blob: a5e5969981b46a7c0c1a9585ab4b7d90481ba361 [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2009-2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/****************************************************************************
**
** Name gki_linux_pthreads.c
**
** Function pthreads version of Linux GKI. This version is used for
** settop projects that already use pthreads and not pth.
**
*****************************************************************************/
#include <assert.h>
#include <errno.h>
#include <malloc.h>
#include <string.h>
#include <signal.h>
#include <sys/times.h>
#include <time.h>
#include "gki_int.h"
#include "bt_utils.h"
#define LOG_TAG "GKI_LINUX"
#include <utils/Log.h>
#include <hardware/bluetooth.h>
/*****************************************************************************
** Constants & Macros
******************************************************************************/
#define SCHED_NORMAL 0
#define SCHED_FIFO 1
#define SCHED_RR 2
#define SCHED_BATCH 3
#define NANOSEC_PER_MILLISEC 1000000
#define NSEC_PER_SEC (1000 * NANOSEC_PER_MILLISEC)
#define USEC_PER_SEC 1000000
#define NSEC_PER_USEC 1000
#define WAKE_LOCK_ID "bluedroid_timer"
#if GKI_DYNAMIC_MEMORY == FALSE
tGKI_CB gki_cb;
#endif
#ifndef GKI_SHUTDOWN_EVT
#define GKI_SHUTDOWN_EVT APPL_EVT_7
#endif
/*****************************************************************************
** Local type definitions
******************************************************************************/
typedef struct
{
UINT8 task_id; /* GKI task id */
TASKPTR task_entry; /* Task entry function*/
UINT32 params; /* Extra params to pass to task entry function */
} gki_pthread_info_t;
// Alarm service structure used to pass up via JNI to the bluetooth
// app in order to create a wakeable Alarm.
typedef struct
{
UINT32 ticks_scheduled;
UINT64 timer_started_us;
UINT64 timer_last_expired_us;
bool wakelock;
} alarm_service_t;
/*****************************************************************************
** Static variables
******************************************************************************/
gki_pthread_info_t gki_pthread_info[GKI_MAX_TASKS];
// Only a single alarm is used to wake bluedroid.
// NOTE: Must be manipulated with the GKI_disable() lock held.
static alarm_service_t alarm_service;
static timer_t posix_timer;
static bool timer_created;
// If the next wakeup time is less than this threshold, we should acquire
// a wakelock instead of setting a wake alarm so we're not bouncing in
// and out of suspend frequently.
static const uint32_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
/*****************************************************************************
** Externs
******************************************************************************/
extern bt_os_callouts_t *bt_os_callouts;
/*****************************************************************************
** Functions
******************************************************************************/
static UINT64 now_us()
{
struct timespec ts_now;
clock_gettime(CLOCK_BOOTTIME, &ts_now);
return ((UINT64)ts_now.tv_sec * USEC_PER_SEC) + ((UINT64)ts_now.tv_nsec / NSEC_PER_USEC);
}
static bool set_nonwake_alarm(UINT64 delay_millis)
{
if (!timer_created)
{
ALOGE("%s timer is not available, not setting timer for %llums", __func__, delay_millis);
return false;
}
const UINT64 now = now_us();
alarm_service.timer_started_us = now;
UINT64 prev_timer_delay = 0;
if (alarm_service.timer_last_expired_us)
prev_timer_delay = now - alarm_service.timer_last_expired_us;
UINT64 delay_micros = delay_millis * 1000;
if (delay_micros > prev_timer_delay)
delay_micros -= prev_timer_delay;
else
delay_micros = 1;
struct itimerspec new_value;
memset(&new_value, 0, sizeof(new_value));
new_value.it_value.tv_sec = (delay_micros / USEC_PER_SEC);
new_value.it_value.tv_nsec = (delay_micros % USEC_PER_SEC) * NSEC_PER_USEC;
if (timer_settime(posix_timer, 0, &new_value, NULL) == -1)
{
ALOGE("%s unable to set timer: %s", __func__, strerror(errno));
return false;
}
return true;
}
/** Callback from Java thread after alarm from AlarmService fires. */
static void bt_alarm_cb(void *data)
{
alarm_service.timer_last_expired_us = now_us();
UINT32 ticks_taken = GKI_MS_TO_TICKS((alarm_service.timer_last_expired_us
- alarm_service.timer_started_us) / 1000);
GKI_timer_update(ticks_taken > alarm_service.ticks_scheduled
? ticks_taken : alarm_service.ticks_scheduled);
}
/** NOTE: This is only called on init and may be called without the GKI_disable()
* lock held.
*/
static void alarm_service_init()
{
alarm_service.ticks_scheduled = 0;
alarm_service.timer_started_us = 0;
alarm_service.timer_last_expired_us = 0;
alarm_service.wakelock = FALSE;
raise_priority_a2dp(TASK_JAVA_ALARM);
}
/** Requests an alarm from AlarmService to fire when the next
* timer in the timer queue is set to expire. Only takes a wakelock
* if the timer tick expiration is a short interval in the future
* and releases the wakelock if the timer is a longer interval
* or if there are no more timers in the queue.
*
* NOTE: Must be called with GKI_disable() lock held.
*/
void alarm_service_reschedule()
{
int32_t ticks_till_next_exp = GKI_ready_to_sleep();
assert(ticks_till_next_exp >= 0);
alarm_service.ticks_scheduled = ticks_till_next_exp;
// No more timers remaining. Release wakelock if we're holding one.
if (ticks_till_next_exp == 0)
{
alarm_service.timer_last_expired_us = 0;
alarm_service.timer_started_us = 0;
if (alarm_service.wakelock)
{
ALOGV("%s releasing wake lock.", __func__);
alarm_service.wakelock = false;
int rc = bt_os_callouts->release_wake_lock(WAKE_LOCK_ID);
if (rc != BT_STATUS_SUCCESS)
{
ALOGE("%s unable to release wake lock with no timers: %d", __func__, rc);
}
}
ALOGV("%s no more alarms.", __func__);
return;
}
UINT64 ticks_in_millis = GKI_TICKS_TO_MS(ticks_till_next_exp);
if (ticks_in_millis <= TIMER_INTERVAL_FOR_WAKELOCK_IN_MS)
{
// The next deadline is close, just take a wakelock and set a regular (non-wake) timer.
int rc = bt_os_callouts->acquire_wake_lock(WAKE_LOCK_ID);
if (rc != BT_STATUS_SUCCESS)
{
ALOGE("%s unable to acquire wake lock: %d", __func__, rc);
return;
}
alarm_service.wakelock = true;
ALOGV("%s acquired wake lock, setting short alarm (%lldms).", __func__, ticks_in_millis);
if (!set_nonwake_alarm(ticks_in_millis))
{
ALOGE("%s unable to set short alarm.", __func__);
}
} else {
// The deadline is far away, set a wake alarm and release wakelock if we're holding it.
alarm_service.timer_started_us = now_us();
alarm_service.timer_last_expired_us = 0;
if (!bt_os_callouts->set_wake_alarm(ticks_in_millis, true, bt_alarm_cb, &alarm_service))
{
ALOGE("%s unable to set long alarm, releasing wake lock anyway.", __func__);
} else {
ALOGV("%s set long alarm (%lldms), releasing wake lock.", __func__, ticks_in_millis);
}
alarm_service.wakelock = false;
bt_os_callouts->release_wake_lock(WAKE_LOCK_ID);
}
}
/*****************************************************************************
**
** Function gki_task_entry
**
** Description GKI pthread callback
**
** Returns void
**
*******************************************************************************/
static void gki_task_entry(UINT32 params)
{
gki_pthread_info_t *p_pthread_info = (gki_pthread_info_t *)params;
gki_cb.os.thread_id[p_pthread_info->task_id] = pthread_self();
prctl(PR_SET_NAME, (unsigned long)gki_cb.com.OSTName[p_pthread_info->task_id], 0, 0, 0);
ALOGI("gki_task_entry task_id=%i [%s] starting\n", p_pthread_info->task_id,
gki_cb.com.OSTName[p_pthread_info->task_id]);
/* Call the actual thread entry point */
(p_pthread_info->task_entry)(p_pthread_info->params);
ALOGI("gki_task task_id=%i [%s] terminating\n", p_pthread_info->task_id,
gki_cb.com.OSTName[p_pthread_info->task_id]);
pthread_exit(0); /* GKI tasks have no return value */
}
/*******************************************************************************
**
** Function GKI_init
**
** Description This function is called once at startup to initialize
** all the timer structures.
**
** Returns void
**
*******************************************************************************/
void GKI_init(void)
{
pthread_mutexattr_t attr;
tGKI_OS *p_os;
memset (&gki_cb, 0, sizeof (gki_cb));
gki_buffer_init();
gki_timers_init();
alarm_service_init();
gki_cb.com.OSTicks = (UINT32) times(0);
pthread_mutexattr_init(&attr);
#ifndef __CYGWIN__
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE_NP);
#endif
p_os = &gki_cb.os;
pthread_mutex_init(&p_os->GKI_mutex, &attr);
/* pthread_mutex_init(&GKI_sched_mutex, NULL); */
#if (GKI_DEBUG == TRUE)
pthread_mutex_init(&p_os->GKI_trace_mutex, NULL);
#endif
/* pthread_mutex_init(&thread_delay_mutex, NULL); */ /* used in GKI_delay */
/* pthread_cond_init (&thread_delay_cond, NULL); */
struct sigevent sigevent;
memset(&sigevent, 0, sizeof(sigevent));
sigevent.sigev_notify = SIGEV_THREAD;
sigevent.sigev_notify_function = (void (*)(union sigval))bt_alarm_cb;
sigevent.sigev_value.sival_ptr = NULL;
if (timer_create(CLOCK_REALTIME, &sigevent, &posix_timer) == -1) {
ALOGE("%s unable to create POSIX timer: %s", __func__, strerror(errno));
timer_created = false;
} else {
timer_created = true;
}
}
/*******************************************************************************
**
** Function GKI_get_os_tick_count
**
** Description This function is called to retrieve the native OS system tick.
**
** Returns Tick count of native OS.
**
*******************************************************************************/
UINT32 GKI_get_os_tick_count(void)
{
return gki_cb.com.OSTicks;
}
/*******************************************************************************
**
** Function GKI_create_task
**
** Description This function is called to create a new OSS task.
**
** Parameters: task_entry - (input) pointer to the entry function of the task
** task_id - (input) Task id is mapped to priority
** taskname - (input) name given to the task
** stack - (input) pointer to the top of the stack (highest memory location)
** stacksize - (input) size of the stack allocated for the task
**
** Returns GKI_SUCCESS if all OK, GKI_FAILURE if any problem
**
** NOTE This function take some parameters that may not be needed
** by your particular OS. They are here for compatability
** of the function prototype.
**
*******************************************************************************/
UINT8 GKI_create_task (TASKPTR task_entry, UINT8 task_id, INT8 *taskname, UINT16 *stack, UINT16 stacksize)
{
struct sched_param param;
int policy, ret = 0;
pthread_attr_t attr1;
UNUSED(stack);
UNUSED(stacksize);
GKI_TRACE( "GKI_create_task %x %d %s %x %d", (int)task_entry, (int)task_id,
(char*) taskname, (int) stack, (int)stacksize);
if (task_id >= GKI_MAX_TASKS)
{
ALOGE("Error! task ID > max task allowed");
return (GKI_FAILURE);
}
gki_cb.com.OSRdyTbl[task_id] = TASK_READY;
gki_cb.com.OSTName[task_id] = taskname;
gki_cb.com.OSWaitTmr[task_id] = 0;
gki_cb.com.OSWaitEvt[task_id] = 0;
/* Initialize mutex and condition variable objects for events and timeouts */
pthread_condattr_t cond_attr;
pthread_condattr_init(&cond_attr);
pthread_condattr_setclock(&cond_attr, CLOCK_MONOTONIC);
pthread_mutex_init(&gki_cb.os.thread_evt_mutex[task_id], NULL);
pthread_cond_init (&gki_cb.os.thread_evt_cond[task_id], &cond_attr);
pthread_mutex_init(&gki_cb.os.thread_timeout_mutex[task_id], NULL);
pthread_cond_init (&gki_cb.os.thread_timeout_cond[task_id], NULL);
pthread_attr_init(&attr1);
/* by default, pthread creates a joinable thread */
#if ( FALSE == GKI_PTHREAD_JOINABLE )
pthread_attr_setdetachstate(&attr1, PTHREAD_CREATE_DETACHED);
GKI_TRACE("GKI creating task %i\n", task_id);
#else
GKI_TRACE("GKI creating JOINABLE task %i\n", task_id);
#endif
/* On Android, the new tasks starts running before 'gki_cb.os.thread_id[task_id]' is initialized */
/* Pass task_id to new task so it can initialize gki_cb.os.thread_id[task_id] for it calls GKI_wait */
gki_pthread_info[task_id].task_id = task_id;
gki_pthread_info[task_id].task_entry = task_entry;
gki_pthread_info[task_id].params = 0;
ret = pthread_create( &gki_cb.os.thread_id[task_id],
&attr1,
(void *)gki_task_entry,
&gki_pthread_info[task_id]);
if (ret != 0)
{
ALOGE("pthread_create failed(%d), %s!", ret, taskname);
return GKI_FAILURE;
}
if(pthread_getschedparam(gki_cb.os.thread_id[task_id], &policy, &param)==0)
{
#if (GKI_LINUX_BASE_POLICY!=GKI_SCHED_NORMAL)
#if defined(PBS_SQL_TASK)
if (task_id == PBS_SQL_TASK)
{
GKI_TRACE("PBS SQL lowest priority task");
policy = SCHED_NORMAL;
}
else
#endif
#endif
{
/* check if define in gki_int.h is correct for this compile environment! */
policy = GKI_LINUX_BASE_POLICY;
#if (GKI_LINUX_BASE_POLICY != GKI_SCHED_NORMAL)
param.sched_priority = GKI_LINUX_BASE_PRIORITY - task_id - 2;
#else
param.sched_priority = 0;
#endif
}
pthread_setschedparam(gki_cb.os.thread_id[task_id], policy, &param);
}
GKI_TRACE( "Leaving GKI_create_task %x %d %x %s %x %d\n",
(int)task_entry,
(int)task_id,
(int)gki_cb.os.thread_id[task_id],
(char*)taskname,
(int)stack,
(int)stacksize);
return (GKI_SUCCESS);
}
void GKI_destroy_task(UINT8 task_id)
{
#if ( FALSE == GKI_PTHREAD_JOINABLE )
int i = 0;
#else
int result;
#endif
if (gki_cb.com.OSRdyTbl[task_id] != TASK_DEAD)
{
gki_cb.com.OSRdyTbl[task_id] = TASK_DEAD;
/* paranoi settings, make sure that we do not execute any mailbox events */
gki_cb.com.OSWaitEvt[task_id] &= ~(TASK_MBOX_0_EVT_MASK|TASK_MBOX_1_EVT_MASK|
TASK_MBOX_2_EVT_MASK|TASK_MBOX_3_EVT_MASK);
#if (GKI_NUM_TIMERS > 0)
gki_cb.com.OSTaskTmr0R[task_id] = 0;
gki_cb.com.OSTaskTmr0 [task_id] = 0;
#endif
#if (GKI_NUM_TIMERS > 1)
gki_cb.com.OSTaskTmr1R[task_id] = 0;
gki_cb.com.OSTaskTmr1 [task_id] = 0;
#endif
#if (GKI_NUM_TIMERS > 2)
gki_cb.com.OSTaskTmr2R[task_id] = 0;
gki_cb.com.OSTaskTmr2 [task_id] = 0;
#endif
#if (GKI_NUM_TIMERS > 3)
gki_cb.com.OSTaskTmr3R[task_id] = 0;
gki_cb.com.OSTaskTmr3 [task_id] = 0;
#endif
GKI_send_event(task_id, EVENT_MASK(GKI_SHUTDOWN_EVT));
#if ( FALSE == GKI_PTHREAD_JOINABLE )
i = 0;
while ((gki_cb.com.OSWaitEvt[task_id] != 0) && (++i < 10))
usleep(100 * 1000);
#else
result = pthread_join( gki_cb.os.thread_id[task_id], NULL );
if ( result < 0 )
{
ALOGE( "pthread_join() FAILED: result: %d", result );
}
#endif
GKI_exit_task(task_id);
ALOGI( "GKI_shutdown(): task [%s] terminated\n", gki_cb.com.OSTName[task_id]);
}
}
/*******************************************************************************
**
** Function GKI_task_self_cleanup
**
** Description This function is used in the case when the calling thread
** is exiting itself. The GKI_destroy_task function can not be
** used in this case due to the pthread_join call. The function
** cleans up GKI control block associated to the terminating
** thread.
**
** Parameters: task_id - (input) Task id is used for sanity check to
** make sure the calling thread is in the right
** context.
**
** Returns None
**
*******************************************************************************/
void GKI_task_self_cleanup(UINT8 task_id)
{
UINT8 my_task_id = GKI_get_taskid();
if (task_id != my_task_id)
{
ALOGE("%s: Wrong context - current task %d is not the given task id %d",\
__FUNCTION__, my_task_id, task_id);
return;
}
if (gki_cb.com.OSRdyTbl[task_id] != TASK_DEAD)
{
/* paranoi settings, make sure that we do not execute any mailbox events */
gki_cb.com.OSWaitEvt[task_id] &= ~(TASK_MBOX_0_EVT_MASK|TASK_MBOX_1_EVT_MASK|
TASK_MBOX_2_EVT_MASK|TASK_MBOX_3_EVT_MASK);
#if (GKI_NUM_TIMERS > 0)
gki_cb.com.OSTaskTmr0R[task_id] = 0;
gki_cb.com.OSTaskTmr0 [task_id] = 0;
#endif
#if (GKI_NUM_TIMERS > 1)
gki_cb.com.OSTaskTmr1R[task_id] = 0;
gki_cb.com.OSTaskTmr1 [task_id] = 0;
#endif
#if (GKI_NUM_TIMERS > 2)
gki_cb.com.OSTaskTmr2R[task_id] = 0;
gki_cb.com.OSTaskTmr2 [task_id] = 0;
#endif
#if (GKI_NUM_TIMERS > 3)
gki_cb.com.OSTaskTmr3R[task_id] = 0;
gki_cb.com.OSTaskTmr3 [task_id] = 0;
#endif
GKI_exit_task(task_id);
/* Calling pthread_detach here to mark the thread as detached.
Once the thread terminates, the system can reclaim its resources
without waiting for another thread to join with.
*/
pthread_detach(gki_cb.os.thread_id[task_id]);
}
}
/*******************************************************************************
**
** Function GKI_shutdown
**
** Description shutdowns the GKI tasks/threads in from max task id to 0 and frees
** pthread resources!
** IMPORTANT: in case of join method, GKI_shutdown must be called outside
** a GKI thread context!
**
** Returns void
**
*******************************************************************************/
void GKI_shutdown(void)
{
UINT8 task_id;
#if ( FALSE == GKI_PTHREAD_JOINABLE )
int i = 0;
#else
int result;
#endif
#ifdef GKI_USE_DEFERED_ALLOC_BUF_POOLS
gki_dealloc_free_queue();
#endif
/* release threads and set as TASK_DEAD. going from low to high priority fixes
* GKI_exception problem due to btu->hci sleep request events */
for (task_id = GKI_MAX_TASKS; task_id > 0; task_id--)
{
if (gki_cb.com.OSRdyTbl[task_id - 1] != TASK_DEAD)
{
gki_cb.com.OSRdyTbl[task_id - 1] = TASK_DEAD;
/* paranoi settings, make sure that we do not execute any mailbox events */
gki_cb.com.OSWaitEvt[task_id-1] &= ~(TASK_MBOX_0_EVT_MASK|TASK_MBOX_1_EVT_MASK|
TASK_MBOX_2_EVT_MASK|TASK_MBOX_3_EVT_MASK);
GKI_send_event(task_id - 1, EVENT_MASK(GKI_SHUTDOWN_EVT));
#if ( FALSE == GKI_PTHREAD_JOINABLE )
i = 0;
while ((gki_cb.com.OSWaitEvt[task_id - 1] != 0) && (++i < 10))
usleep(100 * 1000);
#else
result = pthread_join( gki_cb.os.thread_id[task_id-1], NULL );
if ( result < 0 )
{
ALOGE( "pthread_join() FAILED: result: %d", result );
}
#endif
GKI_exit_task(task_id - 1);
}
}
/* Destroy mutex and condition variable objects */
pthread_mutex_destroy(&gki_cb.os.GKI_mutex);
/* pthread_mutex_destroy(&GKI_sched_mutex); */
#if (GKI_DEBUG == TRUE)
pthread_mutex_destroy(&gki_cb.os.GKI_trace_mutex);
#endif
/* pthread_mutex_destroy(&thread_delay_mutex);
pthread_cond_destroy (&thread_delay_cond); */
#if ( FALSE == GKI_PTHREAD_JOINABLE )
i = 0;
#endif
if (timer_created) {
timer_delete(posix_timer);
timer_created = false;
}
}
/*****************************************************************************
**
** Function gki_set_timer_scheduling
**
** Description helper function to set scheduling policy and priority of btdl
**
** Returns void
**
*******************************************************************************/
static void gki_set_timer_scheduling( void )
{
pid_t main_pid = getpid();
struct sched_param param;
int policy;
policy = sched_getscheduler(main_pid);
if ( policy != -1 )
{
GKI_TRACE("gki_set_timer_scheduling(()::scheduler current policy: %d", policy);
/* ensure highest priority in the system + 2 to allow space for read threads */
param.sched_priority = GKI_LINUX_TIMER_TICK_PRIORITY;
if ( 0!=sched_setscheduler(main_pid, GKI_LINUX_TIMER_POLICY, &param ) )
{
GKI_TRACE("sched_setscheduler() failed with error: %d", errno);
}
}
else
{
GKI_TRACE( "getscheduler failed: %d", errno);
}
}
/*****************************************************************************
**
** Function GKI_run
**
** Description Main GKI loop
**
** Returns
**
*******************************************************************************/
void GKI_run(void)
{
/* adjust btld scheduling scheme now */
gki_set_timer_scheduling();
GKI_TRACE( "GKI_run(): Start/Stop GKI_timer_update_registered!" );
}
/*******************************************************************************
**
** Function GKI_stop
**
** Description This function is called to stop
** the tasks and timers when the system is being stopped
**
** Returns void
**
** NOTE This function is NOT called by the Broadcom stack and
** profiles. If you want to use it in your own implementation,
** put specific code here.
**
*******************************************************************************/
void GKI_stop (void)
{
UINT8 task_id;
/* gki_queue_timer_cback(FALSE); */
/* TODO - add code here if needed*/
for(task_id = 0; task_id<GKI_MAX_TASKS; task_id++)
{
if(gki_cb.com.OSRdyTbl[task_id] != TASK_DEAD)
{
GKI_exit_task(task_id);
}
}
}
/*******************************************************************************
**
** Function GKI_wait
**
** Description This function is called by tasks to wait for a specific
** event or set of events. The task may specify the duration
** that it wants to wait for, or 0 if infinite.
**
** Parameters: flag - (input) the event or set of events to wait for
** timeout - (input) the duration that the task wants to wait
** for the specific events (in system ticks)
**
**
** Returns the event mask of received events or zero if timeout
**
*******************************************************************************/
UINT16 GKI_wait (UINT16 flag, UINT32 timeout)
{
UINT16 evt;
UINT8 rtask;
struct timespec abstime = { 0, 0 };
int sec;
int nano_sec;
rtask = GKI_get_taskid();
GKI_TRACE("GKI_wait %d %x %d", (int)rtask, (int)flag, (int)timeout);
gki_cb.com.OSWaitForEvt[rtask] = flag;
/* protect OSWaitEvt[rtask] from modification from an other thread */
pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[rtask]);
if (!(gki_cb.com.OSWaitEvt[rtask] & flag))
{
if (timeout)
{
clock_gettime(CLOCK_MONOTONIC, &abstime);
/* add timeout */
sec = timeout / 1000;
nano_sec = (timeout % 1000) * NANOSEC_PER_MILLISEC;
abstime.tv_nsec += nano_sec;
if (abstime.tv_nsec > NSEC_PER_SEC)
{
abstime.tv_sec += (abstime.tv_nsec / NSEC_PER_SEC);
abstime.tv_nsec = abstime.tv_nsec % NSEC_PER_SEC;
}
abstime.tv_sec += sec;
pthread_cond_timedwait(&gki_cb.os.thread_evt_cond[rtask],
&gki_cb.os.thread_evt_mutex[rtask], &abstime);
}
else
{
pthread_cond_wait(&gki_cb.os.thread_evt_cond[rtask], &gki_cb.os.thread_evt_mutex[rtask]);
}
/* TODO: check, this is probably neither not needed depending on phtread_cond_wait() implmentation,
e.g. it looks like it is implemented as a counter in which case multiple cond_signal
should NOT be lost! */
/* we are waking up after waiting for some events, so refresh variables
no need to call GKI_disable() here as we know that we will have some events as we've been waking
up after condition pending or timeout */
if (gki_cb.com.OSTaskQFirst[rtask][0])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_0_EVT_MASK;
if (gki_cb.com.OSTaskQFirst[rtask][1])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_1_EVT_MASK;
if (gki_cb.com.OSTaskQFirst[rtask][2])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_2_EVT_MASK;
if (gki_cb.com.OSTaskQFirst[rtask][3])
gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_3_EVT_MASK;
if (gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD)
{
gki_cb.com.OSWaitEvt[rtask] = 0;
/* unlock thread_evt_mutex as pthread_cond_wait() does auto lock when cond is met */
pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]);
return (EVENT_MASK(GKI_SHUTDOWN_EVT));
}
}
/* Clear the wait for event mask */
gki_cb.com.OSWaitForEvt[rtask] = 0;
/* Return only those bits which user wants... */
evt = gki_cb.com.OSWaitEvt[rtask] & flag;
/* Clear only those bits which user wants... */
gki_cb.com.OSWaitEvt[rtask] &= ~flag;
/* unlock thread_evt_mutex as pthread_cond_wait() does auto lock mutex when cond is met */
pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]);
GKI_TRACE("GKI_wait %d %x %d %x done", (int)rtask, (int)flag, (int)timeout, (int)evt);
return (evt);
}
/*******************************************************************************
**
** Function GKI_delay
**
** Description This function is called by tasks to sleep unconditionally
** for a specified amount of time. The duration is in milliseconds
**
** Parameters: timeout - (input) the duration in milliseconds
**
** Returns void
**
*******************************************************************************/
void GKI_delay (UINT32 timeout)
{
UINT8 rtask = GKI_get_taskid();
struct timespec delay;
int err;
GKI_TRACE("GKI_delay %d %d", (int)rtask, (int)timeout);
delay.tv_sec = timeout / 1000;
delay.tv_nsec = 1000 * 1000 * (timeout%1000);
/* [u]sleep can't be used because it uses SIGALRM */
do {
err = nanosleep(&delay, &delay);
} while (err < 0 && errno ==EINTR);
/* Check if task was killed while sleeping */
/* NOTE : if you do not implement task killing, you do not need this check */
if (rtask && gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD)
{
}
GKI_TRACE("GKI_delay %d %d done", (int)rtask, (int)timeout);
return;
}
/*******************************************************************************
**
** Function GKI_send_event
**
** Description This function is called by tasks to send events to other
** tasks. Tasks can also send events to themselves.
**
** Parameters: task_id - (input) The id of the task to which the event has to
** be sent
** event - (input) The event that has to be sent
**
**
** Returns GKI_SUCCESS if all OK, else GKI_FAILURE
**
*******************************************************************************/
UINT8 GKI_send_event (UINT8 task_id, UINT16 event)
{
GKI_TRACE("GKI_send_event %d %x", task_id, event);
if (task_id < GKI_MAX_TASKS)
{
/* protect OSWaitEvt[task_id] from manipulation in GKI_wait() */
pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[task_id]);
/* Set the event bit */
gki_cb.com.OSWaitEvt[task_id] |= event;
pthread_cond_signal(&gki_cb.os.thread_evt_cond[task_id]);
pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[task_id]);
GKI_TRACE("GKI_send_event %d %x done", task_id, event);
return ( GKI_SUCCESS );
}
GKI_TRACE("############## GKI_send_event FAILED!! ##################");
return (GKI_FAILURE);
}
/*******************************************************************************
**
** Function GKI_get_taskid
**
** Description This function gets the currently running task ID.
**
** Returns task ID
**
** NOTE The Broadcom upper stack and profiles may run as a single task.
** If you only have one GKI task, then you can hard-code this
** function to return a '1'. Otherwise, you should have some
** OS-specific method to determine the current task.
**
*******************************************************************************/
UINT8 GKI_get_taskid (void)
{
int i;
pthread_t thread_id = pthread_self( );
GKI_TRACE("GKI_get_taskid %x", (int)thread_id);
for (i = 0; i < GKI_MAX_TASKS; i++) {
if (gki_cb.os.thread_id[i] == thread_id) {
//GKI_TRACE("GKI_get_taskid %x %d done", thread_id, i);
return(i);
}
}
GKI_TRACE("GKI_get_taskid: task id = -1");
return(-1);
}
/*******************************************************************************
**
** Function GKI_map_taskname
**
** Description This function gets the task name of the taskid passed as arg.
** If GKI_MAX_TASKS is passed as arg the currently running task
** name is returned
**
** Parameters: task_id - (input) The id of the task whose name is being
** sought. GKI_MAX_TASKS is passed to get the name of the
** currently running task.
**
** Returns pointer to task name
**
** NOTE this function needs no customization
**
*******************************************************************************/
INT8 *GKI_map_taskname (UINT8 task_id)
{
GKI_TRACE("GKI_map_taskname %d", task_id);
if (task_id < GKI_MAX_TASKS)
{
GKI_TRACE("GKI_map_taskname %d %s done", task_id, gki_cb.com.OSTName[task_id]);
return (gki_cb.com.OSTName[task_id]);
}
else if (task_id == GKI_MAX_TASKS )
{
return (gki_cb.com.OSTName[GKI_get_taskid()]);
}
else
{
return (INT8*)"BAD";
}
}
/*******************************************************************************
**
** Function GKI_enable
**
** Description This function enables interrupts.
**
** Returns void
**
*******************************************************************************/
void GKI_enable (void)
{
pthread_mutex_unlock(&gki_cb.os.GKI_mutex);
}
/*******************************************************************************
**
** Function GKI_disable
**
** Description This function disables interrupts.
**
** Returns void
**
*******************************************************************************/
void GKI_disable (void)
{
pthread_mutex_lock(&gki_cb.os.GKI_mutex);
}
/*******************************************************************************
**
** Function GKI_exception
**
** Description This function throws an exception.
** This is normally only called for a nonrecoverable error.
**
** Parameters: code - (input) The code for the error
** msg - (input) The message that has to be logged
**
** Returns void
**
*******************************************************************************/
void GKI_exception (UINT16 code, char *msg)
{
UINT8 task_id;
ALOGE( "GKI_exception(): Task State Table");
for(task_id = 0; task_id < GKI_MAX_TASKS; task_id++)
{
ALOGE( "TASK ID [%d] task name [%s] state [%d]",
task_id,
gki_cb.com.OSTName[task_id],
gki_cb.com.OSRdyTbl[task_id]);
}
ALOGE("GKI_exception %d %s", code, msg);
ALOGE( "********************************************************************");
ALOGE( "* GKI_exception(): %d %s", code, msg);
ALOGE( "********************************************************************");
#if 0//(GKI_DEBUG == TRUE)
GKI_disable();
if (gki_cb.com.ExceptionCnt < GKI_MAX_EXCEPTION)
{
EXCEPTION_T *pExp;
pExp = &gki_cb.com.Exception[gki_cb.com.ExceptionCnt++];
pExp->type = code;
pExp->taskid = GKI_get_taskid();
strncpy((char *)pExp->msg, msg, GKI_MAX_EXCEPTION_MSGLEN - 1);
}
GKI_enable();
#endif
GKI_TRACE("GKI_exception %d %s done", code, msg);
return;
}
/*******************************************************************************
**
** Function GKI_os_malloc
**
** Description This function allocates memory
**
** Parameters: size - (input) The size of the memory that has to be
** allocated
**
** Returns the address of the memory allocated, or NULL if failed
**
** NOTE This function is called by the Broadcom stack when
** dynamic memory allocation is used. (see dyn_mem.h)
**
*******************************************************************************/
void *GKI_os_malloc (UINT32 size)
{
return malloc(size);
}
/*******************************************************************************
**
** Function GKI_os_free
**
** Description This function frees memory
**
** Parameters: size - (input) The address of the memory that has to be
** freed
**
** Returns void
**
** NOTE This function is NOT called by the Broadcom stack and
** profiles. It is only called from within GKI if dynamic
**
*******************************************************************************/
void GKI_os_free (void *p_mem)
{
free(p_mem);
}
/*******************************************************************************
**
** Function GKI_exit_task
**
** Description This function is called to stop a GKI task.
**
** Parameters: task_id - (input) the id of the task that has to be stopped
**
** Returns void
**
** NOTE This function is NOT called by the Broadcom stack and
** profiles. If you want to use it in your own implementation,
** put specific code here to kill a task.
**
*******************************************************************************/
void GKI_exit_task (UINT8 task_id)
{
GKI_disable();
gki_cb.com.OSRdyTbl[task_id] = TASK_DEAD;
/* Destroy mutex and condition variable objects */
pthread_mutex_destroy(&gki_cb.os.thread_evt_mutex[task_id]);
pthread_cond_destroy (&gki_cb.os.thread_evt_cond[task_id]);
pthread_mutex_destroy(&gki_cb.os.thread_timeout_mutex[task_id]);
pthread_cond_destroy (&gki_cb.os.thread_timeout_cond[task_id]);
GKI_enable();
ALOGI("GKI_exit_task %d done", task_id);
return;
}