 ISNUM = 1, NSUBS
WRITE( NOUT, FMT = * )
IF( .NOT.LTEST( ISNUM ) )THEN
* Subprogram is not to be tested.
WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM )
ELSE
SRNAMT = SNAMES( ISNUM )
* Test error exits.
IF( TSTERR )THEN
CALL CZ3CHKE( SNAMES( ISNUM ) )
WRITE( NOUT, FMT = * )
END IF
* Test computations.
INFOT = 0
OK = .TRUE.
FATAL = .FALSE.
GO TO ( 140, 150, 150, 160, 160, 170, 170,
$ 180, 180 )ISNUM
* Test ZGEMM, 01.
140 IF (CORDER) THEN
CALL ZCHK1(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G, 0 )
END IF
IF (RORDER) THEN
CALL ZCHK1(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G, 1 )
END IF
GO TO 190
* Test ZHEMM, 02, ZSYMM, 03.
150 IF (CORDER) THEN
CALL ZCHK2(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G, 0 )
END IF
IF (RORDER) THEN
CALL ZCHK2(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G, 1 )
END IF
GO TO 190
* Test ZTRMM, 04, ZTRSM, 05.
160 IF (CORDER) THEN
CALL ZCHK3(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB,
$ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C,
$ 0 )
END IF
IF (RORDER) THEN
CALL ZCHK3(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB,
$ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C,
$ 1 )
END IF
GO TO 190
* Test ZHERK, 06, ZSYRK, 07.
170 IF (CORDER) THEN
CALL ZCHK4(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G, 0 )
END IF
IF (RORDER) THEN
CALL ZCHK4(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C,
$ CC, CS, CT, G, 1 )
END IF
GO TO 190
* Test ZHER2K, 08, ZSYR2K, 09.
180 IF (CORDER) THEN
CALL ZCHK5(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W,
$ 0 )
END IF
IF (RORDER) THEN
CALL ZCHK5(SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET,
$ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W,
$ 1 )
END IF
GO TO 190
*
190 IF( FATAL.AND.SFATAL )
$ GO TO 210
END IF
200 CONTINUE
WRITE( NOUT, FMT = 9986 )
GO TO 230
*
210 CONTINUE
WRITE( NOUT, FMT = 9985 )
GO TO 230
*
220 CONTINUE
WRITE( NOUT, FMT = 9991 )
*
230 CONTINUE
IF( TRACE )
$ CLOSE ( NTRA )
CLOSE ( NOUT )
STOP
*
10002 FORMAT( ' COLUMN-MAJOR AND ROW-MAJOR DATA LAYOUTS ARE TESTED' )
10001 FORMAT(' ROW-MAJOR DATA LAYOUT IS TESTED' )
10000 FORMAT(' COLUMN-MAJOR DATA LAYOUT IS TESTED' )
9999 FORMAT(' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES',
$ 'S THAN', F8.2 )
9998 FORMAT(' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 )
9997 FORMAT(' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ',
$ 'THAN ', I2 )
9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 )
9995 FORMAT('TESTS OF THE COMPLEX*16 LEVEL 3 BLAS', //' THE F',
$ 'OLLOWING PARAMETER VALUES WILL BE USED:' )
9994 FORMAT( ' FOR N ', 9I6 )
9993 FORMAT( ' FOR ALPHA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9992 FORMAT( ' FOR BETA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM',
$ /' ******* TESTS ABANDONED *******' )
9990 FORMAT(' SUBPROGRAM NAME ', A12,' NOT RECOGNIZED', /' ******* T',
$ 'ESTS ABANDONED *******' )
9989 FORMAT(' ERROR IN ZMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU',
$ 'ATED WRONGLY.', /' ZMMCH WAS CALLED WITH TRANSA = ', A1,
$ 'AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ',
$ ' ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ',
$ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ',
$ '*******' )
9988 FORMAT( A12,L2 )
9987 FORMAT( 1X, A12,' WAS NOT TESTED' )
9986 FORMAT( /' END OF TESTS' )
9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' )
9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' )
*
* End of ZBLAT3.
*
END
SUBROUTINE ZCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G,
$ IORDER )
*
* Tests ZGEMM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0, 0.0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA, IORDER
LOGICAL FATAL, REWI, TRACE
CHARACTER*12 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, BETA, BLS
DOUBLE PRECISION ERR, ERRMAX
INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA,
$ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M,
$ MA, MB, MS, N, NA, NARGS, NB, NC, NS
LOGICAL NULL, RESET, SAME, TRANA, TRANB
CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB
CHARACTER*3 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL CZGEMM, ZMAKE, ZMMCH
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'NTC'/
* .. Executable Statements ..
*
NARGS = 13
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 110 IM = 1, NIDIM
M = IDIM( IM )
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = M
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 100
LCC = LDC*N
NULL = N.LE.0.OR.M.LE.0
*
DO 90 IK = 1, NIDIM
K = IDIM( IK )
*
DO 80 ICA = 1, 3
TRANSA = ICH( ICA: ICA )
TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C'
*
IF( TRANA )THEN
MA = K
NA = M
ELSE
MA = M
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
* Generate the matrix A.
*
CALL ZMAKE( 'ge', ' ', ' ', MA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 70 ICB = 1, 3
TRANSB = ICH( ICB: ICB )
TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C'
*
IF( TRANB )THEN
MB = N
NB = K
ELSE
MB = K
NB = N
END IF
* Set LDB to 1 more than minimum value if room.
LDB = MB
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 70
LBB = LDB*NB
*
* Generate the matrix B.
*
CALL ZMAKE( 'ge', ' ', ' ', MB, NB, B, NMAX, BB,
$ LDB, RESET, ZERO )
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL ZMAKE( 'ge', ' ', ' ', M, N, C, NMAX,
$ CC, LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
TRANAS = TRANSA
TRANBS = TRANSB
MS = M
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BLS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ CALL ZPRCN1(NTRA, NC, SNAME, IORDER,
$ TRANSA, TRANSB, M, N, K, ALPHA, LDA,
$ LDB, BETA, LDC)
IF( REWI )
$ REWIND NTRA
CALL CZGEMM( IORDER, TRANSA, TRANSB, M, N,
$ K, ALPHA, AA, LDA, BB, LDB,
$ BETA, CC, LDC )
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = TRANSA.EQ.TRANAS
ISAME( 2 ) = TRANSB.EQ.TRANBS
ISAME( 3 ) = MS.EQ.M
ISAME( 4 ) = NS.EQ.N
ISAME( 5 ) = KS.EQ.K
ISAME( 6 ) = ALS.EQ.ALPHA
ISAME( 7 ) = LZE( AS, AA, LAA )
ISAME( 8 ) = LDAS.EQ.LDA
ISAME( 9 ) = LZE( BS, BB, LBB )
ISAME( 10 ) = LDBS.EQ.LDB
ISAME( 11 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 12 ) = LZE( CS, CC, LCC )
ELSE
ISAME( 12 ) = LZERES( 'ge', ' ', M, N, CS,
$ CC, LDC )
END IF
ISAME( 13 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report
* and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL ZMMCH( TRANSA, TRANSB, M, N, K,
$ ALPHA, A, NMAX, B, NMAX, BETA,
$ C, NMAX, CT, G, CC, LDC, EPS,
$ ERR, FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 120
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10000 )SNAME, NC
IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10001 )SNAME, NC
ELSE
IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10002 )SNAME, NC, ERRMAX
IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10003 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
CALL ZPRCN1(NOUT, NC, SNAME, IORDER, TRANSA, TRANSB,
$ M, N, K, ALPHA, LDA, LDB, BETA, LDC)
*
130 CONTINUE
RETURN
*
10003 FORMAT( ' ', A12,' COMPLETED THE ROW-MAJOR COMPUTATIONAL ',
$ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ',
$ 'RATIO ', F8.2, ' - SUSPECT *******' )
10002 FORMAT( ' ', A12,' COMPLETED THE COLUMN-MAJOR COMPUTATIONAL ',
$ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ',
$ 'RATIO ', F8.2, ' - SUSPECT *******' )
10001 FORMAT( ' ', A12,' PASSED THE ROW-MAJOR COMPUTATIONAL TESTS',
$ ' (', I6, ' CALL', 'S)' )
10000 FORMAT( ' ', A12,' PASSED THE COLUMN-MAJOR COMPUTATIONAL TESTS',
$ ' (', I6, ' CALL', 'S)' )
9998 FORMAT(' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9996 FORMAT( ' ******* ', A12,' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A12,'(''', A1, ''',''', A1, ''',',
$ 3( I3, ',' ), '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3,
$ ',(', F4.1, ',', F4.1, '), C,', I3, ').' )
9994 FORMAT(' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK1.
*
END
*
SUBROUTINE ZPRCN1(NOUT, NC, SNAME, IORDER, TRANSA, TRANSB, M, N,
$ K, ALPHA, LDA, LDB, BETA, LDC)
INTEGER NOUT, NC, IORDER, M, N, K, LDA, LDB, LDC
DOUBLE COMPLEX ALPHA, BETA
CHARACTER*1 TRANSA, TRANSB
CHARACTER*12 SNAME
CHARACTER*14 CRC, CTA,CTB
IF (TRANSA.EQ.'N')THEN
CTA = ' CblasNoTrans'
ELSE IF (TRANSA.EQ.'T')THEN
CTA = ' CblasTrans'
ELSE
CTA = 'CblasConjTrans'
END IF
IF (TRANSB.EQ.'N')THEN
CTB = ' CblasNoTrans'
ELSE IF (TRANSB.EQ.'T')THEN
CTB = ' CblasTrans'
ELSE
CTB = 'CblasConjTrans'
END IF
IF (IORDER.EQ.1)THEN
CRC = ' CblasRowMajor'
ELSE
CRC = ' CblasColMajor'
END IF
WRITE(NOUT, FMT = 9995)NC,SNAME,CRC, CTA,CTB
WRITE(NOUT, FMT = 9994)M, N, K, ALPHA, LDA, LDB, BETA, LDC
9995 FORMAT( 1X, I6, ': ', A12,'(', A14, ',', A14, ',', A14, ',')
9994 FORMAT( 10X, 3( I3, ',' ) ,' (', F4.1,',',F4.1,') , A,',
$ I3, ', B,', I3, ', (', F4.1,',',F4.1,') , C,', I3, ').' )
END
*
SUBROUTINE ZCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G,
$ IORDER )
*
* Tests ZHEMM and ZSYMM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA, IORDER
LOGICAL FATAL, REWI, TRACE
CHARACTER*12 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, BETA, BLS
DOUBLE PRECISION ERR, ERRMAX
INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC,
$ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA,
$ NARGS, NC, NS
LOGICAL CONJ, LEFT, NULL, RESET, SAME
CHARACTER*1 SIDE, SIDES, UPLO, UPLOS
CHARACTER*2 ICHS, ICHU
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL CZHEMM, ZMAKE, ZMMCH, CZSYMM
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHS/'LR'/, ICHU/'UL'/
* .. Executable Statements ..
CONJ = SNAME( 8: 9 ).EQ.'he'
*
NARGS = 12
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 100 IM = 1, NIDIM
M = IDIM( IM )
*
DO 90 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = M
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 90
LCC = LDC*N
NULL = N.LE.0.OR.M.LE.0
* Set LDB to 1 more than minimum value if room.
LDB = M
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 90
LBB = LDB*N
*
* Generate the matrix B.
*
CALL ZMAKE( 'ge', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET,
$ ZERO )
*
DO 80 ICS = 1, 2
SIDE = ICHS( ICS: ICS )
LEFT = SIDE.EQ.'L'
*
IF( LEFT )THEN
NA = M
ELSE
NA = N
END IF
* Set LDA to 1 more than minimum value if room.
LDA = NA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
DO 70 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
* Generate the hermitian or symmetric matrix A.
*
CALL ZMAKE(SNAME( 8: 9 ), UPLO, ' ', NA, NA, A, NMAX,
$ AA, LDA, RESET, ZERO )
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the matrix C.
*
CALL ZMAKE( 'ge', ' ', ' ', M, N, C, NMAX, CC,
$ LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
SIDES = SIDE
UPLOS = UPLO
MS = M
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
BLS = BETA
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( TRACE )
$ CALL ZPRCN2(NTRA, NC, SNAME, IORDER,
$ SIDE, UPLO, M, N, ALPHA, LDA, LDB,
$ BETA, LDC)
IF( REWI )
$ REWIND NTRA
IF( CONJ )THEN
CALL CZHEMM( IORDER, SIDE, UPLO, M, N,
$ ALPHA, AA, LDA, BB, LDB, BETA,
$ CC, LDC )
ELSE
CALL CZSYMM( IORDER, SIDE, UPLO, M, N,
$ ALPHA, AA, LDA, BB, LDB, BETA,
$ CC, LDC )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 110
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = SIDES.EQ.SIDE
ISAME( 2 ) = UPLOS.EQ.UPLO
ISAME( 3 ) = MS.EQ.M
ISAME( 4 ) = NS.EQ.N
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LZE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = LZE( BS, BB, LBB )
ISAME( 9 ) = LDBS.EQ.LDB
ISAME( 10 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 11 ) = LZE( CS, CC, LCC )
ELSE
ISAME( 11 ) = LZERES( 'ge', ' ', M, N, CS,
$ CC, LDC )
END IF
ISAME( 12 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 110
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
IF( LEFT )THEN
CALL ZMMCH( 'N', 'N', M, N, M, ALPHA, A,
$ NMAX, B, NMAX, BETA, C, NMAX,
$ CT, G, CC, LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL ZMMCH( 'N', 'N', M, N, N, ALPHA, B,
$ NMAX, A, NMAX, BETA, C, NMAX,
$ CT, G, CC, LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10000 )SNAME, NC
IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10001 )SNAME, NC
ELSE
IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10002 )SNAME, NC, ERRMAX
IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10003 )SNAME, NC, ERRMAX
END IF
GO TO 120
*
110 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
CALL ZPRCN2(NOUT, NC, SNAME, IORDER, SIDE, UPLO, M, N, ALPHA, LDA,
$ LDB, BETA, LDC)
*
120 CONTINUE
RETURN
*
10003 FORMAT( ' ', A12,' COMPLETED THE ROW-MAJOR COMPUTATIONAL ',
$ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ',
$ 'RATIO ', F8.2, ' - SUSPECT *******' )
10002 FORMAT( ' ', A12,' COMPLETED THE COLUMN-MAJOR COMPUTATIONAL ',
$ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ',
$ 'RATIO ', F8.2, ' - SUSPECT *******' )
10001 FORMAT( ' ', A12,' PASSED THE ROW-MAJOR COMPUTATIONAL TESTS',
$ ' (', I6, ' CALL', 'S)' )
10000 FORMAT( ' ', A12,' PASSED THE COLUMN-MAJOR COMPUTATIONAL TESTS',
$ ' (', I6, ' CALL', 'S)' )
9998 FORMAT(' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9996 FORMAT( ' ******* ', A12,' FAILED ON CALL NUMBER:' )
9995 FORMAT(1X, I6, ': ', A12,'(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1,
$ ',', F4.1, '), C,', I3, ') .' )
9994 FORMAT(' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK2.
*
END
*
SUBROUTINE ZPRCN2(NOUT, NC, SNAME, IORDER, SIDE, UPLO, M, N,
$ ALPHA, LDA, LDB, BETA, LDC)
INTEGER NOUT, NC, IORDER, M, N, LDA, LDB, LDC
DOUBLE COMPLEX ALPHA, BETA
CHARACTER*1 SIDE, UPLO
CHARACTER*12 SNAME
CHARACTER*14 CRC, CS,CU
IF (SIDE.EQ.'L')THEN
CS = ' CblasLeft'
ELSE
CS = ' CblasRight'
END IF
IF (UPLO.EQ.'U')THEN
CU = ' CblasUpper'
ELSE
CU = ' CblasLower'
END IF
IF (IORDER.EQ.1)THEN
CRC = ' CblasRowMajor'
ELSE
CRC = ' CblasColMajor'
END IF
WRITE(NOUT, FMT = 9995)NC,SNAME,CRC, CS,CU
WRITE(NOUT, FMT = 9994)M, N, ALPHA, LDA, LDB, BETA, LDC
9995 FORMAT( 1X, I6, ': ', A12,'(', A14, ',', A14, ',', A14, ',')
9994 FORMAT( 10X, 2( I3, ',' ),' (',F4.1,',',F4.1, '), A,', I3,
$ ', B,', I3, ', (',F4.1,',',F4.1, '), ', 'C,', I3, ').' )
END
*
SUBROUTINE ZCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS,
$ B, BB, BS, CT, G, C, IORDER )
*
* Tests ZTRMM and ZTRSM.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), ONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NIDIM, NMAX, NOUT, NTRA, IORDER
LOGICAL FATAL, REWI, TRACE
CHARACTER*12 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CT( NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS
DOUBLE PRECISION ERR, ERRMAX
INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB,
$ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC,
$ NS
LOGICAL LEFT, NULL, RESET, SAME
CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO,
$ UPLOS
CHARACTER*2 ICHD, ICHS, ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL ZMAKE, ZMMCH, CZTRMM, CZTRSM
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/
* .. Executable Statements ..
*
NARGS = 11
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
* Set up zero matrix for ZMMCH.
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
C( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
*
DO 140 IM = 1, NIDIM
M = IDIM( IM )
*
DO 130 IN = 1, NIDIM
N = IDIM( IN )
* Set LDB to 1 more than minimum value if room.
LDB = M
IF( LDB.LT.NMAX )
$ LDB = LDB + 1
* Skip tests if not enough room.
IF( LDB.GT.NMAX )
$ GO TO 130
LBB = LDB*N
NULL = M.LE.0.OR.N.LE.0
*
DO 120 ICS = 1, 2
SIDE = ICHS( ICS: ICS )
LEFT = SIDE.EQ.'L'
IF( LEFT )THEN
NA = M
ELSE
NA = N
END IF
* Set LDA to 1 more than minimum value if room.
LDA = NA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 130
LAA = LDA*NA
*
DO 110 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
DO 100 ICT = 1, 3
TRANSA = ICHT( ICT: ICT )
*
DO 90 ICD = 1, 2
DIAG = ICHD( ICD: ICD )
*
DO 80 IA = 1, NALF
ALPHA = ALF( IA )
*
* Generate the matrix A.
*
CALL ZMAKE( 'tr', UPLO, DIAG, NA, NA, A,
$ NMAX, AA, LDA, RESET, ZERO )
*
* Generate the matrix B.
*
CALL ZMAKE( 'ge', ' ', ' ', M, N, B, NMAX,
$ BB, LDB, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
SIDES = SIDE
UPLOS = UPLO
TRANAS = TRANSA
DIAGS = DIAG
MS = M
NS = N
ALS = ALPHA
DO 30 I = 1, LAA
AS( I ) = AA( I )
30 CONTINUE
LDAS = LDA
DO 40 I = 1, LBB
BS( I ) = BB( I )
40 CONTINUE
LDBS = LDB
*
* Call the subroutine.
*
IF( SNAME( 10: 11 ).EQ.'mm' )THEN
IF( TRACE )
$ CALL ZPRCN3( NTRA, NC, SNAME, IORDER,
$ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ LDA, LDB)
IF( REWI )
$ REWIND NTRA
CALL CZTRMM(IORDER, SIDE, UPLO, TRANSA,
$ DIAG, M, N, ALPHA, AA, LDA,
$ BB, LDB )
ELSE IF( SNAME( 10: 11 ).EQ.'sm' )THEN
IF( TRACE )
$ CALL ZPRCN3( NTRA, NC, SNAME, IORDER,
$ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ LDA, LDB)
IF( REWI )
$ REWIND NTRA
CALL CZTRSM(IORDER, SIDE, UPLO, TRANSA,
$ DIAG, M, N, ALPHA, AA, LDA,
$ BB, LDB )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9994 )
FATAL = .TRUE.
GO TO 150
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = SIDES.EQ.SIDE
ISAME( 2 ) = UPLOS.EQ.UPLO
ISAME( 3 ) = TRANAS.EQ.TRANSA
ISAME( 4 ) = DIAGS.EQ.DIAG
ISAME( 5 ) = MS.EQ.M
ISAME( 6 ) = NS.EQ.N
ISAME( 7 ) = ALS.EQ.ALPHA
ISAME( 8 ) = LZE( AS, AA, LAA )
ISAME( 9 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 10 ) = LZE( BS, BB, LBB )
ELSE
ISAME( 10 ) = LZERES( 'ge', ' ', M, N, BS,
$ BB, LDB )
END IF
ISAME( 11 ) = LDBS.EQ.LDB
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 50 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
50 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 150
END IF
*
IF( .NOT.NULL )THEN
IF( SNAME( 10: 11 ).EQ.'mm' )THEN
*
* Check the result.
*
IF( LEFT )THEN
CALL ZMMCH( TRANSA, 'N', M, N, M,
$ ALPHA, A, NMAX, B, NMAX,
$ ZERO, C, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL ZMMCH( 'N', TRANSA, M, N, N,
$ ALPHA, B, NMAX, A, NMAX,
$ ZERO, C, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
ELSE IF( SNAME( 10: 11 ).EQ.'sm' )THEN
*
* Compute approximation to original
* matrix.
*
DO 70 J = 1, N
DO 60 I = 1, M
C( I, J ) = BB( I + ( J - 1 )*
$ LDB )
BB( I + ( J - 1 )*LDB ) = ALPHA*
$ B( I, J )
60 CONTINUE
70 CONTINUE
*
IF( LEFT )THEN
CALL ZMMCH( TRANSA, 'N', M, N, M,
$ ONE, A, NMAX, C, NMAX,
$ ZERO, B, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .FALSE. )
ELSE
CALL ZMMCH( 'N', TRANSA, M, N, N,
$ ONE, C, NMAX, A, NMAX,
$ ZERO, B, NMAX, CT, G,
$ BB, LDB, EPS, ERR,
$ FATAL, NOUT, .FALSE. )
END IF
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 150
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
140 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10000 )SNAME, NC
IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10001 )SNAME, NC
ELSE
IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10002 )SNAME, NC, ERRMAX
IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10003 )SNAME, NC, ERRMAX
END IF
GO TO 160
*
150 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
CALL ZPRCN3( NTRA, NC, SNAME, IORDER, SIDE, UPLO, TRANSA, DIAG,
$ M, N, ALPHA, LDA, LDB)
*
160 CONTINUE
RETURN
*
10003 FORMAT( ' ', A12,' COMPLETED THE ROW-MAJOR COMPUTATIONAL ',
$ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ',
$ 'RATIO ', F8.2, ' - SUSPECT *******' )
10002 FORMAT( ' ', A12,' COMPLETED THE COLUMN-MAJOR COMPUTATIONAL ',
$ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ',
$ 'RATIO ', F8.2, ' - SUSPECT *******' )
10001 FORMAT( ' ', A12,' PASSED THE ROW-MAJOR COMPUTATIONAL TESTS',
$ ' (', I6, ' CALL', 'S)' )
10000 FORMAT( ' ', A12,' PASSED THE COLUMN-MAJOR COMPUTATIONAL TESTS',
$ ' (', I6, ' CALL', 'S)' )
9998 FORMAT(' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9996 FORMAT(' ******* ', A12,' FAILED ON CALL NUMBER:' )
9995 FORMAT(1X, I6, ': ', A12,'(', 4( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ') ',
$ ' .' )
9994 FORMAT(' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK3.
*
END
*
SUBROUTINE ZPRCN3(NOUT, NC, SNAME, IORDER, SIDE, UPLO, TRANSA,
$ DIAG, M, N, ALPHA, LDA, LDB)
INTEGER NOUT, NC, IORDER, M, N, LDA, LDB
DOUBLE COMPLEX ALPHA
CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
CHARACTER*12 SNAME
CHARACTER*14 CRC, CS, CU, CA, CD
IF (SIDE.EQ.'L')THEN
CS = ' CblasLeft'
ELSE
CS = ' CblasRight'
END IF
IF (UPLO.EQ.'U')THEN
CU = ' CblasUpper'
ELSE
CU = ' CblasLower'
END IF
IF (TRANSA.EQ.'N')THEN
CA = ' CblasNoTrans'
ELSE IF (TRANSA.EQ.'T')THEN
CA = ' CblasTrans'
ELSE
CA = 'CblasConjTrans'
END IF
IF (DIAG.EQ.'N')THEN
CD = ' CblasNonUnit'
ELSE
CD = ' CblasUnit'
END IF
IF (IORDER.EQ.1)THEN
CRC = ' CblasRowMajor'
ELSE
CRC = ' CblasColMajor'
END IF
WRITE(NOUT, FMT = 9995)NC,SNAME,CRC, CS,CU
WRITE(NOUT, FMT = 9994)CA, CD, M, N, ALPHA, LDA, LDB
9995 FORMAT( 1X, I6, ': ', A12,'(', A14, ',', A14, ',', A14, ',')
9994 FORMAT( 10X, 2( A14, ',') , 2( I3, ',' ), ' (', F4.1, ',',
$ F4.1, '), A,', I3, ', B,', I3, ').' )
END
*
SUBROUTINE ZCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ A, AA, AS, B, BB, BS, C, CC, CS, CT, G,
$ IORDER )
*
* Tests ZHERK and ZSYRK.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) )
DOUBLE PRECISION RONE, RZERO
PARAMETER ( RONE = 1.0D0, RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA, IORDER
LOGICAL FATAL, REWI, TRACE
CHARACTER*12 SNAME
* .. Array Arguments ..
COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), B( NMAX, NMAX ),
$ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ),
$ C( NMAX, NMAX ), CC( NMAX*NMAX ),
$ CS( NMAX*NMAX ), CT( NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, BETA, BETS
DOUBLE PRECISION ERR, ERRMAX, RALPHA, RALS, RBETA, RBETS
INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS,
$ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA,
$ NARGS, NC, NS
LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER
CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS
CHARACTER*2 ICHT, ICHU
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL CZHERK, ZMAKE, ZMMCH, CZSYRK
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, MAX, DBLE
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHT/'NC'/, ICHU/'UL'/
* .. Executable Statements ..
CONJ = SNAME( 8: 9 ).EQ.'he'
*
NARGS = 10
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = N
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 100
LCC = LDC*N
*
DO 90 IK = 1, NIDIM
K = IDIM( IK )
*
DO 80 ICT = 1, 2
TRANS = ICHT( ICT: ICT )
TRAN = TRANS.EQ.'C'
IF( TRAN.AND..NOT.CONJ )
$ TRANS = 'T'
IF( TRAN )THEN
MA = K
NA = N
ELSE
MA = N
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 80
LAA = LDA*NA
*
* Generate the matrix A.
*
CALL ZMAKE( 'ge', ' ', ' ', MA, NA, A, NMAX, AA, LDA,
$ RESET, ZERO )
*
DO 70 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
UPPER = UPLO.EQ.'U'
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
IF( CONJ )THEN
RALPHA = DBLE( ALPHA )
ALPHA = DCMPLX( RALPHA, RZERO )
END IF
*
DO 50 IB = 1, NBET
BETA = BET( IB )
IF( CONJ )THEN
RBETA = DBLE( BETA )
BETA = DCMPLX( RBETA, RZERO )
END IF
NULL = N.LE.0
IF( CONJ )
$ NULL = NULL.OR.( ( K.LE.0.OR.RALPHA.EQ.
$ RZERO ).AND.RBETA.EQ.RONE )
*
* Generate the matrix C.
*
CALL ZMAKE( SNAME( 8: 9 ), UPLO, ' ', N, N, C,
$ NMAX, CC, LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
NS = N
KS = K
IF( CONJ )THEN
RALS = RALPHA
ELSE
ALS = ALPHA
END IF
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
IF( CONJ )THEN
RBETS = RBETA
ELSE
BETS = BETA
END IF
DO 20 I = 1, LCC
CS( I ) = CC( I )
20 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( CONJ )THEN
IF( TRACE )
$ CALL ZPRCN6( NTRA, NC, SNAME, IORDER,
$ UPLO, TRANS, N, K, RALPHA, LDA, RBETA,
$ LDC)
IF( REWI )
$ REWIND NTRA
CALL CZHERK( IORDER, UPLO, TRANS, N, K,
$ RALPHA, AA, LDA, RBETA, CC,
$ LDC )
ELSE
IF( TRACE )
$ CALL ZPRCN4( NTRA, NC, SNAME, IORDER,
$ UPLO, TRANS, N, K, ALPHA, LDA, BETA, LDC)
IF( REWI )
$ REWIND NTRA
CALL CZSYRK( IORDER, UPLO, TRANS, N, K,
$ ALPHA, AA, LDA, BETA, CC, LDC )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLOS.EQ.UPLO
ISAME( 2 ) = TRANSS.EQ.TRANS
ISAME( 3 ) = NS.EQ.N
ISAME( 4 ) = KS.EQ.K
IF( CONJ )THEN
ISAME( 5 ) = RALS.EQ.RALPHA
ELSE
ISAME( 5 ) = ALS.EQ.ALPHA
END IF
ISAME( 6 ) = LZE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
IF( CONJ )THEN
ISAME( 8 ) = RBETS.EQ.RBETA
ELSE
ISAME( 8 ) = BETS.EQ.BETA
END IF
IF( NULL )THEN
ISAME( 9 ) = LZE( CS, CC, LCC )
ELSE
ISAME( 9 ) = LZERES( SNAME( 8: 9 ), UPLO, N,
$ N, CS, CC, LDC )
END IF
ISAME( 10 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 30 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
30 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( CONJ )THEN
TRANST = 'C'
ELSE
TRANST = 'T'
END IF
JC = 1
DO 40 J = 1, N
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
IF( TRAN )THEN
CALL ZMMCH( TRANST, 'N', LJ, 1, K,
$ ALPHA, A( 1, JJ ), NMAX,
$ A( 1, J ), NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ELSE
CALL ZMMCH( 'N', TRANST, LJ, 1, K,
$ ALPHA, A( JJ, 1 ), NMAX,
$ A( J, 1 ), NMAX, BETA,
$ C( JJ, J ), NMAX, CT, G,
$ CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
IF( UPPER )THEN
JC = JC + LDC
ELSE
JC = JC + LDC + 1
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 110
40 CONTINUE
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10000 )SNAME, NC
IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10001 )SNAME, NC
ELSE
IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10002 )SNAME, NC, ERRMAX
IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10003 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
110 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9995 )J
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( CONJ )THEN
CALL ZPRCN6( NOUT, NC, SNAME, IORDER, UPLO, TRANS, N, K, RALPHA,
$ LDA, rBETA, LDC)
ELSE
CALL ZPRCN4( NOUT, NC, SNAME, IORDER, UPLO, TRANS, N, K, ALPHA,
$ LDA, BETA, LDC)
END IF
*
130 CONTINUE
RETURN
*
10003 FORMAT( ' ', A12,' COMPLETED THE ROW-MAJOR COMPUTATIONAL ',
$ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ',
$ 'RATIO ', F8.2, ' - SUSPECT *******' )
10002 FORMAT( ' ', A12,' COMPLETED THE COLUMN-MAJOR COMPUTATIONAL ',
$ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ',
$ 'RATIO ', F8.2, ' - SUSPECT *******' )
10001 FORMAT( ' ', A12,' PASSED THE ROW-MAJOR COMPUTATIONAL TESTS',
$ ' (', I6, ' CALL', 'S)' )
10000 FORMAT( ' ', A12,' PASSED THE COLUMN-MAJOR COMPUTATIONAL TESTS',
$ ' (', I6, ' CALL', 'S)' )
9998 FORMAT(' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9996 FORMAT( ' ******* ', A12,' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT(1X, I6, ': ', A12,'(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') ',
$ ' .' )
9993 FORMAT(1X, I6, ': ', A12,'(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, ') , A,', I3, ',(', F4.1, ',', F4.1,
$ '), C,', I3, ') .' )
9992 FORMAT(' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK4.
*
END
*
SUBROUTINE ZPRCN4(NOUT, NC, SNAME, IORDER, UPLO, TRANSA,
$ N, K, ALPHA, LDA, BETA, LDC)
INTEGER NOUT, NC, IORDER, N, K, LDA, LDC
DOUBLE COMPLEX ALPHA, BETA
CHARACTER*1 UPLO, TRANSA
CHARACTER*12 SNAME
CHARACTER*14 CRC, CU, CA
IF (UPLO.EQ.'U')THEN
CU = ' CblasUpper'
ELSE
CU = ' CblasLower'
END IF
IF (TRANSA.EQ.'N')THEN
CA = ' CblasNoTrans'
ELSE IF (TRANSA.EQ.'T')THEN
CA = ' CblasTrans'
ELSE
CA = 'CblasConjTrans'
END IF
IF (IORDER.EQ.1)THEN
CRC = ' CblasRowMajor'
ELSE
CRC = ' CblasColMajor'
END IF
WRITE(NOUT, FMT = 9995)NC, SNAME, CRC, CU, CA
WRITE(NOUT, FMT = 9994)N, K, ALPHA, LDA, BETA, LDC
9995 FORMAT( 1X, I6, ': ', A12,'(', 3( A14, ',') )
9994 FORMAT( 10X, 2( I3, ',' ), ' (', F4.1, ',', F4.1 ,'), A,',
$ I3, ', (', F4.1,',', F4.1, '), C,', I3, ').' )
END
*
*
SUBROUTINE ZPRCN6(NOUT, NC, SNAME, IORDER, UPLO, TRANSA,
$ N, K, ALPHA, LDA, BETA, LDC)
INTEGER NOUT, NC, IORDER, N, K, LDA, LDC
DOUBLE PRECISION ALPHA, BETA
CHARACTER*1 UPLO, TRANSA
CHARACTER*12 SNAME
CHARACTER*14 CRC, CU, CA
IF (UPLO.EQ.'U')THEN
CU = ' CblasUpper'
ELSE
CU = ' CblasLower'
END IF
IF (TRANSA.EQ.'N')THEN
CA = ' CblasNoTrans'
ELSE IF (TRANSA.EQ.'T')THEN
CA = ' CblasTrans'
ELSE
CA = 'CblasConjTrans'
END IF
IF (IORDER.EQ.1)THEN
CRC = ' CblasRowMajor'
ELSE
CRC = ' CblasColMajor'
END IF
WRITE(NOUT, FMT = 9995)NC, SNAME, CRC, CU, CA
WRITE(NOUT, FMT = 9994)N, K, ALPHA, LDA, BETA, LDC
9995 FORMAT( 1X, I6, ': ', A12,'(', 3( A14, ',') )
9994 FORMAT( 10X, 2( I3, ',' ),
$ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ').' )
END
*
SUBROUTINE ZCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX,
$ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W,
$ IORDER )
*
* Tests ZHER2K and ZSYR2K.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), ONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION RONE, RZERO
PARAMETER ( RONE = 1.0D0, RZERO = 0.0D0 )
* .. Scalar Arguments ..
DOUBLE PRECISION EPS, THRESH
INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA, IORDER
LOGICAL FATAL, REWI, TRACE
CHARACTER*12 SNAME
* .. Array Arguments ..
COMPLEX*16 AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ),
$ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ),
$ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ),
$ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ),
$ W( 2*NMAX )
DOUBLE PRECISION G( NMAX )
INTEGER IDIM( NIDIM )
* .. Local Scalars ..
COMPLEX*16 ALPHA, ALS, BETA, BETS
DOUBLE PRECISION ERR, ERRMAX, RBETA, RBETS
INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB,
$ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS,
$ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS
LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER
CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS
CHARACTER*2 ICHT, ICHU
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LZE, LZERES
EXTERNAL LZE, LZERES
* .. External Subroutines ..
EXTERNAL CZHER2K, ZMAKE, ZMMCH, CZSYR2K
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, DCONJG, MAX, DBLE
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHT/'NC'/, ICHU/'UL'/
* .. Executable Statements ..
CONJ = SNAME( 8: 9 ).EQ.'he'
*
NARGS = 12
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 130 IN = 1, NIDIM
N = IDIM( IN )
* Set LDC to 1 more than minimum value if room.
LDC = N
IF( LDC.LT.NMAX )
$ LDC = LDC + 1
* Skip tests if not enough room.
IF( LDC.GT.NMAX )
$ GO TO 130
LCC = LDC*N
*
DO 120 IK = 1, NIDIM
K = IDIM( IK )
*
DO 110 ICT = 1, 2
TRANS = ICHT( ICT: ICT )
TRAN = TRANS.EQ.'C'
IF( TRAN.AND..NOT.CONJ )
$ TRANS = 'T'
IF( TRAN )THEN
MA = K
NA = N
ELSE
MA = N
NA = K
END IF
* Set LDA to 1 more than minimum value if room.
LDA = MA
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 110
LAA = LDA*NA
*
* Generate the matrix A.
*
IF( TRAN )THEN
CALL ZMAKE( 'ge', ' ', ' ', MA, NA, AB, 2*NMAX, AA,
$ LDA, RESET, ZERO )
ELSE
CALL ZMAKE( 'ge', ' ', ' ', MA, NA, AB, NMAX, AA, LDA,
$ RESET, ZERO )
END IF
*
* Generate the matrix B.
*
LDB = LDA
LBB = LAA
IF( TRAN )THEN
CALL ZMAKE( 'ge', ' ', ' ', MA, NA, AB( K + 1 ),
$ 2*NMAX, BB, LDB, RESET, ZERO )
ELSE
CALL ZMAKE( 'ge', ' ', ' ', MA, NA, AB( K*NMAX + 1 ),
$ NMAX, BB, LDB, RESET, ZERO )
END IF
*
DO 100 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
UPPER = UPLO.EQ.'U'
*
DO 90 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 80 IB = 1, NBET
BETA = BET( IB )
IF( CONJ )THEN
RBETA = DBLE( BETA )
BETA = DCMPLX( RBETA, RZERO )
END IF
NULL = N.LE.0
IF( CONJ )
$ NULL = NULL.OR.( ( K.LE.0.OR.ALPHA.EQ.
$ ZERO ).AND.RBETA.EQ.RONE )
*
* Generate the matrix C.
*
CALL ZMAKE( SNAME( 8: 9 ), UPLO, ' ', N, N, C,
$ NMAX, CC, LDC, RESET, ZERO )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LBB
BS( I ) = BB( I )
20 CONTINUE
LDBS = LDB
IF( CONJ )THEN
RBETS = RBETA
ELSE
BETS = BETA
END IF
DO 30 I = 1, LCC
CS( I ) = CC( I )
30 CONTINUE
LDCS = LDC
*
* Call the subroutine.
*
IF( CONJ )THEN
IF( TRACE )
$ CALL ZPRCN7( NTRA, NC, SNAME, IORDER,
$ UPLO, TRANS, N, K, ALPHA, LDA, LDB,
$ RBETA, LDC)
IF( REWI )
$ REWIND NTRA
CALL CZHER2K( IORDER, UPLO, TRANS, N, K,
$ ALPHA, AA, LDA, BB, LDB, RBETA,
$ CC, LDC )
ELSE
IF( TRACE )
$ CALL ZPRCN5( NTRA, NC, SNAME, IORDER,
$ UPLO, TRANS, N, K, ALPHA, LDA, LDB,
$ BETA, LDC)
IF( REWI )
$ REWIND NTRA
CALL CZSYR2K( IORDER, UPLO, TRANS, N, K,
$ ALPHA, AA, LDA, BB, LDB, BETA,
$ CC, LDC )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 150
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLOS.EQ.UPLO
ISAME( 2 ) = TRANSS.EQ.TRANS
ISAME( 3 ) = NS.EQ.N
ISAME( 4 ) = KS.EQ.K
ISAME( 5 ) = ALS.EQ.ALPHA
ISAME( 6 ) = LZE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
ISAME( 8 ) = LZE( BS, BB, LBB )
ISAME( 9 ) = LDBS.EQ.LDB
IF( CONJ )THEN
ISAME( 10 ) = RBETS.EQ.RBETA
ELSE
ISAME( 10 ) = BETS.EQ.BETA
END IF
IF( NULL )THEN
ISAME( 11 ) = LZE( CS, CC, LCC )
ELSE
ISAME( 11 ) = LZERES( 'he', UPLO, N, N, CS,
$ CC, LDC )
END IF
ISAME( 12 ) = LDCS.EQ.LDC
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 150
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( CONJ )THEN
TRANST = 'C'
ELSE
TRANST = 'T'
END IF
JJAB = 1
JC = 1
DO 70 J = 1, N
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
IF( TRAN )THEN
DO 50 I = 1, K
W( I ) = ALPHA*AB( ( J - 1 )*2*
$ NMAX + K + I )
IF( CONJ )THEN
W( K + I ) = DCONJG( ALPHA )*
$ AB( ( J - 1 )*2*
$ NMAX + I )
ELSE
W( K + I ) = ALPHA*
$ AB( ( J - 1 )*2*
$ NMAX + I )
END IF
50 CONTINUE
CALL ZMMCH( TRANST, 'N', LJ, 1, 2*K,
$ ONE, AB( JJAB ), 2*NMAX, W,
$ 2*NMAX, BETA, C( JJ, J ),
$ NMAX, CT, G, CC( JC ), LDC,
$ EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ELSE
DO 60 I = 1, K
IF( CONJ )THEN
W( I ) = ALPHA*DCONJG( AB( ( K +
$ I - 1 )*NMAX + J ) )
W( K + I ) = DCONJG( ALPHA*
$ AB( ( I - 1 )*NMAX +
$ J ) )
ELSE
W( I ) = ALPHA*AB( ( K + I - 1 )*
$ NMAX + J )
W( K + I ) = ALPHA*
$ AB( ( I - 1 )*NMAX +
$ J )
END IF
60 CONTINUE
CALL ZMMCH( 'N', 'N', LJ, 1, 2*K, ONE,
$ AB( JJ ), NMAX, W, 2*NMAX,
$ BETA, C( JJ, J ), NMAX, CT,
$ G, CC( JC ), LDC, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
END IF
IF( UPPER )THEN
JC = JC + LDC
ELSE
JC = JC + LDC + 1
IF( TRAN )
$ JJAB = JJAB + 2*NMAX
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 140
70 CONTINUE
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10000 )SNAME, NC
IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10001 )SNAME, NC
ELSE
IF ( IORDER.EQ.0) WRITE( NOUT, FMT = 10002 )SNAME, NC, ERRMAX
IF ( IORDER.EQ.1) WRITE( NOUT, FMT = 10003 )SNAME, NC, ERRMAX
END IF
GO TO 160
*
140 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9995 )J
*
150 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( CONJ )THEN
CALL ZPRCN7( NOUT, NC, SNAME, IORDER, UPLO, TRANS, N, K,
$ ALPHA, LDA, LDB, RBETA, LDC)
ELSE
CALL ZPRCN5( NOUT, NC, SNAME, IORDER, UPLO, TRANS, N, K,
$ ALPHA, LDA, LDB, BETA, LDC)
END IF
*
160 CONTINUE
RETURN
*
10003 FORMAT( ' ', A12,' COMPLETED THE ROW-MAJOR COMPUTATIONAL ',
$ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ',
$ 'RATIO ', F8.2, ' - SUSPECT *******' )
10002 FORMAT( ' ', A12,' COMPLETED THE COLUMN-MAJOR COMPUTATIONAL ',
$ 'TESTS (', I6, ' CALLS)', /' ******* BUT WITH MAXIMUM TEST ',
$ 'RATIO ', F8.2, ' - SUSPECT *******' )
10001 FORMAT( ' ', A12,' PASSED THE ROW-MAJOR COMPUTATIONAL TESTS',
$ ' (', I6, ' CALL', 'S)' )
10000 FORMAT( ' ', A12,' PASSED THE COLUMN-MAJOR COMPUTATIONAL TESTS',
$ ' (', I6, ' CALL', 'S)' )
9998 FORMAT(' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9996 FORMAT( ' ******* ', A12,' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT(1X, I6, ': ', A12,'(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',', F4.1,
$ ', C,', I3, ') .' )
9993 FORMAT(1X, I6, ': ', A12,'(', 2( '''', A1, ''',' ), 2( I3, ',' ),
$ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1,
$ ',', F4.1, '), C,', I3, ') .' )
9992 FORMAT(' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of ZCHK5.
*
END
*
SUBROUTINE ZPRCN5(NOUT, NC, SNAME, IORDER, UPLO, TRANSA,
$ N, K, ALPHA, LDA, LDB, BETA, LDC)
INTEGER NOUT, NC, IORDER, N, K, LDA, LDB, LDC
DOUBLE COMPLEX ALPHA, BETA
CHARACTER*1 UPLO, TRANSA
CHARACTER*12 SNAME
CHARACTER*14 CRC, CU, CA
IF (UPLO.EQ.'U')THEN
CU = ' CblasUpper'
ELSE
CU = ' CblasLower'
END IF
IF (TRANSA.EQ.'N')THEN
CA = ' CblasNoTrans'
ELSE IF (TRANSA.EQ.'T')THEN
CA = ' CblasTrans'
ELSE
CA = 'CblasConjTrans'
END IF
IF (IORDER.EQ.1)THEN
CRC = ' CblasRowMajor'
ELSE
CRC = ' CblasColMajor'
END IF
WRITE(NOUT, FMT = 9995)NC, SNAME, CRC, CU, CA
WRITE(NOUT, FMT = 9994)N, K, ALPHA, LDA, LDB, BETA, LDC
9995 FORMAT( 1X, I6, ': ', A12,'(', 3( A14, ',') )
9994 FORMAT( 10X, 2( I3, ',' ), ' (', F4.1, ',', F4.1, '), A,',
$ I3, ', B', I3, ', (', F4.1, ',', F4.1, '), C,', I3, ').' )
END
*
*
SUBROUTINE ZPRCN7(NOUT, NC, SNAME, IORDER, UPLO, TRANSA,
$ N, K, ALPHA, LDA, LDB, BETA, LDC)
INTEGER NOUT, NC, IORDER, N, K, LDA, LDB, LDC
DOUBLE COMPLEX ALPHA
DOUBLE PRECISION BETA
CHARACTER*1 UPLO, TRANSA
CHARACTER*12 SNAME
CHARACTER*14 CRC, CU, CA
IF (UPLO.EQ.'U')THEN
CU = ' CblasUpper'
ELSE
CU = ' CblasLower'
END IF
IF (TRANSA.EQ.'N')THEN
CA = ' CblasNoTrans'
ELSE IF (TRANSA.EQ.'T')THEN
CA = ' CblasTrans'
ELSE
CA = 'CblasConjTrans'
END IF
IF (IORDER.EQ.1)THEN
CRC = ' CblasRowMajor'
ELSE
CRC = ' CblasColMajor'
END IF
WRITE(NOUT, FMT = 9995)NC, SNAME, CRC, CU, CA
WRITE(NOUT, FMT = 9994)N, K, ALPHA, LDA, LDB, BETA, LDC
9995 FORMAT( 1X, I6, ': ', A12,'(', 3( A14, ',') )
9994 FORMAT( 10X, 2( I3, ',' ), ' (', F4.1, ',', F4.1, '), A,',
$ I3, ', B', I3, ',', F4.1, ', C,', I3, ').' )
END
*
SUBROUTINE ZMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET,
$ TRANSL )
*
* Generates values for an M by N matrix A.
* Stores the values in the array AA in the data structure required
* by the routine, with unwanted elements set to rogue value.
*
* TYPE is 'ge', 'he', 'sy' or 'tr'.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ),
$ ONE = ( 1.0D0, 0.0D0 ) )
COMPLEX*16 ROGUE
PARAMETER ( ROGUE = ( -1.0D10, 1.0D10 ) )
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D0 )
DOUBLE PRECISION RROGUE
PARAMETER ( RROGUE = -1.0D10 )
* .. Scalar Arguments ..
COMPLEX*16 TRANSL
INTEGER LDA, M, N, NMAX
LOGICAL RESET
CHARACTER*1 DIAG, UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX*16 A( NMAX, * ), AA( * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J, JJ
LOGICAL GEN, HER, LOWER, SYM, TRI, UNIT, UPPER
* .. External Functions ..
COMPLEX*16 ZBEG
EXTERNAL ZBEG
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, DCONJG, DBLE
* .. Executable Statements ..
GEN = TYPE.EQ.'ge'
HER = TYPE.EQ.'he'
SYM = TYPE.EQ.'sy'
TRI = TYPE.EQ.'tr'
UPPER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'U'
LOWER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'L'
UNIT = TRI.AND.DIAG.EQ.'U'
*
* Generate data in array A.
*
DO 20 J = 1, N
DO 10 I = 1, M
IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) )
$ THEN
A( I, J ) = ZBEG( RESET ) + TRANSL
IF( I.NE.J )THEN
* Set some elements to zero
IF( N.GT.3.AND.J.EQ.N/2 )
$ A( I, J ) = ZERO
IF( HER )THEN
A( J, I ) = DCONJG( A( I, J ) )
ELSE IF( SYM )THEN
A( J, I ) = A( I, J )
ELSE IF( TRI )THEN
A( J, I ) = ZERO
END IF
END IF
END IF
10 CONTINUE
IF( HER )
$ A( J, J ) = DCMPLX( DBLE( A( J, J ) ), RZERO )
IF( TRI )
$ A( J, J ) = A( J, J ) + ONE
IF( UNIT )
$ A( J, J ) = ONE
20 CONTINUE
*
* Store elements in array AS in data structure required by routine.
*
IF( TYPE.EQ.'ge' )THEN
DO 50 J = 1, N
DO 30 I = 1, M
AA( I + ( J - 1 )*LDA ) = A( I, J )
30 CONTINUE
DO 40 I = M + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
40 CONTINUE
50 CONTINUE
ELSE IF( TYPE.EQ.'he'.OR.TYPE.EQ.'sy'.OR.TYPE.EQ.'tr' )THEN
DO 90 J = 1, N
IF( UPPER )THEN
IBEG = 1
IF( UNIT )THEN
IEND = J - 1
ELSE
IEND = J
END IF
ELSE
IF( UNIT )THEN
IBEG = J + 1
ELSE
IBEG = J
END IF
IEND = N
END IF
DO 60 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
60 CONTINUE
DO 70 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I, J )
70 CONTINUE
DO 80 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
80 CONTINUE
IF( HER )THEN
JJ = J + ( J - 1 )*LDA
AA( JJ ) = DCMPLX( DBLE( AA( JJ ) ), RROGUE )
END IF
90 CONTINUE
END IF
RETURN
*
* End of ZMAKE.
*
END
SUBROUTINE ZMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB,
$ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL,
$ NOUT, MV )
*
* Checks the results of the computational tests.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) )
DOUBLE PRECISION RZERO, RONE
PARAMETER ( RZERO = 0.0D0, RONE = 1.0D0 )
* .. Scalar Arguments ..
COMPLEX*16 ALPHA, BETA
DOUBLE PRECISION EPS, ERR
INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT
LOGICAL FATAL, MV
CHARACTER*1 TRANSA, TRANSB
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ CC( LDCC, * ), CT( * )
DOUBLE PRECISION G( * )
* .. Local Scalars ..
COMPLEX*16 CL
DOUBLE PRECISION ERRI
INTEGER I, J, K
LOGICAL CTRANA, CTRANB, TRANA, TRANB
* .. Intrinsic Functions ..
INTRINSIC ABS, DIMAG, DCONJG, MAX, DBLE, SQRT
* .. Statement Functions ..
DOUBLE PRECISION ABS1
* .. Statement Function definitions ..
ABS1( CL ) = ABS( DBLE( CL ) ) + ABS( DIMAG( CL ) )
* .. Executable Statements ..
TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C'
TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C'
CTRANA = TRANSA.EQ.'C'
CTRANB = TRANSB.EQ.'C'
*
* Compute expected result, one column at a time, in CT using data
* in A, B and C.
* Compute gauges in G.
*
DO 220 J = 1, N
*
DO 10 I = 1, M
CT( I ) = ZERO
G( I ) = RZERO
10 CONTINUE
IF( .NOT.TRANA.AND..NOT.TRANB )THEN
DO 30 K = 1, KK
DO 20 I = 1, M
CT( I ) = CT( I ) + A( I, K )*B( K, J )
G( I ) = G( I ) + ABS1( A( I, K ) )*ABS1( B( K, J ) )
20 CONTINUE
30 CONTINUE
ELSE IF( TRANA.AND..NOT.TRANB )THEN
IF( CTRANA )THEN
DO 50 K = 1, KK
DO 40 I = 1, M
CT( I ) = CT( I ) + DCONJG( A( K, I ) )*B( K, J )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( K, J ) )
40 CONTINUE
50 CONTINUE
ELSE
DO 70 K = 1, KK
DO 60 I = 1, M
CT( I ) = CT( I ) + A( K, I )*B( K, J )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( K, J ) )
60 CONTINUE
70 CONTINUE
END IF
ELSE IF( .NOT.TRANA.AND.TRANB )THEN
IF( CTRANB )THEN
DO 90 K = 1, KK
DO 80 I = 1, M
CT( I ) = CT( I ) + A( I, K )*DCONJG( B( J, K ) )
G( I ) = G( I ) + ABS1( A( I, K ) )*
$ ABS1( B( J, K ) )
80 CONTINUE
90 CONTINUE
ELSE
DO 110 K = 1, KK
DO 100 I = 1, M
CT( I ) = CT( I ) + A( I, K )*B( J, K )
G( I ) = G( I ) + ABS1( A( I, K ) )*
$ ABS1( B( J, K ) )
100 CONTINUE
110 CONTINUE
END IF
ELSE IF( TRANA.AND.TRANB )THEN
IF( CTRANA )THEN
IF( CTRANB )THEN
DO 130 K = 1, KK
DO 120 I = 1, M
CT( I ) = CT( I ) + DCONJG( A( K, I ) )*
$ DCONJG( B( J, K ) )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
120 CONTINUE
130 CONTINUE
ELSE
DO 150 K = 1, KK
DO 140 I = 1, M
CT( I ) = CT( I ) + DCONJG( A( K, I ) )*
$ B( J, K )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
140 CONTINUE
150 CONTINUE
END IF
ELSE
IF( CTRANB )THEN
DO 170 K = 1, KK
DO 160 I = 1, M
CT( I ) = CT( I ) + A( K, I )*
$ DCONJG( B( J, K ) )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
160 CONTINUE
170 CONTINUE
ELSE
DO 190 K = 1, KK
DO 180 I = 1, M
CT( I ) = CT( I ) + A( K, I )*B( J, K )
G( I ) = G( I ) + ABS1( A( K, I ) )*
$ ABS1( B( J, K ) )
180 CONTINUE
190 CONTINUE
END IF
END IF
END IF
DO 200 I = 1, M
CT( I ) = ALPHA*CT( I ) + BETA*C( I, J )
G( I ) = ABS1( ALPHA )*G( I ) +
$ ABS1( BETA )*ABS1( C( I, J ) )
200 CONTINUE
*
* Compute the error ratio for this result.
*
ERR = ZERO
DO 210 I = 1, M
ERRI = ABS1( CT( I ) - CC( I, J ) )/EPS
IF( G( I ).NE.RZERO )
$ ERRI = ERRI/G( I )
ERR = MAX( ERR, ERRI )
IF( ERR*SQRT( EPS ).GE.RONE )
$ GO TO 230
210 CONTINUE
*
220 CONTINUE
*
* If the loop completes, all results are at least half accurate.
GO TO 250
*
* Report fatal error.
*
230 FATAL = .TRUE.
WRITE( NOUT, FMT = 9999 )
DO 240 I = 1, M
IF( MV )THEN
WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J )
ELSE
WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I )
END IF
240 CONTINUE
IF( N.GT.1 )
$ WRITE( NOUT, FMT = 9997 )J
*
250 CONTINUE
RETURN
*
9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL',
$ 'F ACCURATE *******', /' EXPECTED RE',
$ 'SULT COMPUTED RESULT' )
9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) )
9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
*
* End of ZMMCH.
*
END
LOGICAL FUNCTION LZE( RI, RJ, LR )
*
* Tests if two arrays are identical.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER LR
* .. Array Arguments ..
COMPLEX*16 RI( * ), RJ( * )
* .. Local Scalars ..
INTEGER I
* .. Executable Statements ..
DO 10 I = 1, LR
IF( RI( I ).NE.RJ( I ) )
$ GO TO 20
10 CONTINUE
LZE = .TRUE.
GO TO 30
20 CONTINUE
LZE = .FALSE.
30 RETURN
*
* End of LZE.
*
END
LOGICAL FUNCTION LZERES( TYPE, UPLO, M, N, AA, AS, LDA )
*
* Tests if selected elements in two arrays are equal.
*
* TYPE is 'ge' or 'he' or 'sy'.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
INTEGER LDA, M, N
CHARACTER*1 UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX*16 AA( LDA, * ), AS( LDA, * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL UPPER
* .. Executable Statements ..
UPPER = UPLO.EQ.'U'
IF( TYPE.EQ.'ge' )THEN
DO 20 J = 1, N
DO 10 I = M + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
10 CONTINUE
20 CONTINUE
ELSE IF( TYPE.EQ.'he'.OR.TYPE.EQ.'sy' )THEN
DO 50 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 30 I = 1, IBEG - 1
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
30 CONTINUE
DO 40 I = IEND + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
40 CONTINUE
50 CONTINUE
END IF
*
60 CONTINUE
LZERES = .TRUE.
GO TO 80
70 CONTINUE
LZERES = .FALSE.
80 RETURN
*
* End of LZERES.
*
END
COMPLEX*16 FUNCTION ZBEG( RESET )
*
* Generates complex numbers as pairs of random numbers uniformly
* distributed between -0.5 and 0.5.
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
LOGICAL RESET
* .. Local Scalars ..
INTEGER I, IC, J, MI, MJ
* .. Save statement ..
SAVE I, IC, J, MI, MJ
* .. Intrinsic Functions ..
INTRINSIC DCMPLX
* .. Executable Statements ..
IF( RESET )THEN
* Initialize local variables.
MI = 891
MJ = 457
I = 7
J = 7
IC = 0
RESET = .FALSE.
END IF
*
* The sequence of values of I or J is bounded between 1 and 999.
* If initial I or J = 1,2,3,6,7 or 9, the period will be 50.
* If initial I or J = 4 or 8, the period will be 25.
* If initial I or J = 5, the period will be 10.
* IC is used to break up the period by skipping 1 value of I or J
* in 6.
*
IC = IC + 1
10 I = I*MI
J = J*MJ
I = I - 1000*( I/1000 )
J = J - 1000*( J/1000 )
IF( IC.GE.5 )THEN
IC = 0
GO TO 10
END IF
ZBEG = DCMPLX( ( I - 500 )/1001.0D0, ( J - 500 )/1001.0D0 )
RETURN
*
* End of ZBEG.
*
END
DOUBLE PRECISION FUNCTION DDIFF( X, Y )
*
* Auxiliary routine for test program for Level 3 Blas.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* .. Scalar Arguments ..
DOUBLE PRECISION X, Y
* .. Executable Statements ..
DDIFF = X - Y
RETURN
*
* End of DDIFF.
*
END