blob: d2ae4615043b26f2041d224872ac852ee62425b3 [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2014 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#define LOG_TAG "bt_osi_alarm"
#include <assert.h>
#include <errno.h>
#include <hardware/bluetooth.h>
#include <inttypes.h>
#include <time.h>
#include <utils/Log.h>
#include "alarm.h"
#include "list.h"
#include "osi.h"
struct alarm_t {
// The lock is held while the callback for this alarm is being executed.
// It allows us to release the coarse-grained monitor lock while a potentially
// long-running callback is executing. |alarm_cancel| uses this lock to provide
// a guarantee to its caller that the callback will not be in progress when it
// returns.
pthread_mutex_t callback_lock;
period_ms_t deadline;
alarm_callback_t callback;
void *data;
};
extern bt_os_callouts_t *bt_os_callouts;
// If the next wakeup time is less than this threshold, we should acquire
// a wakelock instead of setting a wake alarm so we're not bouncing in
// and out of suspend frequently. This value is externally visible to allow
// unit tests to run faster. It should not be modified by production code.
int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
static const char *WAKE_LOCK_ID = "bluedroid_timer";
// This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
// functions execute serially and not concurrently. As a result, this mutex also
// protects the |alarms| list.
static pthread_mutex_t monitor;
static list_t *alarms;
static timer_t timer;
static bool timer_set;
static bool lazy_initialize(void);
static period_ms_t now(void);
static void timer_callback(void *data);
static void reschedule(void);
alarm_t *alarm_new(void) {
// Make sure we have a list we can insert alarms into.
if (!alarms && !lazy_initialize())
return NULL;
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
alarm_t *ret = calloc(1, sizeof(alarm_t));
if (!ret) {
ALOGE("%s unable to allocate memory for alarm.", __func__);
goto error;
}
// Make this a recursive mutex to make it safe to call |alarm_cancel| from
// within the callback function of the alarm.
int error = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
if (error) {
ALOGE("%s unable to create a recursive mutex: %s", __func__, strerror(error));
goto error;
}
error = pthread_mutex_init(&ret->callback_lock, &attr);
if (error) {
ALOGE("%s unable to initialize mutex: %s", __func__, strerror(error));
goto error;
}
pthread_mutexattr_destroy(&attr);
return ret;
error:;
pthread_mutexattr_destroy(&attr);
free(ret);
return NULL;
}
void alarm_free(alarm_t *alarm) {
if (!alarm)
return;
alarm_cancel(alarm);
pthread_mutex_destroy(&alarm->callback_lock);
free(alarm);
}
// Runs in exclusion with alarm_cancel and timer_callback.
void alarm_set(alarm_t *alarm, period_ms_t deadline, alarm_callback_t cb, void *data) {
assert(alarms != NULL);
assert(alarm != NULL);
assert(cb != NULL);
pthread_mutex_lock(&monitor);
// If the alarm is currently set and it's at the start of the list,
// we'll need to re-schedule since we've adjusted the earliest deadline.
bool needs_reschedule = (!list_is_empty(alarms) && list_front(alarms) == alarm);
if (alarm->callback)
list_remove(alarms, alarm);
alarm->deadline = now() + deadline;
alarm->callback = cb;
alarm->data = data;
// Add it into the timer list sorted by deadline (earliest deadline first).
if (list_is_empty(alarms))
list_prepend(alarms, alarm);
else
for (list_node_t *node = list_begin(alarms); node != list_end(alarms); node = list_next(node)) {
list_node_t *next = list_next(node);
if (next == list_end(alarms) || ((alarm_t *)list_node(next))->deadline >= alarm->deadline) {
list_insert_after(alarms, node, alarm);
break;
}
}
// If the new alarm has the earliest deadline, we need to re-evaluate our schedule.
if (needs_reschedule || (!list_is_empty(alarms) && list_front(alarms) == alarm))
reschedule();
pthread_mutex_unlock(&monitor);
}
void alarm_cancel(alarm_t *alarm) {
assert(alarms != NULL);
assert(alarm != NULL);
pthread_mutex_lock(&monitor);
bool needs_reschedule = (!list_is_empty(alarms) && list_front(alarms) == alarm);
list_remove(alarms, alarm);
alarm->deadline = 0;
alarm->callback = NULL;
alarm->data = NULL;
if (needs_reschedule)
reschedule();
pthread_mutex_unlock(&monitor);
// If the callback for |alarm| is in progress, wait here until it completes.
pthread_mutex_lock(&alarm->callback_lock);
pthread_mutex_unlock(&alarm->callback_lock);
}
static bool lazy_initialize(void) {
assert(alarms == NULL);
pthread_mutex_init(&monitor, NULL);
alarms = list_new(NULL);
if (!alarms) {
ALOGE("%s unable to allocate alarm list.", __func__);
return false;
}
return true;
}
static period_ms_t now(void) {
assert(alarms != NULL);
struct timespec ts;
if (clock_gettime(CLOCK_ID, &ts) == -1) {
ALOGE("%s unable to get current time: %s", __func__, strerror(errno));
return 0;
}
return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
}
// Warning: this function is called in the context of an unknown thread.
// As a result, it must be thread-safe relative to other operations on
// the alarm list.
static void timer_callback(void *ptr) {
alarm_t *alarm = (alarm_t *)ptr;
assert(alarm != NULL);
pthread_mutex_lock(&monitor);
bool alarm_valid = list_remove(alarms, alarm);
alarm_callback_t callback = alarm->callback;
void *data = alarm->data;
alarm->deadline = 0;
alarm->callback = NULL;
alarm->data = NULL;
reschedule();
// The alarm was cancelled before we got to it. Release the monitor
// lock and exit right away since there's nothing left to do.
if (!alarm_valid) {
pthread_mutex_unlock(&monitor);
return;
}
// Downgrade lock.
pthread_mutex_lock(&alarm->callback_lock);
pthread_mutex_unlock(&monitor);
callback(data);
pthread_mutex_unlock(&alarm->callback_lock);
}
// NOTE: must be called with monitor lock.
static void reschedule(void) {
assert(alarms != NULL);
if (timer_set) {
timer_delete(timer);
timer_set = false;
}
if (list_is_empty(alarms)) {
bt_os_callouts->release_wake_lock(WAKE_LOCK_ID);
return;
}
alarm_t *next = list_front(alarms);
int64_t next_exp = next->deadline - now();
if (next_exp < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
int status = bt_os_callouts->acquire_wake_lock(WAKE_LOCK_ID);
if (status != BT_STATUS_SUCCESS) {
ALOGE("%s unable to acquire wake lock: %d", __func__, status);
return;
}
struct sigevent sigevent;
memset(&sigevent, 0, sizeof(sigevent));
sigevent.sigev_notify = SIGEV_THREAD;
sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
sigevent.sigev_value.sival_ptr = next;
if (timer_create(CLOCK_ID, &sigevent, &timer) == -1) {
ALOGE("%s unable to create timer: %s", __func__, strerror(errno));
return;
}
struct itimerspec wakeup_time;
memset(&wakeup_time, 0, sizeof(wakeup_time));
wakeup_time.it_value.tv_sec = (next->deadline / 1000);
wakeup_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
if (timer_settime(timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1) {
ALOGE("%s unable to set timer: %s", __func__, strerror(errno));
timer_delete(timer);
return;
}
timer_set = true;
} else {
if (!bt_os_callouts->set_wake_alarm(next_exp, true, timer_callback, next))
ALOGE("%s unable to set wake alarm for %" PRId64 "ms.", __func__, next_exp);
bt_os_callouts->release_wake_lock(WAKE_LOCK_ID);
}
}