blob: e814a1584f187e96625607882866d86ba8c50aa7 [file] [log] [blame]
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_45_FORMATION_HPP
#define BOOST_POLYGON_POLYGON_45_FORMATION_HPP
namespace boost { namespace polygon{
template <typename T, typename T2>
struct PolyLineByConcept {};
template <typename T>
class PolyLine45PolygonData;
template <typename T>
class PolyLine45HoleData;
//polygon45formation algorithm
template <typename Unit>
struct polygon_45_formation : public boolean_op_45<Unit> {
typedef point_data<Unit> Point;
typedef polygon_45_data<Unit> Polygon45;
typedef polygon_45_with_holes_data<Unit> Polygon45WithHoles;
typedef typename boolean_op_45<Unit>::Vertex45 Vertex45;
typedef typename boolean_op_45<Unit>::lessVertex45 lessVertex45;
typedef typename boolean_op_45<Unit>::Count2 Count2;
typedef typename boolean_op_45<Unit>::Scan45Count Scan45Count;
typedef std::pair<Point, Scan45Count> Scan45Vertex;
typedef typename boolean_op_45<Unit>::template
Scan45<Count2, typename boolean_op_45<Unit>::template boolean_op_45_output_functor<0> > Scan45;
class PolyLine45 {
public:
typedef typename std::list<Point>::const_iterator iterator;
// default constructor of point does not initialize x and y
inline PolyLine45() : points() {} //do nothing default constructor
// initialize a polygon from x,y values, it is assumed that the first is an x
// and that the input is a well behaved polygon
template<class iT>
inline PolyLine45& set(iT inputBegin, iT inputEnd) {
points.clear(); //just in case there was some old data there
while(inputBegin != inputEnd) {
points.insert(points.end(), *inputBegin);
++inputBegin;
}
return *this;
}
// copy constructor (since we have dynamic memory)
inline PolyLine45(const PolyLine45& that) : points(that.points) {}
// assignment operator (since we have dynamic memory do a deep copy)
inline PolyLine45& operator=(const PolyLine45& that) {
points = that.points;
return *this;
}
// get begin iterator, returns a pointer to a const Unit
inline iterator begin() const { return points.begin(); }
// get end iterator, returns a pointer to a const Unit
inline iterator end() const { return points.end(); }
inline std::size_t size() const { return points.size(); }
//public data member
std::list<Point> points;
};
class ActiveTail45 {
private:
//data
PolyLine45* tailp_;
ActiveTail45 *otherTailp_;
std::list<ActiveTail45*> holesList_;
bool head_;
public:
/**
* @brief iterator over coordinates of the figure
*/
typedef typename PolyLine45::iterator iterator;
/**
* @brief iterator over holes contained within the figure
*/
typedef typename std::list<ActiveTail45*>::const_iterator iteratorHoles;
//default constructor
inline ActiveTail45() : tailp_(0), otherTailp_(0), holesList_(), head_(0) {}
//constructor
inline ActiveTail45(const Vertex45& vertex, ActiveTail45* otherTailp = 0) :
tailp_(0), otherTailp_(0), holesList_(), head_(0) {
tailp_ = new PolyLine45;
tailp_->points.push_back(vertex.pt);
bool headArray[4] = {false, true, true, true};
bool inverted = vertex.count == -1;
head_ = headArray[vertex.rise+1] ^ inverted;
otherTailp_ = otherTailp;
}
inline ActiveTail45(Point point, ActiveTail45* otherTailp, bool head = true) :
tailp_(0), otherTailp_(0), holesList_(), head_(0) {
tailp_ = new PolyLine45;
tailp_->points.push_back(point);
head_ = head;
otherTailp_ = otherTailp;
}
inline ActiveTail45(ActiveTail45* otherTailp) :
tailp_(0), otherTailp_(0), holesList_(), head_(0) {
tailp_ = otherTailp->tailp_;
otherTailp_ = otherTailp;
}
//copy constructor
inline ActiveTail45(const ActiveTail45& that) :
tailp_(0), otherTailp_(0), holesList_(), head_(0) { (*this) = that; }
//destructor
inline ~ActiveTail45() {
destroyContents();
}
//assignment operator
inline ActiveTail45& operator=(const ActiveTail45& that) {
tailp_ = new PolyLine45(*(that.tailp_));
head_ = that.head_;
otherTailp_ = that.otherTailp_;
holesList_ = that.holesList_;
return *this;
}
//equivalence operator
inline bool operator==(const ActiveTail45& b) const {
return tailp_ == b.tailp_ && head_ == b.head_;
}
/**
* @brief get the pointer to the polyline that this is an active tail of
*/
inline PolyLine45* getTail() const { return tailp_; }
/**
* @brief get the pointer to the polyline at the other end of the chain
*/
inline PolyLine45* getOtherTail() const { return otherTailp_->tailp_; }
/**
* @brief get the pointer to the activetail at the other end of the chain
*/
inline ActiveTail45* getOtherActiveTail() const { return otherTailp_; }
/**
* @brief test if another active tail is the other end of the chain
*/
inline bool isOtherTail(const ActiveTail45& b) const { return &b == otherTailp_; }
/**
* @brief update this end of chain pointer to new polyline
*/
inline ActiveTail45& updateTail(PolyLine45* newTail) { tailp_ = newTail; return *this; }
inline bool join(ActiveTail45* tail) {
if(tail == otherTailp_) {
//std::cout << "joining to other tail!\n";
return false;
}
if(tail->head_ == head_) {
//std::cout << "joining head to head!\n";
return false;
}
if(!tailp_) {
//std::cout << "joining empty tail!\n";
return false;
}
if(!(otherTailp_->head_)) {
otherTailp_->copyHoles(*tail);
otherTailp_->copyHoles(*this);
} else {
tail->otherTailp_->copyHoles(*this);
tail->otherTailp_->copyHoles(*tail);
}
PolyLine45* tail1 = tailp_;
PolyLine45* tail2 = tail->tailp_;
if(head_) std::swap(tail1, tail2);
tail1->points.splice(tail1->points.end(), tail2->points);
delete tail2;
otherTailp_->tailp_ = tail1;
tail->otherTailp_->tailp_ = tail1;
otherTailp_->otherTailp_ = tail->otherTailp_;
tail->otherTailp_->otherTailp_ = otherTailp_;
tailp_ = 0;
tail->tailp_ = 0;
tail->otherTailp_ = 0;
otherTailp_ = 0;
return true;
}
/**
* @brief associate a hole to this active tail by the specified policy
*/
inline ActiveTail45* addHole(ActiveTail45* hole) {
holesList_.push_back(hole);
copyHoles(*hole);
copyHoles(*(hole->otherTailp_));
return this;
}
/**
* @brief get the list of holes
*/
inline const std::list<ActiveTail45*>& getHoles() const { return holesList_; }
/**
* @brief copy holes from that to this
*/
inline void copyHoles(ActiveTail45& that) { holesList_.splice(holesList_.end(), that.holesList_); }
/**
* @brief find out if solid to right
*/
inline bool solidToRight() const { return !head_; }
inline bool solidToLeft() const { return head_; }
/**
* @brief get vertex
*/
inline Point getPoint() const {
if(head_) return tailp_->points.front();
return tailp_->points.back();
}
/**
* @brief add a coordinate to the polygon at this active tail end, properly handle degenerate edges by removing redundant coordinate
*/
inline void pushPoint(Point point) {
if(head_) {
//if(tailp_->points.size() < 2) {
// tailp_->points.push_front(point);
// return;
//}
typename std::list<Point>::iterator iter = tailp_->points.begin();
if(iter == tailp_->points.end()) {
tailp_->points.push_front(point);
return;
}
Unit firstY = (*iter).y();
Unit firstX = (*iter).x();
++iter;
if(iter == tailp_->points.end()) {
tailp_->points.push_front(point);
return;
}
if((iter->y() == point.y() && firstY == point.y()) ||
(iter->x() == point.x() && firstX == point.x())){
--iter;
*iter = point;
} else {
tailp_->points.push_front(point);
}
return;
}
//if(tailp_->points.size() < 2) {
// tailp_->points.push_back(point);
// return;
//}
typename std::list<Point>::reverse_iterator iter = tailp_->points.rbegin();
if(iter == tailp_->points.rend()) {
tailp_->points.push_back(point);
return;
}
Unit firstY = (*iter).y();
Unit firstX = (*iter).x();
++iter;
if(iter == tailp_->points.rend()) {
tailp_->points.push_back(point);
return;
}
if((iter->y() == point.y() && firstY == point.y()) ||
(iter->x() == point.x() && firstX == point.x())){
--iter;
*iter = point;
} else {
tailp_->points.push_back(point);
}
}
/**
* @brief joins the two chains that the two active tail tails are ends of
* checks for closure of figure and writes out polygons appropriately
* returns a handle to a hole if one is closed
*/
template <class cT>
static inline ActiveTail45* joinChains(Point point, ActiveTail45* at1, ActiveTail45* at2, bool solid,
cT& output) {
if(at1->otherTailp_ == at2) {
//if(at2->otherTailp_ != at1) std::cout << "half closed error\n";
//we are closing a figure
at1->pushPoint(point);
at2->pushPoint(point);
if(solid) {
//we are closing a solid figure, write to output
//std::cout << "test1\n";
at1->copyHoles(*(at1->otherTailp_));
//std::cout << "test2\n";
//Polygon45WithHolesImpl<PolyLine45PolygonData> poly(polyData);
//std::cout << poly << std::endl;
//std::cout << "test3\n";
typedef typename cT::value_type pType;
output.push_back(pType());
typedef typename geometry_concept<pType>::type cType;
typename PolyLineByConcept<Unit, cType>::type polyData(at1);
assign(output.back(), polyData);
//std::cout << "test4\n";
//std::cout << "delete " << at1->otherTailp_ << std::endl;
//at1->print();
//at1->otherTailp_->print();
delete at1->otherTailp_;
//at1->print();
//at1->otherTailp_->print();
//std::cout << "test5\n";
//std::cout << "delete " << at1 << std::endl;
delete at1;
//std::cout << "test6\n";
return 0;
} else {
//we are closing a hole, return the tail end active tail of the figure
return at1;
}
}
//we are not closing a figure
at1->pushPoint(point);
at1->join(at2);
delete at1;
delete at2;
return 0;
}
inline void destroyContents() {
if(otherTailp_) {
//std::cout << "delete p " << tailp_ << std::endl;
if(tailp_) delete tailp_;
tailp_ = 0;
otherTailp_->otherTailp_ = 0;
otherTailp_->tailp_ = 0;
otherTailp_ = 0;
}
for(typename std::list<ActiveTail45*>::iterator itr = holesList_.begin(); itr != holesList_.end(); ++itr) {
//std::cout << "delete p " << (*itr) << std::endl;
if(*itr) {
if((*itr)->otherTailp_) {
delete (*itr)->otherTailp_;
(*itr)->otherTailp_ = 0;
}
delete (*itr);
}
(*itr) = 0;
}
holesList_.clear();
}
// inline void print() {
// std::cout << this << " " << tailp_ << " " << otherTailp_ << " " << holesList_.size() << " " << head_ << std::endl;
// }
static inline std::pair<ActiveTail45*, ActiveTail45*> createActiveTail45sAsPair(Point point, bool solid,
ActiveTail45* phole, bool fractureHoles) {
ActiveTail45* at1 = 0;
ActiveTail45* at2 = 0;
if(phole && fractureHoles) {
//std::cout << "adding hole\n";
at1 = phole;
//assert solid == false, we should be creating a corner with solid below and to the left if there was a hole
at2 = at1->getOtherActiveTail();
at2->pushPoint(point);
at1->pushPoint(point);
} else {
at1 = new ActiveTail45(point, at2, solid);
at2 = new ActiveTail45(at1);
at1->otherTailp_ = at2;
at2->head_ = !solid;
if(phole)
at2->addHole(phole); //assert fractureHoles == false
}
return std::pair<ActiveTail45*, ActiveTail45*>(at1, at2);
}
};
template <typename ct>
class Vertex45CountT {
public:
typedef ct count_type;
inline Vertex45CountT()
#ifndef BOOST_POLYGON_MSVC
: counts()
#endif
{ counts[0] = counts[1] = counts[2] = counts[3] = 0; }
//inline Vertex45CountT(ct count) { counts[0] = counts[1] = counts[2] = counts[3] = count; }
inline Vertex45CountT(const ct& count1, const ct& count2, const ct& count3,
const ct& count4)
#ifndef BOOST_POLYGON_MSVC
: counts()
#endif
{
counts[0] = count1;
counts[1] = count2;
counts[2] = count3;
counts[3] = count4;
}
inline Vertex45CountT(const Vertex45& vertex)
#ifndef BOOST_POLYGON_MSVC
: counts()
#endif
{
counts[0] = counts[1] = counts[2] = counts[3] = 0;
(*this) += vertex;
}
inline Vertex45CountT(const Vertex45CountT& count)
#ifndef BOOST_POLYGON_MSVC
: counts()
#endif
{
(*this) = count;
}
inline bool operator==(const Vertex45CountT& count) const {
for(unsigned int i = 0; i < 4; ++i) {
if(counts[i] != count.counts[i]) return false;
}
return true;
}
inline bool operator!=(const Vertex45CountT& count) const { return !((*this) == count); }
inline Vertex45CountT& operator=(ct count) {
counts[0] = counts[1] = counts[2] = counts[3] = count; return *this; }
inline Vertex45CountT& operator=(const Vertex45CountT& count) {
for(unsigned int i = 0; i < 4; ++i) {
counts[i] = count.counts[i];
}
return *this;
}
inline ct& operator[](int index) { return counts[index]; }
inline ct operator[](int index) const {return counts[index]; }
inline Vertex45CountT& operator+=(const Vertex45CountT& count){
for(unsigned int i = 0; i < 4; ++i) {
counts[i] += count.counts[i];
}
return *this;
}
inline Vertex45CountT& operator-=(const Vertex45CountT& count){
for(unsigned int i = 0; i < 4; ++i) {
counts[i] -= count.counts[i];
}
return *this;
}
inline Vertex45CountT operator+(const Vertex45CountT& count) const {
return Vertex45CountT(*this)+=count;
}
inline Vertex45CountT operator-(const Vertex45CountT& count) const {
return Vertex45CountT(*this)-=count;
}
inline Vertex45CountT invert() const {
return Vertex45CountT()-=(*this);
}
inline Vertex45CountT& operator+=(const Vertex45& element){
counts[element.rise+1] += element.count; return *this;
}
inline bool is_45() const {
return counts[0] != 0 || counts[2] != 0;
}
private:
ct counts[4];
};
typedef Vertex45CountT<int> Vertex45Count;
// inline std::ostream& operator<< (std::ostream& o, const Vertex45Count& c) {
// o << c[0] << ", " << c[1] << ", ";
// o << c[2] << ", " << c[3];
// return o;
// }
template <typename ct>
class Vertex45CompactT {
public:
Point pt;
ct count;
typedef typename boolean_op_45<Unit>::template Vertex45T<typename ct::count_type> Vertex45T;
inline Vertex45CompactT() : pt(), count() {}
inline Vertex45CompactT(const Point& point, int riseIn, int countIn) : pt(point), count() {
count[riseIn+1] = countIn;
}
template <typename ct2>
inline Vertex45CompactT(const typename boolean_op_45<Unit>::template Vertex45T<ct2>& vertex) : pt(vertex.pt), count() {
count[vertex.rise+1] = vertex.count;
}
inline Vertex45CompactT(const Vertex45CompactT& vertex) : pt(vertex.pt), count(vertex.count) {}
inline Vertex45CompactT& operator=(const Vertex45CompactT& vertex){
pt = vertex.pt; count = vertex.count; return *this; }
inline bool operator==(const Vertex45CompactT& vertex) const {
return pt == vertex.pt && count == vertex.count; }
inline bool operator!=(const Vertex45CompactT& vertex) const { return !((*this) == vertex); }
inline bool operator==(const std::pair<Point, Point>& vertex) const { return false; }
inline bool operator!=(const std::pair<Point, Point>& vertex) const { return !((*this) == vertex); }
inline bool operator<(const Vertex45CompactT& vertex) const {
if(pt.x() < vertex.pt.x()) return true;
if(pt.x() == vertex.pt.x()) {
return pt.y() < vertex.pt.y();
}
return false;
}
inline bool operator>(const Vertex45CompactT& vertex) const { return vertex < (*this); }
inline bool operator<=(const Vertex45CompactT& vertex) const { return !((*this) > vertex); }
inline bool operator>=(const Vertex45CompactT& vertex) const { return !((*this) < vertex); }
inline bool haveVertex45(int index) const { return count[index]; }
inline Vertex45T operator[](int index) const {
return Vertex45T(pt, index-1, count[index]); }
};
typedef Vertex45CompactT<Vertex45Count> Vertex45Compact;
// inline std::ostream& operator<< (std::ostream& o, const Vertex45Compact& c) {
// o << c.pt << ", " << c.count;
// return o;
// }
class Polygon45Formation {
private:
//definitions
typedef std::map<Vertex45, ActiveTail45*, lessVertex45> Polygon45FormationData;
typedef typename Polygon45FormationData::iterator iterator;
typedef typename Polygon45FormationData::const_iterator const_iterator;
//data
Polygon45FormationData scanData_;
Unit x_;
int justBefore_;
int fractureHoles_;
public:
inline Polygon45Formation() : scanData_(), x_((std::numeric_limits<Unit>::min)()), justBefore_(false), fractureHoles_(0) {
lessVertex45 lessElm(&x_, &justBefore_);
scanData_ = Polygon45FormationData(lessElm);
}
inline Polygon45Formation(bool fractureHoles) : scanData_(), x_((std::numeric_limits<Unit>::min)()), justBefore_(false), fractureHoles_(fractureHoles) {
lessVertex45 lessElm(&x_, &justBefore_);
scanData_ = Polygon45FormationData(lessElm);
}
inline Polygon45Formation(const Polygon45Formation& that) :
scanData_(), x_((std::numeric_limits<Unit>::min)()), justBefore_(false), fractureHoles_(0) { (*this) = that; }
inline Polygon45Formation& operator=(const Polygon45Formation& that) {
x_ = that.x_;
justBefore_ = that.justBefore_;
fractureHoles_ = that.fractureHoles_;
lessVertex45 lessElm(&x_, &justBefore_);
scanData_ = Polygon45FormationData(lessElm);
for(const_iterator itr = that.scanData_.begin(); itr != that.scanData_.end(); ++itr){
scanData_.insert(scanData_.end(), *itr);
}
return *this;
}
//cT is an output container of Polygon45 or Polygon45WithHoles
//iT is an iterator over Vertex45 elements
//inputBegin - inputEnd is a range of sorted iT that represents
//one or more scanline stops worth of data
template <class cT, class iT>
void scan(cT& output, iT inputBegin, iT inputEnd) {
//std::cout << "1\n";
while(inputBegin != inputEnd) {
//std::cout << "2\n";
x_ = (*inputBegin).pt.x();
//std::cout << "SCAN FORMATION " << x_ << std::endl;
//std::cout << "x_ = " << x_ << std::endl;
//std::cout << "scan line size: " << scanData_.size() << std::endl;
inputBegin = processEvent_(output, inputBegin, inputEnd);
}
}
private:
//functions
template <class cT, class cT2>
inline std::pair<int, ActiveTail45*> processPoint_(cT& output, cT2& elements, Point point,
Vertex45Count& counts, ActiveTail45** tails, Vertex45Count& incoming) {
//std::cout << point << std::endl;
//std::cout << counts[0] << " ";
//std::cout << counts[1] << " ";
//std::cout << counts[2] << " ";
//std::cout << counts[3] << "\n";
//std::cout << incoming[0] << " ";
//std::cout << incoming[1] << " ";
//std::cout << incoming[2] << " ";
//std::cout << incoming[3] << "\n";
//join any closing solid corners
ActiveTail45* returnValue = 0;
int returnCount = 0;
for(int i = 0; i < 3; ++i) {
//std::cout << i << std::endl;
if(counts[i] == -1) {
//std::cout << "fixed i\n";
for(int j = i + 1; j < 4; ++j) {
//std::cout << j << std::endl;
if(counts[j]) {
if(counts[j] == 1) {
//std::cout << "case1: " << i << " " << j << std::endl;
//if a figure is closed it will be written out by this function to output
ActiveTail45::joinChains(point, tails[i], tails[j], true, output);
counts[i] = 0;
counts[j] = 0;
tails[i] = 0;
tails[j] = 0;
}
break;
}
}
}
}
//find any pairs of incoming edges that need to create pair for leading solid
//std::cout << "checking case2\n";
for(int i = 0; i < 3; ++i) {
//std::cout << i << std::endl;
if(incoming[i] == 1) {
//std::cout << "fixed i\n";
for(int j = i + 1; j < 4; ++j) {
//std::cout << j << std::endl;
if(incoming[j]) {
if(incoming[j] == -1) {
//std::cout << "case2: " << i << " " << j << std::endl;
//std::cout << "creating active tail pair\n";
std::pair<ActiveTail45*, ActiveTail45*> tailPair =
ActiveTail45::createActiveTail45sAsPair(point, true, 0, fractureHoles_ != 0);
//tailPair.first->print();
//tailPair.second->print();
if(j == 3) {
//vertical active tail becomes return value
returnValue = tailPair.first;
returnCount = 1;
} else {
Vertex45 vertex(point, i -1, incoming[i]);
//std::cout << "new element " << j-1 << " " << -1 << std::endl;
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, j -1, -1), tailPair.first));
}
//std::cout << "new element " << i-1 << " " << 1 << std::endl;
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, i -1, 1), tailPair.second));
incoming[i] = 0;
incoming[j] = 0;
}
break;
}
}
}
}
//find any active tail that needs to pass through to an incoming edge
//we expect to find no more than two pass through
//find pass through with solid on top
//std::cout << "checking case 3\n";
for(int i = 0; i < 4; ++i) {
//std::cout << i << std::endl;
if(counts[i] != 0) {
if(counts[i] == 1) {
//std::cout << "fixed i\n";
for(int j = 3; j >= 0; --j) {
if(incoming[j] != 0) {
if(incoming[j] == 1) {
//std::cout << "case3: " << i << " " << j << std::endl;
//tails[i]->print();
//pass through solid on top
tails[i]->pushPoint(point);
//std::cout << "after push\n";
if(j == 3) {
returnValue = tails[i];
returnCount = -1;
} else {
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, j -1, incoming[j]), tails[i]));
}
tails[i] = 0;
counts[i] = 0;
incoming[j] = 0;
}
break;
}
}
}
break;
}
}
//std::cout << "checking case 4\n";
//find pass through with solid on bottom
for(int i = 3; i >= 0; --i) {
if(counts[i] != 0) {
if(counts[i] == -1) {
for(int j = 0; j < 4; ++j) {
if(incoming[j] != 0) {
if(incoming[j] == -1) {
//std::cout << "case4: " << i << " " << j << std::endl;
//pass through solid on bottom
tails[i]->pushPoint(point);
if(j == 3) {
returnValue = tails[i];
returnCount = 1;
} else {
//std::cout << "new element " << j-1 << " " << incoming[j] << std::endl;
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, j -1, incoming[j]), tails[i]));
}
tails[i] = 0;
counts[i] = 0;
incoming[j] = 0;
}
break;
}
}
}
break;
}
}
//find the end of a hole or the beginning of a hole
//find end of a hole
for(int i = 0; i < 3; ++i) {
if(counts[i] != 0) {
for(int j = i+1; j < 4; ++j) {
if(counts[j] != 0) {
//std::cout << "case5: " << i << " " << j << std::endl;
//we are ending a hole and may potentially close a figure and have to handle the hole
returnValue = ActiveTail45::joinChains(point, tails[i], tails[j], false, output);
tails[i] = 0;
tails[j] = 0;
counts[i] = 0;
counts[j] = 0;
break;
}
}
break;
}
}
//find beginning of a hole
for(int i = 0; i < 3; ++i) {
if(incoming[i] != 0) {
for(int j = i+1; j < 4; ++j) {
if(incoming[j] != 0) {
//std::cout << "case6: " << i << " " << j << std::endl;
//we are beginning a empty space
ActiveTail45* holep = 0;
if(counts[3] == 0) holep = tails[3];
std::pair<ActiveTail45*, ActiveTail45*> tailPair =
ActiveTail45::createActiveTail45sAsPair(point, false, holep, fractureHoles_ != 0);
if(j == 3) {
returnValue = tailPair.first;
returnCount = -1;
} else {
//std::cout << "new element " << j-1 << " " << incoming[j] << std::endl;
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, j -1, incoming[j]), tailPair.first));
}
//std::cout << "new element " << i-1 << " " << incoming[i] << std::endl;
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, i -1, incoming[i]), tailPair.second));
incoming[i] = 0;
incoming[j] = 0;
break;
}
}
break;
}
}
//assert that tails, counts and incoming are all null
return std::pair<int, ActiveTail45*>(returnCount, returnValue);
}
template <class cT, class iT>
inline iT processEvent_(cT& output, iT inputBegin, iT inputEnd) {
//std::cout << "processEvent_\n";
justBefore_ = true;
//collect up all elements from the tree that are at the y
//values of events in the input queue
//create vector of new elements to add into tree
ActiveTail45* verticalTail = 0;
int verticalCount = 0;
iT currentIter = inputBegin;
std::vector<iterator> elementIters;
std::vector<std::pair<Vertex45, ActiveTail45*> > elements;
while(currentIter != inputEnd && currentIter->pt.x() == x_) {
//std::cout << "loop\n";
Unit currentY = (*currentIter).pt.y();
iterator iter = lookUp_(currentY);
//int counts[4] = {0, 0, 0, 0};
Vertex45Count counts;
ActiveTail45* tails[4] = {0, 0, 0, verticalTail};
//std::cout << "finding elements in tree\n";
while(iter != scanData_.end() &&
iter->first.evalAtX(x_) == currentY) {
//std::cout << "loop2\n";
elementIters.push_back(iter);
int index = iter->first.rise + 1;
//std::cout << index << " " << iter->first.count << std::endl;
counts[index] = iter->first.count;
tails[index] = iter->second;
++iter;
}
//int incoming[4] = {0, 0, 0, 0};
Vertex45Count incoming;
//std::cout << "aggregating\n";
do {
//std::cout << "loop3\n";
Vertex45Compact currentVertex(*currentIter);
incoming += currentVertex.count;
++currentIter;
} while(currentIter != inputEnd && currentIter->pt.y() == currentY &&
currentIter->pt.x() == x_);
//now counts and tails have the data from the left and
//incoming has the data from the right at this point
//cancel out any end points
//std::cout << counts[0] << " ";
//std::cout << counts[1] << " ";
//std::cout << counts[2] << " ";
//std::cout << counts[3] << "\n";
//std::cout << incoming[0] << " ";
//std::cout << incoming[1] << " ";
//std::cout << incoming[2] << " ";
//std::cout << incoming[3] << "\n";
if(verticalTail) {
counts[3] = -verticalCount;
}
incoming[3] *= -1;
for(unsigned int i = 0; i < 4; ++i) incoming[i] += counts[i];
//std::cout << "calling processPoint_\n";
std::pair<int, ActiveTail45*> result = processPoint_(output, elements, Point(x_, currentY), counts, tails, incoming);
verticalCount = result.first;
verticalTail = result.second;
//if(verticalTail) std::cout << "have vertical tail\n";
//std::cout << "verticalCount: " << verticalCount << std::endl;
if(verticalTail && !verticalCount) {
//we got a hole out of the point we just processed
//iter is still at the next y element above the current y value in the tree
//std::cout << "checking whether ot handle hole\n";
if(currentIter == inputEnd ||
currentIter->pt.x() != x_ ||
currentIter->pt.y() >= iter->first.evalAtX(x_)) {
//std::cout << "handle hole here\n";
if(fractureHoles_) {
//std::cout << "fracture hole here\n";
//we need to handle the hole now and not at the next input vertex
ActiveTail45* at = iter->second;
Point point(x_, iter->first.evalAtX(x_));
verticalTail->getOtherActiveTail()->pushPoint(point);
iter->second = verticalTail->getOtherActiveTail();
at->pushPoint(point);
verticalTail->join(at);
delete at;
delete verticalTail;
verticalTail = 0;
} else {
//std::cout << "push hole onto list\n";
iter->second->addHole(verticalTail);
verticalTail = 0;
}
}
}
}
//std::cout << "erasing\n";
//erase all elements from the tree
for(typename std::vector<iterator>::iterator iter = elementIters.begin();
iter != elementIters.end(); ++iter) {
//std::cout << "erasing loop\n";
scanData_.erase(*iter);
}
//switch comparison tie breaking policy
justBefore_ = false;
//add new elements into tree
//std::cout << "inserting\n";
for(typename std::vector<std::pair<Vertex45, ActiveTail45*> >::iterator iter = elements.begin();
iter != elements.end(); ++iter) {
//std::cout << "inserting loop\n";
scanData_.insert(scanData_.end(), *iter);
}
//std::cout << "end processEvent\n";
return currentIter;
}
inline iterator lookUp_(Unit y){
//if just before then we need to look from 1 not -1
return scanData_.lower_bound(Vertex45(Point(x_, y), -1+2*justBefore_, 0));
}
};
template <typename stream_type>
static inline bool testPolygon45FormationRect(stream_type& stdcout) {
stdcout << "testing polygon formation\n";
Polygon45Formation pf(true);
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 0, 1));
data.push_back(Vertex45(Point(0, 0), 2, 1));
data.push_back(Vertex45(Point(0, 10), 2, -1));
data.push_back(Vertex45(Point(0, 10), 0, -1));
data.push_back(Vertex45(Point(10, 0), 0, -1));
data.push_back(Vertex45(Point(10, 0), 2, -1));
data.push_back(Vertex45(Point(10, 10), 2, 1));
data.push_back(Vertex45(Point(10, 10), 0, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon formation\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45FormationP1(stream_type& stdcout) {
stdcout << "testing polygon formation\n";
Polygon45Formation pf(true);
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 1, 1));
data.push_back(Vertex45(Point(0, 0), 2, 1));
data.push_back(Vertex45(Point(0, 10), 2, -1));
data.push_back(Vertex45(Point(0, 10), 1, -1));
data.push_back(Vertex45(Point(10, 10), 1, -1));
data.push_back(Vertex45(Point(10, 10), 2, -1));
data.push_back(Vertex45(Point(10, 20), 2, 1));
data.push_back(Vertex45(Point(10, 20), 1, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon formation\n";
return true;
}
//polygon45set class
template <typename stream_type>
static inline bool testPolygon45FormationP2(stream_type& stdcout) {
stdcout << "testing polygon formation\n";
Polygon45Formation pf(true);
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 0, 1));
data.push_back(Vertex45(Point(0, 0), 1, -1));
data.push_back(Vertex45(Point(10, 0), 0, -1));
data.push_back(Vertex45(Point(10, 0), 1, 1));
data.push_back(Vertex45(Point(10, 10), 1, 1));
data.push_back(Vertex45(Point(10, 10), 0, -1));
data.push_back(Vertex45(Point(20, 10), 1, -1));
data.push_back(Vertex45(Point(20, 10), 0, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon formation\n";
return true;
}
//polygon45set class
template <typename stream_type>
static inline bool testPolygon45FormationStar1(stream_type& stdcout) {
stdcout << "testing polygon formation\n";
Polygon45Formation pf(true);
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
// result == 0 8 -1 1
data.push_back(Vertex45(Point(0, 8), -1, 1));
// result == 0 8 1 -1
data.push_back(Vertex45(Point(0, 8), 1, -1));
// result == 4 0 1 1
data.push_back(Vertex45(Point(4, 0), 1, 1));
// result == 4 0 2 1
data.push_back(Vertex45(Point(4, 0), 2, 1));
// result == 4 4 2 -1
data.push_back(Vertex45(Point(4, 4), 2, -1));
// result == 4 4 -1 -1
data.push_back(Vertex45(Point(4, 4), -1, -1));
// result == 4 12 1 1
data.push_back(Vertex45(Point(4, 12), 1, 1));
// result == 4 12 2 1
data.push_back(Vertex45(Point(4, 12), 2, 1));
// result == 4 16 2 -1
data.push_back(Vertex45(Point(4, 16), 2, 1));
// result == 4 16 -1 -1
data.push_back(Vertex45(Point(4, 16), -1, -1));
// result == 6 2 1 -1
data.push_back(Vertex45(Point(6, 2), 1, -1));
// result == 6 14 -1 1
data.push_back(Vertex45(Point(6, 14), -1, 1));
// result == 6 2 -1 1
data.push_back(Vertex45(Point(6, 2), -1, 1));
// result == 6 14 1 -1
data.push_back(Vertex45(Point(6, 14), 1, -1));
// result == 8 0 -1 -1
data.push_back(Vertex45(Point(8, 0), -1, -1));
// result == 8 0 2 -1
data.push_back(Vertex45(Point(8, 0), 2, -1));
// result == 8 4 2 1
data.push_back(Vertex45(Point(8, 4), 2, 1));
// result == 8 4 1 1
data.push_back(Vertex45(Point(8, 4), 1, 1));
// result == 8 12 -1 -1
data.push_back(Vertex45(Point(8, 12), -1, -1));
// result == 8 12 2 -1
data.push_back(Vertex45(Point(8, 12), 2, -1));
// result == 8 16 2 1
data.push_back(Vertex45(Point(8, 16), 2, 1));
// result == 8 16 1 1
data.push_back(Vertex45(Point(8, 16), 1, 1));
// result == 12 8 1 -1
data.push_back(Vertex45(Point(12, 8), 1, -1));
// result == 12 8 -1 1
data.push_back(Vertex45(Point(12, 8), -1, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon formation\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45FormationStar2(stream_type& stdcout) {
stdcout << "testing polygon formation\n";
Polygon45Formation pf(true);
std::vector<Polygon45> polys;
Scan45 scan45;
std::vector<Vertex45 > result;
std::vector<Scan45Vertex> vertices;
//is a Rectnagle(0, 0, 10, 10);
Count2 count(1, 0);
Count2 ncount(-1, 0);
vertices.push_back(Scan45Vertex(Point(0,4), Scan45Count(Count2(0, 0), count, ncount, Count2(0, 0))));
vertices.push_back(Scan45Vertex(Point(16,4), Scan45Count(count, ncount, Count2(0, 0), Count2(0, 0))));
vertices.push_back(Scan45Vertex(Point(8,12), Scan45Count(ncount, Count2(0, 0), count, Count2(0, 0))));
count = Count2(0, 1);
ncount = count.invert();
vertices.push_back(Scan45Vertex(Point(0,8), Scan45Count(count, ncount, Count2(0, 0), Count2(0, 0))));
vertices.push_back(Scan45Vertex(Point(16,8), Scan45Count(Count2(0, 0), count, ncount, Count2(0, 0))));
vertices.push_back(Scan45Vertex(Point(8,0), Scan45Count(ncount, Count2(0, 0), count, Count2(0, 0))));
sortScan45Vector(vertices);
stdcout << "scanning\n";
scan45.scan(result, vertices.begin(), vertices.end());
gtlsort(result.begin(), result.end());
pf.scan(polys, result.begin(), result.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon formation\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45FormationStarHole1(stream_type& stdcout) {
stdcout << "testing polygon formation\n";
Polygon45Formation pf(true);
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
// result == 0 8 -1 1
data.push_back(Vertex45(Point(0, 8), -1, 1));
// result == 0 8 1 -1
data.push_back(Vertex45(Point(0, 8), 1, -1));
// result == 4 0 1 1
data.push_back(Vertex45(Point(4, 0), 1, 1));
// result == 4 0 2 1
data.push_back(Vertex45(Point(4, 0), 2, 1));
// result == 4 4 2 -1
data.push_back(Vertex45(Point(4, 4), 2, -1));
// result == 4 4 -1 -1
data.push_back(Vertex45(Point(4, 4), -1, -1));
// result == 4 12 1 1
data.push_back(Vertex45(Point(4, 12), 1, 1));
// result == 4 12 2 1
data.push_back(Vertex45(Point(4, 12), 2, 1));
// result == 4 16 2 -1
data.push_back(Vertex45(Point(4, 16), 2, 1));
// result == 4 16 -1 -1
data.push_back(Vertex45(Point(4, 16), -1, -1));
// result == 6 2 1 -1
data.push_back(Vertex45(Point(6, 2), 1, -1));
// result == 6 14 -1 1
data.push_back(Vertex45(Point(6, 14), -1, 1));
// result == 6 2 -1 1
data.push_back(Vertex45(Point(6, 2), -1, 1));
// result == 6 14 1 -1
data.push_back(Vertex45(Point(6, 14), 1, -1));
// result == 8 0 -1 -1
data.push_back(Vertex45(Point(8, 0), -1, -1));
// result == 8 0 2 -1
data.push_back(Vertex45(Point(8, 0), 2, -1));
// result == 8 4 2 1
data.push_back(Vertex45(Point(8, 4), 2, 1));
// result == 8 4 1 1
data.push_back(Vertex45(Point(8, 4), 1, 1));
// result == 8 12 -1 -1
data.push_back(Vertex45(Point(8, 12), -1, -1));
// result == 8 12 2 -1
data.push_back(Vertex45(Point(8, 12), 2, -1));
// result == 8 16 2 1
data.push_back(Vertex45(Point(8, 16), 2, 1));
// result == 8 16 1 1
data.push_back(Vertex45(Point(8, 16), 1, 1));
// result == 12 8 1 -1
data.push_back(Vertex45(Point(12, 8), 1, -1));
// result == 12 8 -1 1
data.push_back(Vertex45(Point(12, 8), -1, 1));
data.push_back(Vertex45(Point(6, 4), 1, -1));
data.push_back(Vertex45(Point(6, 4), 2, -1));
data.push_back(Vertex45(Point(6, 8), -1, 1));
data.push_back(Vertex45(Point(6, 8), 2, 1));
data.push_back(Vertex45(Point(8, 6), -1, -1));
data.push_back(Vertex45(Point(8, 6), 1, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon formation\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45FormationStarHole2(stream_type& stdcout) {
stdcout << "testing polygon formation\n";
Polygon45Formation pf(false);
std::vector<Polygon45WithHoles> polys;
std::vector<Vertex45> data;
// result == 0 8 -1 1
data.push_back(Vertex45(Point(0, 8), -1, 1));
// result == 0 8 1 -1
data.push_back(Vertex45(Point(0, 8), 1, -1));
// result == 4 0 1 1
data.push_back(Vertex45(Point(4, 0), 1, 1));
// result == 4 0 2 1
data.push_back(Vertex45(Point(4, 0), 2, 1));
// result == 4 4 2 -1
data.push_back(Vertex45(Point(4, 4), 2, -1));
// result == 4 4 -1 -1
data.push_back(Vertex45(Point(4, 4), -1, -1));
// result == 4 12 1 1
data.push_back(Vertex45(Point(4, 12), 1, 1));
// result == 4 12 2 1
data.push_back(Vertex45(Point(4, 12), 2, 1));
// result == 4 16 2 -1
data.push_back(Vertex45(Point(4, 16), 2, 1));
// result == 4 16 -1 -1
data.push_back(Vertex45(Point(4, 16), -1, -1));
// result == 6 2 1 -1
data.push_back(Vertex45(Point(6, 2), 1, -1));
// result == 6 14 -1 1
data.push_back(Vertex45(Point(6, 14), -1, 1));
// result == 6 2 -1 1
data.push_back(Vertex45(Point(6, 2), -1, 1));
// result == 6 14 1 -1
data.push_back(Vertex45(Point(6, 14), 1, -1));
// result == 8 0 -1 -1
data.push_back(Vertex45(Point(8, 0), -1, -1));
// result == 8 0 2 -1
data.push_back(Vertex45(Point(8, 0), 2, -1));
// result == 8 4 2 1
data.push_back(Vertex45(Point(8, 4), 2, 1));
// result == 8 4 1 1
data.push_back(Vertex45(Point(8, 4), 1, 1));
// result == 8 12 -1 -1
data.push_back(Vertex45(Point(8, 12), -1, -1));
// result == 8 12 2 -1
data.push_back(Vertex45(Point(8, 12), 2, -1));
// result == 8 16 2 1
data.push_back(Vertex45(Point(8, 16), 2, 1));
// result == 8 16 1 1
data.push_back(Vertex45(Point(8, 16), 1, 1));
// result == 12 8 1 -1
data.push_back(Vertex45(Point(12, 8), 1, -1));
// result == 12 8 -1 1
data.push_back(Vertex45(Point(12, 8), -1, 1));
data.push_back(Vertex45(Point(6, 4), 1, -1));
data.push_back(Vertex45(Point(6, 4), 2, -1));
data.push_back(Vertex45(Point(6, 12), -1, 1));
data.push_back(Vertex45(Point(6, 12), 2, 1));
data.push_back(Vertex45(Point(10, 8), -1, -1));
data.push_back(Vertex45(Point(10, 8), 1, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon formation\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45Formation(stream_type& stdcout) {
stdcout << "testing polygon formation\n";
Polygon45Formation pf(false);
std::vector<Polygon45WithHoles> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 0, 1));
data.push_back(Vertex45(Point(0, 0), 2, 1));
data.push_back(Vertex45(Point(0, 100), 2, -1));
data.push_back(Vertex45(Point(0, 100), 0, -1));
data.push_back(Vertex45(Point(100, 0), 0, -1));
data.push_back(Vertex45(Point(100, 0), 2, -1));
data.push_back(Vertex45(Point(100, 100), 2, 1));
data.push_back(Vertex45(Point(100, 100), 0, 1));
data.push_back(Vertex45(Point(2, 2), 0, -1));
data.push_back(Vertex45(Point(2, 2), 2, -1));
data.push_back(Vertex45(Point(2, 10), 2, 1));
data.push_back(Vertex45(Point(2, 10), 0, 1));
data.push_back(Vertex45(Point(10, 2), 0, 1));
data.push_back(Vertex45(Point(10, 2), 2, 1));
data.push_back(Vertex45(Point(10, 10), 2, -1));
data.push_back(Vertex45(Point(10, 10), 0, -1));
data.push_back(Vertex45(Point(2, 12), 0, -1));
data.push_back(Vertex45(Point(2, 12), 2, -1));
data.push_back(Vertex45(Point(2, 22), 2, 1));
data.push_back(Vertex45(Point(2, 22), 0, 1));
data.push_back(Vertex45(Point(10, 12), 0, 1));
data.push_back(Vertex45(Point(10, 12), 2, 1));
data.push_back(Vertex45(Point(10, 22), 2, -1));
data.push_back(Vertex45(Point(10, 22), 0, -1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon formation\n";
return true;
}
class Polygon45Tiling {
private:
//definitions
typedef std::map<Vertex45, ActiveTail45*, lessVertex45> Polygon45FormationData;
typedef typename Polygon45FormationData::iterator iterator;
typedef typename Polygon45FormationData::const_iterator const_iterator;
//data
Polygon45FormationData scanData_;
Unit x_;
int justBefore_;
public:
inline Polygon45Tiling() : scanData_(), x_((std::numeric_limits<Unit>::min)()), justBefore_(false) {
lessVertex45 lessElm(&x_, &justBefore_);
scanData_ = Polygon45FormationData(lessElm);
}
inline Polygon45Tiling(const Polygon45Tiling& that) :
scanData_(), x_((std::numeric_limits<Unit>::min)()), justBefore_(false) { (*this) = that; }
inline Polygon45Tiling& operator=(const Polygon45Tiling& that) {
x_ = that.x_;
justBefore_ = that.justBefore_;
lessVertex45 lessElm(&x_, &justBefore_);
scanData_ = Polygon45FormationData(lessElm);
for(const_iterator itr = that.scanData_.begin(); itr != that.scanData_.end(); ++itr){
scanData_.insert(scanData_.end(), *itr);
}
return *this;
}
//cT is an output container of Polygon45 or Polygon45WithHoles
//iT is an iterator over Vertex45 elements
//inputBegin - inputEnd is a range of sorted iT that represents
//one or more scanline stops worth of data
template <class cT, class iT>
void scan(cT& output, iT inputBegin, iT inputEnd) {
//std::cout << "1\n";
while(inputBegin != inputEnd) {
//std::cout << "2\n";
x_ = (*inputBegin).pt.x();
//std::cout << "SCAN FORMATION " << x_ << std::endl;
//std::cout << "x_ = " << x_ << std::endl;
//std::cout << "scan line size: " << scanData_.size() << std::endl;
inputBegin = processEvent_(output, inputBegin, inputEnd);
}
}
private:
//functions
inline void getVerticalPair_(std::pair<ActiveTail45*, ActiveTail45*>& verticalPair,
iterator previter) {
ActiveTail45* iterTail = (*previter).second;
Point prevPoint(x_, previter->first.evalAtX(x_));
iterTail->pushPoint(prevPoint);
std::pair<ActiveTail45*, ActiveTail45*> tailPair =
ActiveTail45::createActiveTail45sAsPair(prevPoint, true, 0, false);
verticalPair.first = iterTail;
verticalPair.second = tailPair.first;
(*previter).second = tailPair.second;
}
template <class cT, class cT2>
inline std::pair<int, ActiveTail45*> processPoint_(cT& output, cT2& elements,
std::pair<ActiveTail45*, ActiveTail45*>& verticalPair,
iterator previter, Point point,
Vertex45Count& counts, ActiveTail45** tails, Vertex45Count& incoming) {
//std::cout << point << std::endl;
//std::cout << counts[0] << " ";
//std::cout << counts[1] << " ";
//std::cout << counts[2] << " ";
//std::cout << counts[3] << "\n";
//std::cout << incoming[0] << " ";
//std::cout << incoming[1] << " ";
//std::cout << incoming[2] << " ";
//std::cout << incoming[3] << "\n";
//join any closing solid corners
ActiveTail45* returnValue = 0;
std::pair<ActiveTail45*, ActiveTail45*> verticalPairOut;
verticalPairOut.first = 0;
verticalPairOut.second = 0;
int returnCount = 0;
for(int i = 0; i < 3; ++i) {
//std::cout << i << std::endl;
if(counts[i] == -1) {
//std::cout << "fixed i\n";
for(int j = i + 1; j < 4; ++j) {
//std::cout << j << std::endl;
if(counts[j]) {
if(counts[j] == 1) {
//std::cout << "case1: " << i << " " << j << std::endl;
//if a figure is closed it will be written out by this function to output
ActiveTail45::joinChains(point, tails[i], tails[j], true, output);
counts[i] = 0;
counts[j] = 0;
tails[i] = 0;
tails[j] = 0;
}
break;
}
}
}
}
//find any pairs of incoming edges that need to create pair for leading solid
//std::cout << "checking case2\n";
for(int i = 0; i < 3; ++i) {
//std::cout << i << std::endl;
if(incoming[i] == 1) {
//std::cout << "fixed i\n";
for(int j = i + 1; j < 4; ++j) {
//std::cout << j << std::endl;
if(incoming[j]) {
if(incoming[j] == -1) {
//std::cout << "case2: " << i << " " << j << std::endl;
//std::cout << "creating active tail pair\n";
std::pair<ActiveTail45*, ActiveTail45*> tailPair =
ActiveTail45::createActiveTail45sAsPair(point, true, 0, false);
//tailPair.first->print();
//tailPair.second->print();
if(j == 3) {
//vertical active tail becomes return value
returnValue = tailPair.first;
returnCount = 1;
} else {
Vertex45 vertex(point, i -1, incoming[i]);
//std::cout << "new element " << j-1 << " " << -1 << std::endl;
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, j -1, -1), tailPair.first));
}
//std::cout << "new element " << i-1 << " " << 1 << std::endl;
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, i -1, 1), tailPair.second));
incoming[i] = 0;
incoming[j] = 0;
}
break;
}
}
}
}
//find any active tail that needs to pass through to an incoming edge
//we expect to find no more than two pass through
//find pass through with solid on top
//std::cout << "checking case 3\n";
for(int i = 0; i < 4; ++i) {
//std::cout << i << std::endl;
if(counts[i] != 0) {
if(counts[i] == 1) {
//std::cout << "fixed i\n";
for(int j = 3; j >= 0; --j) {
if(incoming[j] != 0) {
if(incoming[j] == 1) {
//std::cout << "case3: " << i << " " << j << std::endl;
//tails[i]->print();
//pass through solid on top
if(i != 3)
tails[i]->pushPoint(point);
//std::cout << "after push\n";
if(j == 3) {
returnValue = tails[i];
returnCount = -1;
} else {
verticalPairOut.first = tails[i];
std::pair<ActiveTail45*, ActiveTail45*> tailPair =
ActiveTail45::createActiveTail45sAsPair(point, true, 0, false);
verticalPairOut.second = tailPair.first;
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, j -1, incoming[j]),
tailPair.second));
}
tails[i] = 0;
counts[i] = 0;
incoming[j] = 0;
}
break;
}
}
}
break;
}
}
//std::cout << "checking case 4\n";
//find pass through with solid on bottom
for(int i = 3; i >= 0; --i) {
if(counts[i] != 0) {
if(counts[i] == -1) {
for(int j = 0; j < 4; ++j) {
if(incoming[j] != 0) {
if(incoming[j] == -1) {
//std::cout << "case4: " << i << " " << j << std::endl;
//pass through solid on bottom
if(i == 3) {
//std::cout << "new element " << j-1 << " " << incoming[j] << std::endl;
if(j == 3) {
returnValue = tails[i];
returnCount = 1;
} else {
tails[i]->pushPoint(point);
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, j -1, incoming[j]), tails[i]));
}
} else if(j == 3) {
if(verticalPair.first == 0) {
getVerticalPair_(verticalPair, previter);
}
ActiveTail45::joinChains(point, tails[i], verticalPair.first, true, output);
returnValue = verticalPair.second;
returnCount = 1;
} else {
if(verticalPair.first == 0) {
getVerticalPair_(verticalPair, previter);
}
ActiveTail45::joinChains(point, tails[i], verticalPair.first, true, output);
verticalPair.second->pushPoint(point);
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, j -1, incoming[j]),
verticalPair.second));
}
tails[i] = 0;
counts[i] = 0;
incoming[j] = 0;
}
break;
}
}
}
break;
}
}
//find the end of a hole or the beginning of a hole
//find end of a hole
for(int i = 0; i < 3; ++i) {
if(counts[i] != 0) {
for(int j = i+1; j < 4; ++j) {
if(counts[j] != 0) {
//std::cout << "case5: " << i << " " << j << std::endl;
//we are ending a hole and may potentially close a figure and have to handle the hole
tails[i]->pushPoint(point);
verticalPairOut.first = tails[i];
if(j == 3) {
verticalPairOut.second = tails[j];
} else {
if(verticalPair.first == 0) {
getVerticalPair_(verticalPair, previter);
}
ActiveTail45::joinChains(point, tails[j], verticalPair.first, true, output);
verticalPairOut.second = verticalPair.second;
}
tails[i] = 0;
tails[j] = 0;
counts[i] = 0;
counts[j] = 0;
break;
}
}
break;
}
}
//find beginning of a hole
for(int i = 0; i < 3; ++i) {
if(incoming[i] != 0) {
for(int j = i+1; j < 4; ++j) {
if(incoming[j] != 0) {
//std::cout << "case6: " << i << " " << j << std::endl;
//we are beginning a empty space
if(verticalPair.first == 0) {
getVerticalPair_(verticalPair, previter);
}
verticalPair.second->pushPoint(point);
if(j == 3) {
returnValue = verticalPair.first;
returnCount = -1;
} else {
std::pair<ActiveTail45*, ActiveTail45*> tailPair =
ActiveTail45::createActiveTail45sAsPair(point, true, 0, false);
//std::cout << "new element " << j-1 << " " << incoming[j] << std::endl;
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, j -1, incoming[j]), tailPair.second));
verticalPairOut.second = tailPair.first;
verticalPairOut.first = verticalPair.first;
}
//std::cout << "new element " << i-1 << " " << incoming[i] << std::endl;
elements.push_back(std::pair<Vertex45, ActiveTail45*>(Vertex45(point, i -1, incoming[i]), verticalPair.second));
incoming[i] = 0;
incoming[j] = 0;
break;
}
}
break;
}
}
verticalPair = verticalPairOut;
//assert that verticalPair is either both null, or neither null
//assert that returnValue is null if verticalPair is not null
//assert that tails, counts and incoming are all null
return std::pair<int, ActiveTail45*>(returnCount, returnValue);
}
template <class cT, class iT>
inline iT processEvent_(cT& output, iT inputBegin, iT inputEnd) {
//std::cout << "processEvent_\n";
justBefore_ = true;
//collect up all elements from the tree that are at the y
//values of events in the input queue
//create vector of new elements to add into tree
ActiveTail45* verticalTail = 0;
std::pair<ActiveTail45*, ActiveTail45*> verticalPair;
verticalPair.first = 0;
verticalPair.second = 0;
int verticalCount = 0;
iT currentIter = inputBegin;
std::vector<iterator> elementIters;
std::vector<std::pair<Vertex45, ActiveTail45*> > elements;
while(currentIter != inputEnd && currentIter->pt.x() == x_) {
//std::cout << "loop\n";
Unit currentY = (*currentIter).pt.y();
iterator iter = lookUp_(currentY);
//int counts[4] = {0, 0, 0, 0};
Vertex45Count counts;
ActiveTail45* tails[4] = {0, 0, 0, verticalTail};
//std::cout << "finding elements in tree\n";
iterator previter = iter;
if(previter != scanData_.end() &&
previter->first.evalAtX(x_) >= currentY &&
previter != scanData_.begin())
--previter;
while(iter != scanData_.end() &&
iter->first.evalAtX(x_) == currentY) {
//std::cout << "loop2\n";
elementIters.push_back(iter);
int index = iter->first.rise + 1;
//std::cout << index << " " << iter->first.count << std::endl;
counts[index] = iter->first.count;
tails[index] = iter->second;
++iter;
}
//int incoming[4] = {0, 0, 0, 0};
Vertex45Count incoming;
//std::cout << "aggregating\n";
do {
//std::cout << "loop3\n";
Vertex45Compact currentVertex(*currentIter);
incoming += currentVertex.count;
++currentIter;
} while(currentIter != inputEnd && currentIter->pt.y() == currentY &&
currentIter->pt.x() == x_);
//now counts and tails have the data from the left and
//incoming has the data from the right at this point
//cancel out any end points
//std::cout << counts[0] << " ";
//std::cout << counts[1] << " ";
//std::cout << counts[2] << " ";
//std::cout << counts[3] << "\n";
//std::cout << incoming[0] << " ";
//std::cout << incoming[1] << " ";
//std::cout << incoming[2] << " ";
//std::cout << incoming[3] << "\n";
if(verticalTail) {
counts[3] = -verticalCount;
}
incoming[3] *= -1;
for(unsigned int i = 0; i < 4; ++i) incoming[i] += counts[i];
//std::cout << "calling processPoint_\n";
std::pair<int, ActiveTail45*> result = processPoint_(output, elements, verticalPair, previter,
Point(x_, currentY), counts, tails, incoming);
verticalCount = result.first;
verticalTail = result.second;
if(verticalPair.first != 0 && iter != scanData_.end() &&
(currentIter == inputEnd || currentIter->pt.x() != x_ ||
currentIter->pt.y() > (*iter).first.evalAtX(x_))) {
//splice vertical pair into edge above
ActiveTail45* tailabove = (*iter).second;
Point point(x_, (*iter).first.evalAtX(x_));
verticalPair.second->pushPoint(point);
ActiveTail45::joinChains(point, tailabove, verticalPair.first, true, output);
(*iter).second = verticalPair.second;
verticalPair.first = 0;
verticalPair.second = 0;
}
}
//std::cout << "erasing\n";
//erase all elements from the tree
for(typename std::vector<iterator>::iterator iter = elementIters.begin();
iter != elementIters.end(); ++iter) {
//std::cout << "erasing loop\n";
scanData_.erase(*iter);
}
//switch comparison tie breaking policy
justBefore_ = false;
//add new elements into tree
//std::cout << "inserting\n";
for(typename std::vector<std::pair<Vertex45, ActiveTail45*> >::iterator iter = elements.begin();
iter != elements.end(); ++iter) {
//std::cout << "inserting loop\n";
scanData_.insert(scanData_.end(), *iter);
}
//std::cout << "end processEvent\n";
return currentIter;
}
inline iterator lookUp_(Unit y){
//if just before then we need to look from 1 not -1
return scanData_.lower_bound(Vertex45(Point(x_, y), -1+2*justBefore_, 0));
}
};
template <typename stream_type>
static inline bool testPolygon45TilingRect(stream_type& stdcout) {
stdcout << "testing polygon tiling\n";
Polygon45Tiling pf;
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 0, 1));
data.push_back(Vertex45(Point(0, 0), 2, 1));
data.push_back(Vertex45(Point(0, 10), 2, -1));
data.push_back(Vertex45(Point(0, 10), 0, -1));
data.push_back(Vertex45(Point(10, 0), 0, -1));
data.push_back(Vertex45(Point(10, 0), 2, -1));
data.push_back(Vertex45(Point(10, 10), 2, 1));
data.push_back(Vertex45(Point(10, 10), 0, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45TilingP1(stream_type& stdcout) {
stdcout << "testing polygon tiling\n";
Polygon45Tiling pf;
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 1, 1));
data.push_back(Vertex45(Point(0, 0), 2, 1));
data.push_back(Vertex45(Point(0, 10), 2, -1));
data.push_back(Vertex45(Point(0, 10), 1, -1));
data.push_back(Vertex45(Point(10, 10), 1, -1));
data.push_back(Vertex45(Point(10, 10), 2, -1));
data.push_back(Vertex45(Point(10, 20), 2, 1));
data.push_back(Vertex45(Point(10, 20), 1, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45TilingP2(stream_type& stdcout) {
stdcout << "testing polygon tiling\n";
Polygon45Tiling pf;
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 0, 1));
data.push_back(Vertex45(Point(0, 0), 1, -1));
data.push_back(Vertex45(Point(10, 0), 0, -1));
data.push_back(Vertex45(Point(10, 0), 1, 1));
data.push_back(Vertex45(Point(10, 10), 1, 1));
data.push_back(Vertex45(Point(10, 10), 0, -1));
data.push_back(Vertex45(Point(20, 10), 1, -1));
data.push_back(Vertex45(Point(20, 10), 0, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45TilingP3(stream_type& stdcout) {
stdcout << "testing polygon tiling\n";
Polygon45Tiling pf;
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 0, 1));
data.push_back(Vertex45(Point(0, 0), 2, 1));
data.push_back(Vertex45(Point(0, 10), 2, -1));
data.push_back(Vertex45(Point(0, 10), 0, -1));
data.push_back(Vertex45(Point(20, 0), 0, -1));
data.push_back(Vertex45(Point(20, 0), 2, -1));
data.push_back(Vertex45(Point(10, 10), 1, -1));
data.push_back(Vertex45(Point(10, 10), 0, 1));
data.push_back(Vertex45(Point(20, 20), 1, 1));
data.push_back(Vertex45(Point(20, 20), 2, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45TilingP4(stream_type& stdcout) {
stdcout << "testing polygon tiling p4\n";
Polygon45Tiling pf;
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 0, 1));
data.push_back(Vertex45(Point(0, 0), 2, 1));
data.push_back(Vertex45(Point(0, 10), 2, -1));
data.push_back(Vertex45(Point(0, 10), 0, -1));
data.push_back(Vertex45(Point(10, 0), -1, 1));
data.push_back(Vertex45(Point(10, 0), 0, -1));
data.push_back(Vertex45(Point(20, 10), 2, 1));
data.push_back(Vertex45(Point(20, 10), 0, 1));
data.push_back(Vertex45(Point(20, -10), -1, -1));
data.push_back(Vertex45(Point(20, -10), 2, -1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45TilingP5(stream_type& stdcout) {
stdcout << "testing polygon tiling P5\n";
Polygon45Tiling pf;
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 0, 1));
data.push_back(Vertex45(Point(0, 0), 2, 1));
data.push_back(Vertex45(Point(0, 10), 2, -1));
data.push_back(Vertex45(Point(0, 10), 0, -1));
data.push_back(Vertex45(Point(10, 0), 0, -1));
data.push_back(Vertex45(Point(10, 0), 2, -1));
data.push_back(Vertex45(Point(10, 10), 2, 1));
data.push_back(Vertex45(Point(10, 10), 0, 1));
data.push_back(Vertex45(Point(1, 1), 0, -1));
data.push_back(Vertex45(Point(1, 1), 1, 1));
data.push_back(Vertex45(Point(2, 1), 0, 1));
data.push_back(Vertex45(Point(2, 1), 1, -1));
data.push_back(Vertex45(Point(2, 2), 1, -1));
data.push_back(Vertex45(Point(2, 2), 0, 1));
data.push_back(Vertex45(Point(3, 2), 1, 1));
data.push_back(Vertex45(Point(3, 2), 0, -1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45TilingP6(stream_type& stdcout) {
stdcout << "testing polygon tiling P6\n";
Polygon45Tiling pf;
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 0, 1));
data.push_back(Vertex45(Point(0, 0), 2, 1));
data.push_back(Vertex45(Point(0, 10), 2, -1));
data.push_back(Vertex45(Point(0, 10), 0, -1));
data.push_back(Vertex45(Point(10, 0), 0, -1));
data.push_back(Vertex45(Point(10, 0), 2, -1));
data.push_back(Vertex45(Point(10, 10), 2, 1));
data.push_back(Vertex45(Point(10, 10), 0, 1));
data.push_back(Vertex45(Point(1, 1), 0, -1));
data.push_back(Vertex45(Point(1, 1), 2, -1));
data.push_back(Vertex45(Point(1, 2), 2, 1));
data.push_back(Vertex45(Point(1, 2), 0, 1));
data.push_back(Vertex45(Point(2, 1), 0, 1));
data.push_back(Vertex45(Point(2, 1), 2, 1));
data.push_back(Vertex45(Point(2, 2), 2, -1));
data.push_back(Vertex45(Point(2, 2), 0, -1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45TilingStar1(stream_type& stdcout) {
stdcout << "testing polygon tiling star1\n";
Polygon45Tiling pf;
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
// result == 0 8 -1 1
data.push_back(Vertex45(Point(0, 8), -1, 1));
// result == 0 8 1 -1
data.push_back(Vertex45(Point(0, 8), 1, -1));
// result == 4 0 1 1
data.push_back(Vertex45(Point(4, 0), 1, 1));
// result == 4 0 2 1
data.push_back(Vertex45(Point(4, 0), 2, 1));
// result == 4 4 2 -1
data.push_back(Vertex45(Point(4, 4), 2, -1));
// result == 4 4 -1 -1
data.push_back(Vertex45(Point(4, 4), -1, -1));
// result == 4 12 1 1
data.push_back(Vertex45(Point(4, 12), 1, 1));
// result == 4 12 2 1
data.push_back(Vertex45(Point(4, 12), 2, 1));
// result == 4 16 2 -1
data.push_back(Vertex45(Point(4, 16), 2, 1));
// result == 4 16 -1 -1
data.push_back(Vertex45(Point(4, 16), -1, -1));
// result == 6 2 1 -1
data.push_back(Vertex45(Point(6, 2), 1, -1));
// result == 6 14 -1 1
data.push_back(Vertex45(Point(6, 14), -1, 1));
// result == 6 2 -1 1
data.push_back(Vertex45(Point(6, 2), -1, 1));
// result == 6 14 1 -1
data.push_back(Vertex45(Point(6, 14), 1, -1));
// result == 8 0 -1 -1
data.push_back(Vertex45(Point(8, 0), -1, -1));
// result == 8 0 2 -1
data.push_back(Vertex45(Point(8, 0), 2, -1));
// result == 8 4 2 1
data.push_back(Vertex45(Point(8, 4), 2, 1));
// result == 8 4 1 1
data.push_back(Vertex45(Point(8, 4), 1, 1));
// result == 8 12 -1 -1
data.push_back(Vertex45(Point(8, 12), -1, -1));
// result == 8 12 2 -1
data.push_back(Vertex45(Point(8, 12), 2, -1));
// result == 8 16 2 1
data.push_back(Vertex45(Point(8, 16), 2, 1));
// result == 8 16 1 1
data.push_back(Vertex45(Point(8, 16), 1, 1));
// result == 12 8 1 -1
data.push_back(Vertex45(Point(12, 8), 1, -1));
// result == 12 8 -1 1
data.push_back(Vertex45(Point(12, 8), -1, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45TilingStar2(stream_type& stdcout) {
stdcout << "testing polygon tiling\n";
Polygon45Tiling pf;
std::vector<Polygon45> polys;
Scan45 scan45;
std::vector<Vertex45 > result;
std::vector<Scan45Vertex> vertices;
//is a Rectnagle(0, 0, 10, 10);
Count2 count(1, 0);
Count2 ncount(-1, 0);
vertices.push_back(Scan45Vertex(Point(0,4), Scan45Count(Count2(0, 0), count, ncount, Count2(0, 0))));
vertices.push_back(Scan45Vertex(Point(16,4), Scan45Count(count, ncount, Count2(0, 0), Count2(0, 0))));
vertices.push_back(Scan45Vertex(Point(8,12), Scan45Count(ncount, Count2(0, 0), count, Count2(0, 0))));
count = Count2(0, 1);
ncount = count.invert();
vertices.push_back(Scan45Vertex(Point(0,8), Scan45Count(count, ncount, Count2(0, 0), Count2(0, 0))));
vertices.push_back(Scan45Vertex(Point(16,8), Scan45Count(Count2(0, 0), count, ncount, Count2(0, 0))));
vertices.push_back(Scan45Vertex(Point(8,0), Scan45Count(ncount, Count2(0, 0), count, Count2(0, 0))));
sortScan45Vector(vertices);
stdcout << "scanning\n";
scan45.scan(result, vertices.begin(), vertices.end());
gtlsort(result.begin(), result.end());
pf.scan(polys, result.begin(), result.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45TilingStarHole1(stream_type& stdcout) {
stdcout << "testing polygon tiling star hole 1\n";
Polygon45Tiling pf;
std::vector<Polygon45> polys;
std::vector<Vertex45> data;
// result == 0 8 -1 1
data.push_back(Vertex45(Point(0, 8), -1, 1));
// result == 0 8 1 -1
data.push_back(Vertex45(Point(0, 8), 1, -1));
// result == 4 0 1 1
data.push_back(Vertex45(Point(4, 0), 1, 1));
// result == 4 0 2 1
data.push_back(Vertex45(Point(4, 0), 2, 1));
// result == 4 4 2 -1
data.push_back(Vertex45(Point(4, 4), 2, -1));
// result == 4 4 -1 -1
data.push_back(Vertex45(Point(4, 4), -1, -1));
// result == 4 12 1 1
data.push_back(Vertex45(Point(4, 12), 1, 1));
// result == 4 12 2 1
data.push_back(Vertex45(Point(4, 12), 2, 1));
// result == 4 16 2 -1
data.push_back(Vertex45(Point(4, 16), 2, 1));
// result == 4 16 -1 -1
data.push_back(Vertex45(Point(4, 16), -1, -1));
// result == 6 2 1 -1
data.push_back(Vertex45(Point(6, 2), 1, -1));
// result == 6 14 -1 1
data.push_back(Vertex45(Point(6, 14), -1, 1));
// result == 6 2 -1 1
data.push_back(Vertex45(Point(6, 2), -1, 1));
// result == 6 14 1 -1
data.push_back(Vertex45(Point(6, 14), 1, -1));
// result == 8 0 -1 -1
data.push_back(Vertex45(Point(8, 0), -1, -1));
// result == 8 0 2 -1
data.push_back(Vertex45(Point(8, 0), 2, -1));
// result == 8 4 2 1
data.push_back(Vertex45(Point(8, 4), 2, 1));
// result == 8 4 1 1
data.push_back(Vertex45(Point(8, 4), 1, 1));
// result == 8 12 -1 -1
data.push_back(Vertex45(Point(8, 12), -1, -1));
// result == 8 12 2 -1
data.push_back(Vertex45(Point(8, 12), 2, -1));
// result == 8 16 2 1
data.push_back(Vertex45(Point(8, 16), 2, 1));
// result == 8 16 1 1
data.push_back(Vertex45(Point(8, 16), 1, 1));
// result == 12 8 1 -1
data.push_back(Vertex45(Point(12, 8), 1, -1));
// result == 12 8 -1 1
data.push_back(Vertex45(Point(12, 8), -1, 1));
data.push_back(Vertex45(Point(6, 4), 1, -1));
data.push_back(Vertex45(Point(6, 4), 2, -1));
data.push_back(Vertex45(Point(6, 8), -1, 1));
data.push_back(Vertex45(Point(6, 8), 2, 1));
data.push_back(Vertex45(Point(8, 6), -1, -1));
data.push_back(Vertex45(Point(8, 6), 1, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45TilingStarHole2(stream_type& stdcout) {
stdcout << "testing polygon tiling star hole 2\n";
Polygon45Tiling pf;
std::vector<Polygon45WithHoles> polys;
std::vector<Vertex45> data;
// result == 0 8 -1 1
data.push_back(Vertex45(Point(0, 8), -1, 1));
// result == 0 8 1 -1
data.push_back(Vertex45(Point(0, 8), 1, -1));
// result == 4 0 1 1
data.push_back(Vertex45(Point(4, 0), 1, 1));
// result == 4 0 2 1
data.push_back(Vertex45(Point(4, 0), 2, 1));
// result == 4 4 2 -1
data.push_back(Vertex45(Point(4, 4), 2, -1));
// result == 4 4 -1 -1
data.push_back(Vertex45(Point(4, 4), -1, -1));
// result == 4 12 1 1
data.push_back(Vertex45(Point(4, 12), 1, 1));
// result == 4 12 2 1
data.push_back(Vertex45(Point(4, 12), 2, 1));
// result == 4 16 2 -1
data.push_back(Vertex45(Point(4, 16), 2, 1));
// result == 4 16 -1 -1
data.push_back(Vertex45(Point(4, 16), -1, -1));
// result == 6 2 1 -1
data.push_back(Vertex45(Point(6, 2), 1, -1));
// result == 6 14 -1 1
data.push_back(Vertex45(Point(6, 14), -1, 1));
// result == 6 2 -1 1
data.push_back(Vertex45(Point(6, 2), -1, 1));
// result == 6 14 1 -1
data.push_back(Vertex45(Point(6, 14), 1, -1));
// result == 8 0 -1 -1
data.push_back(Vertex45(Point(8, 0), -1, -1));
// result == 8 0 2 -1
data.push_back(Vertex45(Point(8, 0), 2, -1));
// result == 8 4 2 1
data.push_back(Vertex45(Point(8, 4), 2, 1));
// result == 8 4 1 1
data.push_back(Vertex45(Point(8, 4), 1, 1));
// result == 8 12 -1 -1
data.push_back(Vertex45(Point(8, 12), -1, -1));
// result == 8 12 2 -1
data.push_back(Vertex45(Point(8, 12), 2, -1));
// result == 8 16 2 1
data.push_back(Vertex45(Point(8, 16), 2, 1));
// result == 8 16 1 1
data.push_back(Vertex45(Point(8, 16), 1, 1));
// result == 12 8 1 -1
data.push_back(Vertex45(Point(12, 8), 1, -1));
// result == 12 8 -1 1
data.push_back(Vertex45(Point(12, 8), -1, 1));
data.push_back(Vertex45(Point(6, 4), 1, -1));
data.push_back(Vertex45(Point(6, 4), 2, -1));
data.push_back(Vertex45(Point(6, 12), -1, 1));
data.push_back(Vertex45(Point(6, 12), 2, 1));
data.push_back(Vertex45(Point(10, 8), -1, -1));
data.push_back(Vertex45(Point(10, 8), 1, 1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
template <typename stream_type>
static inline bool testPolygon45Tiling(stream_type& stdcout) {
stdcout << "testing polygon tiling\n";
Polygon45Tiling pf;
std::vector<Polygon45WithHoles> polys;
std::vector<Vertex45> data;
data.push_back(Vertex45(Point(0, 0), 0, 1));
data.push_back(Vertex45(Point(0, 0), 2, 1));
data.push_back(Vertex45(Point(0, 100), 2, -1));
data.push_back(Vertex45(Point(0, 100), 0, -1));
data.push_back(Vertex45(Point(100, 0), 0, -1));
data.push_back(Vertex45(Point(100, 0), 2, -1));
data.push_back(Vertex45(Point(100, 100), 2, 1));
data.push_back(Vertex45(Point(100, 100), 0, 1));
data.push_back(Vertex45(Point(2, 2), 0, -1));
data.push_back(Vertex45(Point(2, 2), 2, -1));
data.push_back(Vertex45(Point(2, 10), 2, 1));
data.push_back(Vertex45(Point(2, 10), 0, 1));
data.push_back(Vertex45(Point(10, 2), 0, 1));
data.push_back(Vertex45(Point(10, 2), 2, 1));
data.push_back(Vertex45(Point(10, 10), 2, -1));
data.push_back(Vertex45(Point(10, 10), 0, -1));
data.push_back(Vertex45(Point(2, 12), 0, -1));
data.push_back(Vertex45(Point(2, 12), 2, -1));
data.push_back(Vertex45(Point(2, 22), 2, 1));
data.push_back(Vertex45(Point(2, 22), 0, 1));
data.push_back(Vertex45(Point(10, 12), 0, 1));
data.push_back(Vertex45(Point(10, 12), 2, 1));
data.push_back(Vertex45(Point(10, 22), 2, -1));
data.push_back(Vertex45(Point(10, 22), 0, -1));
gtlsort(data.begin(), data.end());
pf.scan(polys, data.begin(), data.end());
stdcout << "result size: " << polys.size() << std::endl;
for(std::size_t i = 0; i < polys.size(); ++i) {
stdcout << polys[i] << std::endl;
}
stdcout << "done testing polygon tiling\n";
return true;
}
};
template <typename Unit>
class PolyLine45HoleData {
public:
typedef typename polygon_45_formation<Unit>::ActiveTail45 ActiveTail45;
typedef typename ActiveTail45::iterator iterator;
typedef polygon_45_concept geometry_type;
typedef Unit coordinate_type;
typedef point_data<Unit> Point;
typedef Point point_type;
// typedef iterator_points_to_compact<iterator, Point> compact_iterator_type;
typedef iterator iterator_type;
typedef typename coordinate_traits<Unit>::area_type area_type;
inline PolyLine45HoleData() : p_(0) {}
inline PolyLine45HoleData(ActiveTail45* p) : p_(p) {}
//use default copy and assign
inline iterator begin() const { return p_->getTail()->begin(); }
inline iterator end() const { return p_->getTail()->end(); }
inline std::size_t size() const { return 0; }
template<class iT>
inline PolyLine45HoleData& set(iT inputBegin, iT inputEnd) {
return *this;
}
private:
ActiveTail45* p_;
};
template <typename Unit>
class PolyLine45PolygonData {
public:
typedef typename polygon_45_formation<Unit>::ActiveTail45 ActiveTail45;
typedef typename ActiveTail45::iterator iterator;
typedef PolyLine45HoleData<Unit> holeType;
typedef polygon_45_with_holes_concept geometry_type;
typedef Unit coordinate_type;
typedef point_data<Unit> Point;
typedef Point point_type;
// typedef iterator_points_to_compact<iterator, Point> compact_iterator_type;
typedef iterator iterator_type;
typedef holeType hole_type;
typedef typename coordinate_traits<Unit>::area_type area_type;
class iteratorHoles {
private:
typename ActiveTail45::iteratorHoles itr_;
public:
typedef PolyLine45HoleData<Unit> holeType;
typedef holeType value_type;
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef const value_type* pointer; //immutable
typedef const value_type& reference; //immutable
inline iteratorHoles() : itr_() {}
inline iteratorHoles(typename ActiveTail45::iteratorHoles itr) : itr_(itr) {}
inline iteratorHoles(const iteratorHoles& that) : itr_(that.itr_) {}
inline iteratorHoles& operator=(const iteratorHoles& that) {
itr_ = that.itr_;
return *this;
}
inline bool operator==(const iteratorHoles& that) { return itr_ == that.itr_; }
inline bool operator!=(const iteratorHoles& that) { return itr_ != that.itr_; }
inline iteratorHoles& operator++() {
++itr_;
return *this;
}
inline const iteratorHoles operator++(int) {
iteratorHoles tmp = *this;
++(*this);
return tmp;
}
inline holeType operator*() {
return *itr_;
}
};
typedef iteratorHoles iterator_holes_type;
inline PolyLine45PolygonData() : p_(0) {}
inline PolyLine45PolygonData(ActiveTail45* p) : p_(p) {}
//use default copy and assign
inline iterator begin() const { return p_->getTail()->begin(); }
inline iterator end() const { return p_->getTail()->end(); }
inline iteratorHoles begin_holes() const { return iteratorHoles(p_->getHoles().begin()); }
inline iteratorHoles end_holes() const { return iteratorHoles(p_->getHoles().end()); }
inline ActiveTail45* yield() { return p_; }
//stub out these four required functions that will not be used but are needed for the interface
inline std::size_t size_holes() const { return 0; }
inline std::size_t size() const { return 0; }
template<class iT>
inline PolyLine45PolygonData& set(iT inputBegin, iT inputEnd) {
return *this;
}
// initialize a polygon from x,y values, it is assumed that the first is an x
// and that the input is a well behaved polygon
template<class iT>
inline PolyLine45PolygonData& set_holes(iT inputBegin, iT inputEnd) {
return *this;
}
private:
ActiveTail45* p_;
};
template <typename T>
struct PolyLineByConcept<T, polygon_45_with_holes_concept> { typedef PolyLine45PolygonData<T> type; };
template <typename T>
struct PolyLineByConcept<T, polygon_with_holes_concept> { typedef PolyLine45PolygonData<T> type; };
template <typename T>
struct PolyLineByConcept<T, polygon_45_concept> { typedef PolyLine45HoleData<T> type; };
template <typename T>
struct PolyLineByConcept<T, polygon_concept> { typedef PolyLine45HoleData<T> type; };
template <typename T>
struct geometry_concept<PolyLine45PolygonData<T> > { typedef polygon_45_with_holes_concept type; };
template <typename T>
struct geometry_concept<PolyLine45HoleData<T> > { typedef polygon_45_concept type; };
}
}
#endif