blob: a7ebc7f7519f80d41b6515ed2a9b569bc4760b46 [file] [log] [blame]
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2011 Barend Gehrels, Amsterdam, the Netherlands.
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_ORIENTED_WINDING_HPP
#define BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_ORIENTED_WINDING_HPP
#include <boost/geometry/core/point_order.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/strategies/side.hpp>
#include <boost/geometry/strategies/within.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace within
{
/*!
\brief Within detection using winding rule, but checking if enclosing ring is
counter clockwise and, if so, reverses the result
\ingroup strategies
\tparam Point \tparam_point
\tparam Reverse True if parameter should be reversed
\tparam PointOfSegment \tparam_segment_point
\tparam CalculationType \tparam_calculation
\author Barend Gehrels
\note The implementation is inspired by terralib http://www.terralib.org (LGPL)
\note but totally revised afterwards, especially for cases on segments
\note Only dependant on "side", -> agnostic, suitable for spherical/latlong
\qbk{
[heading See also]
[link geometry.reference.algorithms.within.within_3_with_strategy within (with strategy)]
}
*/
template
<
bool Reverse,
typename Point,
typename PointOfSegment = Point,
typename CalculationType = void
>
class oriented_winding
{
typedef typename select_calculation_type
<
Point,
PointOfSegment,
CalculationType
>::type calculation_type;
typedef typename strategy::side::services::default_strategy
<
typename cs_tag<Point>::type
>::type strategy_side_type;
/*! subclass to keep state */
class counter
{
int m_count;
bool m_touches;
calculation_type m_sum_area;
inline int code() const
{
return m_touches ? 0 : m_count == 0 ? -1 : 1;
}
inline int clockwise_oriented_code() const
{
return (m_sum_area > 0) ? code() : -code();
}
inline int oriented_code() const
{
return Reverse
? -clockwise_oriented_code()
: clockwise_oriented_code();
}
public :
friend class oriented_winding;
inline counter()
: m_count(0)
, m_touches(false)
, m_sum_area(0)
{}
inline void add_to_area(calculation_type triangle)
{
m_sum_area += triangle;
}
};
template <size_t D>
static inline int check_touch(Point const& point,
PointOfSegment const& seg1, PointOfSegment const& seg2,
counter& state)
{
calculation_type const p = get<D>(point);
calculation_type const s1 = get<D>(seg1);
calculation_type const s2 = get<D>(seg2);
if ((s1 <= p && s2 >= p) || (s2 <= p && s1 >= p))
{
state.m_touches = true;
}
return 0;
}
template <size_t D>
static inline int check_segment(Point const& point,
PointOfSegment const& seg1, PointOfSegment const& seg2,
counter& state)
{
calculation_type const p = get<D>(point);
calculation_type const s1 = get<D>(seg1);
calculation_type const s2 = get<D>(seg2);
// Check if one of segment endpoints is at same level of point
bool eq1 = math::equals(s1, p);
bool eq2 = math::equals(s2, p);
if (eq1 && eq2)
{
// Both equal p -> segment is horizontal (or vertical for D=0)
// The only thing which has to be done is check if point is ON segment
return check_touch<1 - D>(point, seg1, seg2, state);
}
return
eq1 ? (s2 > p ? 1 : -1) // Point on level s1, UP/DOWN depending on s2
: eq2 ? (s1 > p ? -1 : 1) // idem
: s1 < p && s2 > p ? 2 // Point between s1 -> s2 --> UP
: s2 < p && s1 > p ? -2 // Point between s2 -> s1 --> DOWN
: 0;
}
public :
// Typedefs and static methods to fulfill the concept
typedef Point point_type;
typedef PointOfSegment segment_point_type;
typedef counter state_type;
static inline bool apply(Point const& point,
PointOfSegment const& s1, PointOfSegment const& s2,
counter& state)
{
state.add_to_area(get<0>(s2) * get<1>(s1) - get<0>(s1) * get<1>(s2));
int count = check_segment<1>(point, s1, s2, state);
if (count != 0)
{
int side = strategy_side_type::apply(s1, s2, point);
if (side == 0)
{
// Point is lying on segment
state.m_touches = true;
state.m_count = 0;
return false;
}
// Side is NEG for right, POS for left.
// The count is -2 for down, 2 for up (or -1/1)
// Side positive thus means UP and LEFTSIDE or DOWN and RIGHTSIDE
// See accompagnying figure (TODO)
if (side * count > 0)
{
state.m_count += count;
}
}
return ! state.m_touches;
}
static inline int result(counter const& state)
{
return state.oriented_code();
}
};
}} // namespace strategy::within
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_ORIENTED_WINDING_HPP