blob: 4b8bc30e1f987d6136887c75a9ab665d672b7912 [file] [log] [blame] [edit]
/* Copyright (c) 2019, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include "mock_quic_transport.h"
#include <openssl/span.h>
#include <cstring>
#include <limits>
MockQuicTransport::MockQuicTransport(bssl::UniquePtr<BIO> bio, SSL *ssl)
: bio_(std::move(bio)),
read_levels_(ssl_encryption_application + 1),
write_levels_(ssl_encryption_application + 1),
ssl_(ssl) {}
bool MockQuicTransport::SetReadSecret(enum ssl_encryption_level_t level,
const SSL_CIPHER *cipher,
const uint8_t *secret,
size_t secret_len) {
// TODO(davidben): Assert the various encryption secret invariants.
read_levels_[level].cipher = SSL_CIPHER_get_protocol_id(cipher);
read_levels_[level].secret.assign(secret, secret + secret_len);
return true;
}
bool MockQuicTransport::SetWriteSecret(enum ssl_encryption_level_t level,
const SSL_CIPHER *cipher,
const uint8_t *secret,
size_t secret_len) {
// TODO(davidben): Assert the various encryption secret invariants.
write_levels_[level].cipher = SSL_CIPHER_get_protocol_id(cipher);
write_levels_[level].secret.assign(secret, secret + secret_len);
return true;
}
namespace {
bool ReadAll(BIO *bio, bssl::Span<uint8_t> out) {
size_t len = out.size();
uint8_t *buf = out.data();
while (len > 0) {
int chunk_len = std::numeric_limits<int>::max();
if (len <= static_cast<unsigned int>(std::numeric_limits<int>::max())) {
chunk_len = len;
}
int ret = BIO_read(bio, buf, chunk_len);
if (ret <= 0) {
return false;
}
buf += ret;
len -= ret;
}
return true;
}
const char *LevelToString(ssl_encryption_level_t level) {
switch (level) {
case ssl_encryption_initial:
return "initial";
case ssl_encryption_early_data:
return "early_data";
case ssl_encryption_handshake:
return "handshake";
case ssl_encryption_application:
return "application";
}
return "";
}
} // namespace
bool MockQuicTransport::ReadHeader(uint8_t *out_type,
enum ssl_encryption_level_t *out_level,
size_t *out_len) {
for (;;) {
uint8_t header[8];
if (!ReadAll(bio_.get(), header)) {
// TODO(davidben): Distinguish between errors and EOF. See
// ReadApplicationData.
return false;
}
CBS cbs;
uint8_t level_id;
uint16_t cipher_suite;
uint32_t remaining_bytes;
CBS_init(&cbs, header, sizeof(header));
if (!CBS_get_u8(&cbs, out_type) ||
!CBS_get_u8(&cbs, &level_id) ||
!CBS_get_u16(&cbs, &cipher_suite) ||
!CBS_get_u32(&cbs, &remaining_bytes) ||
level_id >= read_levels_.size()) {
fprintf(stderr, "Error parsing record header.\n");
return false;
}
auto level = static_cast<ssl_encryption_level_t>(level_id);
// Non-initial levels must be configured before use.
uint16_t expect_cipher = read_levels_[level].cipher;
if (expect_cipher == 0 && level != ssl_encryption_initial) {
if (level == ssl_encryption_early_data) {
// If we receive early data records without any early data keys, skip
// the record. This means early data was rejected.
std::vector<uint8_t> discard(remaining_bytes);
if (!ReadAll(bio_.get(), bssl::MakeSpan(discard))) {
return false;
}
continue;
}
fprintf(stderr,
"Got record at level %s, but keys were not configured.\n",
LevelToString(level));
return false;
}
if (cipher_suite != expect_cipher) {
fprintf(stderr, "Got cipher suite 0x%04x at level %s, wanted 0x%04x.\n",
cipher_suite, LevelToString(level), expect_cipher);
return false;
}
const std::vector<uint8_t> &secret = read_levels_[level].secret;
std::vector<uint8_t> read_secret(secret.size());
if (remaining_bytes < secret.size()) {
fprintf(stderr, "Record at level %s too small.\n", LevelToString(level));
return false;
}
remaining_bytes -= secret.size();
if (!ReadAll(bio_.get(), bssl::MakeSpan(read_secret))) {
fprintf(stderr, "Error reading record secret.\n");
return false;
}
if (read_secret != secret) {
fprintf(stderr, "Encryption secret at level %s did not match.\n",
LevelToString(level));
return false;
}
*out_level = level;
*out_len = remaining_bytes;
return true;
}
}
bool MockQuicTransport::ReadHandshake() {
uint8_t type;
ssl_encryption_level_t level;
size_t len;
if (!ReadHeader(&type, &level, &len)) {
return false;
}
if (type != SSL3_RT_HANDSHAKE) {
return false;
}
std::vector<uint8_t> buf(len);
if (!ReadAll(bio_.get(), bssl::MakeSpan(buf))) {
return false;
}
return SSL_provide_quic_data(ssl_, level, buf.data(), buf.size());
}
int MockQuicTransport::ReadApplicationData(uint8_t *out, size_t max_out) {
if (pending_app_data_.size() > 0) {
size_t len = pending_app_data_.size() - app_data_offset_;
if (len > max_out) {
len = max_out;
}
memcpy(out, pending_app_data_.data() + app_data_offset_, len);
app_data_offset_ += len;
if (app_data_offset_ == pending_app_data_.size()) {
pending_app_data_.clear();
app_data_offset_ = 0;
}
return len;
}
uint8_t type = 0;
ssl_encryption_level_t level;
size_t len;
while (true) {
if (!ReadHeader(&type, &level, &len)) {
// Assume that a failure to read the header means there's no more to read,
// not an error reading.
return 0;
}
if (type == SSL3_RT_APPLICATION_DATA) {
break;
}
if (type != SSL3_RT_HANDSHAKE) {
return -1;
}
std::vector<uint8_t> buf(len);
if (!ReadAll(bio_.get(), bssl::MakeSpan(buf))) {
return -1;
}
if (SSL_provide_quic_data(ssl_, level, buf.data(), buf.size()) != 1) {
return -1;
}
if (SSL_in_init(ssl_)) {
int ret = SSL_do_handshake(ssl_);
if (ret < 0) {
int ssl_err = SSL_get_error(ssl_, ret);
if (ssl_err == SSL_ERROR_WANT_READ) {
continue;
}
return -1;
}
} else if (SSL_process_quic_post_handshake(ssl_) != 1) {
return -1;
}
}
uint8_t *buf = out;
if (len > max_out) {
pending_app_data_.resize(len);
buf = pending_app_data_.data();
}
app_data_offset_ = 0;
if (!ReadAll(bio_.get(), bssl::MakeSpan(buf, len))) {
return -1;
}
if (len > max_out) {
memcpy(out, buf, max_out);
app_data_offset_ = max_out;
return max_out;
}
return len;
}
bool MockQuicTransport::WriteRecord(enum ssl_encryption_level_t level,
uint8_t type, const uint8_t *data,
size_t len) {
uint16_t cipher_suite = write_levels_[level].cipher;
const std::vector<uint8_t> &secret = write_levels_[level].secret;
size_t tlv_len = secret.size() + len;
uint8_t header[8];
header[0] = type;
header[1] = level;
header[2] = (cipher_suite >> 8) & 0xff;
header[3] = cipher_suite & 0xff;
header[4] = (tlv_len >> 24) & 0xff;
header[5] = (tlv_len >> 16) & 0xff;
header[6] = (tlv_len >> 8) & 0xff;
header[7] = tlv_len & 0xff;
return BIO_write_all(bio_.get(), header, sizeof(header)) &&
BIO_write_all(bio_.get(), secret.data(), secret.size()) &&
BIO_write_all(bio_.get(), data, len);
}
bool MockQuicTransport::WriteHandshakeData(enum ssl_encryption_level_t level,
const uint8_t *data, size_t len) {
return WriteRecord(level, SSL3_RT_HANDSHAKE, data, len);
}
bool MockQuicTransport::WriteApplicationData(const uint8_t *in, size_t len) {
enum ssl_encryption_level_t level = ssl_encryption_application;
if (SSL_in_early_data(ssl_) && !SSL_is_server(ssl_)) {
level = ssl_encryption_early_data;
}
return WriteRecord(level, SSL3_RT_APPLICATION_DATA, in, len);
}
bool MockQuicTransport::Flush() { return BIO_flush(bio_.get()); }
bool MockQuicTransport::SendAlert(enum ssl_encryption_level_t level,
uint8_t alert) {
uint8_t alert_msg[] = {2, alert};
return WriteRecord(level, SSL3_RT_ALERT, alert_msg, sizeof(alert_msg));
}