blob: e6fc52338a2f2fb944f2169d77bd7f41962015b4 [file] [log] [blame]
/* vsprintf with automatic memory allocation.
Copyright (C) 1999, 2002-2012 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, see <http://www.gnu.org/licenses/>. */
/* This file can be parametrized with the following macros:
VASNPRINTF The name of the function being defined.
FCHAR_T The element type of the format string.
DCHAR_T The element type of the destination (result) string.
FCHAR_T_ONLY_ASCII Set to 1 to enable verification that all characters
in the format string are ASCII. MUST be set if
FCHAR_T and DCHAR_T are not the same type.
DIRECTIVE Structure denoting a format directive.
Depends on FCHAR_T.
DIRECTIVES Structure denoting the set of format directives of a
format string. Depends on FCHAR_T.
PRINTF_PARSE Function that parses a format string.
Depends on FCHAR_T.
DCHAR_CPY memcpy like function for DCHAR_T[] arrays.
DCHAR_SET memset like function for DCHAR_T[] arrays.
DCHAR_MBSNLEN mbsnlen like function for DCHAR_T[] arrays.
SNPRINTF The system's snprintf (or similar) function.
This may be either snprintf or swprintf.
TCHAR_T The element type of the argument and result string
of the said SNPRINTF function. This may be either
char or wchar_t. The code exploits that
sizeof (TCHAR_T) | sizeof (DCHAR_T) and
alignof (TCHAR_T) <= alignof (DCHAR_T).
DCHAR_IS_TCHAR Set to 1 if DCHAR_T and TCHAR_T are the same type.
DCHAR_CONV_FROM_ENCODING A function to convert from char[] to DCHAR[].
DCHAR_IS_UINT8_T Set to 1 if DCHAR_T is uint8_t.
DCHAR_IS_UINT16_T Set to 1 if DCHAR_T is uint16_t.
DCHAR_IS_UINT32_T Set to 1 if DCHAR_T is uint32_t. */
/* Tell glibc's <stdio.h> to provide a prototype for snprintf().
This must come before <config.h> because <config.h> may include
<features.h>, and once <features.h> has been included, it's too late. */
#ifndef _GNU_SOURCE
# define _GNU_SOURCE 1
#endif
#ifndef VASNPRINTF
# include <config.h>
#endif
#ifndef IN_LIBINTL
# include <alloca.h>
#endif
/* Specification. */
#ifndef VASNPRINTF
# if WIDE_CHAR_VERSION
# include "vasnwprintf.h"
# else
# include "vasnprintf.h"
# endif
#endif
#include <locale.h> /* localeconv() */
#include <stdio.h> /* snprintf(), sprintf() */
#include <stdlib.h> /* abort(), malloc(), realloc(), free() */
#include <string.h> /* memcpy(), strlen() */
#include <errno.h> /* errno */
#include <limits.h> /* CHAR_BIT */
#include <float.h> /* DBL_MAX_EXP, LDBL_MAX_EXP */
#if HAVE_NL_LANGINFO
# include <langinfo.h>
#endif
#ifndef VASNPRINTF
# if WIDE_CHAR_VERSION
# include "wprintf-parse.h"
# else
# include "printf-parse.h"
# endif
#endif
/* Checked size_t computations. */
#include "xsize.h"
#include "verify.h"
#if (NEED_PRINTF_DOUBLE || NEED_PRINTF_LONG_DOUBLE) && !defined IN_LIBINTL
# include <math.h>
# include "float+.h"
#endif
#if (NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE) && !defined IN_LIBINTL
# include <math.h>
# include "isnand-nolibm.h"
#endif
#if (NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE) && !defined IN_LIBINTL
# include <math.h>
# include "isnanl-nolibm.h"
# include "fpucw.h"
#endif
#if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_DOUBLE) && !defined IN_LIBINTL
# include <math.h>
# include "isnand-nolibm.h"
# include "printf-frexp.h"
#endif
#if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_LONG_DOUBLE) && !defined IN_LIBINTL
# include <math.h>
# include "isnanl-nolibm.h"
# include "printf-frexpl.h"
# include "fpucw.h"
#endif
/* Default parameters. */
#ifndef VASNPRINTF
# if WIDE_CHAR_VERSION
# define VASNPRINTF vasnwprintf
# define FCHAR_T wchar_t
# define DCHAR_T wchar_t
# define TCHAR_T wchar_t
# define DCHAR_IS_TCHAR 1
# define DIRECTIVE wchar_t_directive
# define DIRECTIVES wchar_t_directives
# define PRINTF_PARSE wprintf_parse
# define DCHAR_CPY wmemcpy
# define DCHAR_SET wmemset
# else
# define VASNPRINTF vasnprintf
# define FCHAR_T char
# define DCHAR_T char
# define TCHAR_T char
# define DCHAR_IS_TCHAR 1
# define DIRECTIVE char_directive
# define DIRECTIVES char_directives
# define PRINTF_PARSE printf_parse
# define DCHAR_CPY memcpy
# define DCHAR_SET memset
# endif
#endif
#if WIDE_CHAR_VERSION
/* TCHAR_T is wchar_t. */
# define USE_SNPRINTF 1
# if HAVE_DECL__SNWPRINTF
/* On Windows, the function swprintf() has a different signature than
on Unix; we use the function _snwprintf() or - on mingw - snwprintf()
instead. The mingw function snwprintf() has fewer bugs than the
MSVCRT function _snwprintf(), so prefer that. */
# if defined __MINGW32__
# define SNPRINTF snwprintf
# else
# define SNPRINTF _snwprintf
# endif
# else
/* Unix. */
# define SNPRINTF swprintf
# endif
#else
/* TCHAR_T is char. */
/* Use snprintf if it exists under the name 'snprintf' or '_snprintf'.
But don't use it on BeOS, since BeOS snprintf produces no output if the
size argument is >= 0x3000000.
Also don't use it on Linux libc5, since there snprintf with size = 1
writes any output without bounds, like sprintf. */
# if (HAVE_DECL__SNPRINTF || HAVE_SNPRINTF) && !defined __BEOS__ && !(__GNU_LIBRARY__ == 1)
# define USE_SNPRINTF 1
# else
# define USE_SNPRINTF 0
# endif
# if HAVE_DECL__SNPRINTF
/* Windows. The mingw function snprintf() has fewer bugs than the MSVCRT
function _snprintf(), so prefer that. */
# if defined __MINGW32__
# define SNPRINTF snprintf
/* Here we need to call the native snprintf, not rpl_snprintf. */
# undef snprintf
# else
# define SNPRINTF _snprintf
# endif
# else
/* Unix. */
# define SNPRINTF snprintf
/* Here we need to call the native snprintf, not rpl_snprintf. */
# undef snprintf
# endif
#endif
/* Here we need to call the native sprintf, not rpl_sprintf. */
#undef sprintf
/* GCC >= 4.0 with -Wall emits unjustified "... may be used uninitialized"
warnings in this file. Use -Dlint to suppress them. */
#ifdef lint
# define IF_LINT(Code) Code
#else
# define IF_LINT(Code) /* empty */
#endif
/* Avoid some warnings from "gcc -Wshadow".
This file doesn't use the exp() and remainder() functions. */
#undef exp
#define exp expo
#undef remainder
#define remainder rem
#if (!USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99) && !WIDE_CHAR_VERSION
# if (HAVE_STRNLEN && !defined _AIX)
# define local_strnlen strnlen
# else
# ifndef local_strnlen_defined
# define local_strnlen_defined 1
static size_t
local_strnlen (const char *string, size_t maxlen)
{
const char *end = memchr (string, '\0', maxlen);
return end ? (size_t) (end - string) : maxlen;
}
# endif
# endif
#endif
#if (((!USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99) && WIDE_CHAR_VERSION) || ((!USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99 || (NEED_PRINTF_DIRECTIVE_LS && !defined IN_LIBINTL)) && !WIDE_CHAR_VERSION && DCHAR_IS_TCHAR)) && HAVE_WCHAR_T
# if HAVE_WCSLEN
# define local_wcslen wcslen
# else
/* Solaris 2.5.1 has wcslen() in a separate library libw.so. To avoid
a dependency towards this library, here is a local substitute.
Define this substitute only once, even if this file is included
twice in the same compilation unit. */
# ifndef local_wcslen_defined
# define local_wcslen_defined 1
static size_t
local_wcslen (const wchar_t *s)
{
const wchar_t *ptr;
for (ptr = s; *ptr != (wchar_t) 0; ptr++)
;
return ptr - s;
}
# endif
# endif
#endif
#if (!USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99) && HAVE_WCHAR_T && WIDE_CHAR_VERSION
# if HAVE_WCSNLEN
# define local_wcsnlen wcsnlen
# else
# ifndef local_wcsnlen_defined
# define local_wcsnlen_defined 1
static size_t
local_wcsnlen (const wchar_t *s, size_t maxlen)
{
const wchar_t *ptr;
for (ptr = s; maxlen > 0 && *ptr != (wchar_t) 0; ptr++, maxlen--)
;
return ptr - s;
}
# endif
# endif
#endif
#if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE || NEED_PRINTF_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE) && !defined IN_LIBINTL
/* Determine the decimal-point character according to the current locale. */
# ifndef decimal_point_char_defined
# define decimal_point_char_defined 1
static char
decimal_point_char (void)
{
const char *point;
/* Determine it in a multithread-safe way. We know nl_langinfo is
multithread-safe on glibc systems and Mac OS X systems, but is not required
to be multithread-safe by POSIX. sprintf(), however, is multithread-safe.
localeconv() is rarely multithread-safe. */
# if HAVE_NL_LANGINFO && (__GLIBC__ || defined __UCLIBC__ || (defined __APPLE__ && defined __MACH__))
point = nl_langinfo (RADIXCHAR);
# elif 1
char pointbuf[5];
sprintf (pointbuf, "%#.0f", 1.0);
point = &pointbuf[1];
# else
point = localeconv () -> decimal_point;
# endif
/* The decimal point is always a single byte: either '.' or ','. */
return (point[0] != '\0' ? point[0] : '.');
}
# endif
#endif
#if NEED_PRINTF_INFINITE_DOUBLE && !NEED_PRINTF_DOUBLE && !defined IN_LIBINTL
/* Equivalent to !isfinite(x) || x == 0, but does not require libm. */
static int
is_infinite_or_zero (double x)
{
return isnand (x) || x + x == x;
}
#endif
#if NEED_PRINTF_INFINITE_LONG_DOUBLE && !NEED_PRINTF_LONG_DOUBLE && !defined IN_LIBINTL
/* Equivalent to !isfinite(x) || x == 0, but does not require libm. */
static int
is_infinite_or_zerol (long double x)
{
return isnanl (x) || x + x == x;
}
#endif
#if (NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_DOUBLE) && !defined IN_LIBINTL
/* Converting 'long double' to decimal without rare rounding bugs requires
real bignums. We use the naming conventions of GNU gmp, but vastly simpler
(and slower) algorithms. */
typedef unsigned int mp_limb_t;
# define GMP_LIMB_BITS 32
verify (sizeof (mp_limb_t) * CHAR_BIT == GMP_LIMB_BITS);
typedef unsigned long long mp_twolimb_t;
# define GMP_TWOLIMB_BITS 64
verify (sizeof (mp_twolimb_t) * CHAR_BIT == GMP_TWOLIMB_BITS);
/* Representation of a bignum >= 0. */
typedef struct
{
size_t nlimbs;
mp_limb_t *limbs; /* Bits in little-endian order, allocated with malloc(). */
} mpn_t;
/* Compute the product of two bignums >= 0.
Return the allocated memory in case of success, NULL in case of memory
allocation failure. */
static void *
multiply (mpn_t src1, mpn_t src2, mpn_t *dest)
{
const mp_limb_t *p1;
const mp_limb_t *p2;
size_t len1;
size_t len2;
if (src1.nlimbs <= src2.nlimbs)
{
len1 = src1.nlimbs;
p1 = src1.limbs;
len2 = src2.nlimbs;
p2 = src2.limbs;
}
else
{
len1 = src2.nlimbs;
p1 = src2.limbs;
len2 = src1.nlimbs;
p2 = src1.limbs;
}
/* Now 0 <= len1 <= len2. */
if (len1 == 0)
{
/* src1 or src2 is zero. */
dest->nlimbs = 0;
dest->limbs = (mp_limb_t *) malloc (1);
}
else
{
/* Here 1 <= len1 <= len2. */
size_t dlen;
mp_limb_t *dp;
size_t k, i, j;
dlen = len1 + len2;
dp = (mp_limb_t *) malloc (dlen * sizeof (mp_limb_t));
if (dp == NULL)
return NULL;
for (k = len2; k > 0; )
dp[--k] = 0;
for (i = 0; i < len1; i++)
{
mp_limb_t digit1 = p1[i];
mp_twolimb_t carry = 0;
for (j = 0; j < len2; j++)
{
mp_limb_t digit2 = p2[j];
carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2;
carry += dp[i + j];
dp[i + j] = (mp_limb_t) carry;
carry = carry >> GMP_LIMB_BITS;
}
dp[i + len2] = (mp_limb_t) carry;
}
/* Normalise. */
while (dlen > 0 && dp[dlen - 1] == 0)
dlen--;
dest->nlimbs = dlen;
dest->limbs = dp;
}
return dest->limbs;
}
/* Compute the quotient of a bignum a >= 0 and a bignum b > 0.
a is written as a = q * b + r with 0 <= r < b. q is the quotient, r
the remainder.
Finally, round-to-even is performed: If r > b/2 or if r = b/2 and q is odd,
q is incremented.
Return the allocated memory in case of success, NULL in case of memory
allocation failure. */
static void *
divide (mpn_t a, mpn_t b, mpn_t *q)
{
/* Algorithm:
First normalise a and b: a=[a[m-1],...,a[0]], b=[b[n-1],...,b[0]]
with m>=0 and n>0 (in base beta = 2^GMP_LIMB_BITS).
If m<n, then q:=0 and r:=a.
If m>=n=1, perform a single-precision division:
r:=0, j:=m,
while j>0 do
{Here (q[m-1]*beta^(m-1)+...+q[j]*beta^j) * b[0] + r*beta^j =
= a[m-1]*beta^(m-1)+...+a[j]*beta^j und 0<=r<b[0]<beta}
j:=j-1, r:=r*beta+a[j], q[j]:=floor(r/b[0]), r:=r-b[0]*q[j].
Normalise [q[m-1],...,q[0]], yields q.
If m>=n>1, perform a multiple-precision division:
We have a/b < beta^(m-n+1).
s:=intDsize-1-(highest bit in b[n-1]), 0<=s<intDsize.
Shift a and b left by s bits, copying them. r:=a.
r=[r[m],...,r[0]], b=[b[n-1],...,b[0]] with b[n-1]>=beta/2.
For j=m-n,...,0: {Here 0 <= r < b*beta^(j+1).}
Compute q* :
q* := floor((r[j+n]*beta+r[j+n-1])/b[n-1]).
In case of overflow (q* >= beta) set q* := beta-1.
Compute c2 := ((r[j+n]*beta+r[j+n-1]) - q* * b[n-1])*beta + r[j+n-2]
and c3 := b[n-2] * q*.
{We have 0 <= c2 < 2*beta^2, even 0 <= c2 < beta^2 if no overflow
occurred. Furthermore 0 <= c3 < beta^2.
If there was overflow and
r[j+n]*beta+r[j+n-1] - q* * b[n-1] >= beta, i.e. c2 >= beta^2,
the next test can be skipped.}
While c3 > c2, {Here 0 <= c2 < c3 < beta^2}
Put q* := q* - 1, c2 := c2 + b[n-1]*beta, c3 := c3 - b[n-2].
If q* > 0:
Put r := r - b * q* * beta^j. In detail:
[r[n+j],...,r[j]] := [r[n+j],...,r[j]] - q* * [b[n-1],...,b[0]].
hence: u:=0, for i:=0 to n-1 do
u := u + q* * b[i],
r[j+i]:=r[j+i]-(u mod beta) (+ beta, if carry),
u:=u div beta (+ 1, if carry in subtraction)
r[n+j]:=r[n+j]-u.
{Since always u = (q* * [b[i-1],...,b[0]] div beta^i) + 1
< q* + 1 <= beta,
the carry u does not overflow.}
If a negative carry occurs, put q* := q* - 1
and [r[n+j],...,r[j]] := [r[n+j],...,r[j]] + [0,b[n-1],...,b[0]].
Set q[j] := q*.
Normalise [q[m-n],..,q[0]]; this yields the quotient q.
Shift [r[n-1],...,r[0]] right by s bits and normalise; this yields the
rest r.
The room for q[j] can be allocated at the memory location of r[n+j].
Finally, round-to-even:
Shift r left by 1 bit.
If r > b or if r = b and q[0] is odd, q := q+1.
*/
const mp_limb_t *a_ptr = a.limbs;
size_t a_len = a.nlimbs;
const mp_limb_t *b_ptr = b.limbs;
size_t b_len = b.nlimbs;
mp_limb_t *roomptr;
mp_limb_t *tmp_roomptr = NULL;
mp_limb_t *q_ptr;
size_t q_len;
mp_limb_t *r_ptr;
size_t r_len;
/* Allocate room for a_len+2 digits.
(Need a_len+1 digits for the real division and 1 more digit for the
final rounding of q.) */
roomptr = (mp_limb_t *) malloc ((a_len + 2) * sizeof (mp_limb_t));
if (roomptr == NULL)
return NULL;
/* Normalise a. */
while (a_len > 0 && a_ptr[a_len - 1] == 0)
a_len--;
/* Normalise b. */
for (;;)
{
if (b_len == 0)
/* Division by zero. */
abort ();
if (b_ptr[b_len - 1] == 0)
b_len--;
else
break;
}
/* Here m = a_len >= 0 and n = b_len > 0. */
if (a_len < b_len)
{
/* m<n: trivial case. q=0, r := copy of a. */
r_ptr = roomptr;
r_len = a_len;
memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t));
q_ptr = roomptr + a_len;
q_len = 0;
}
else if (b_len == 1)
{
/* n=1: single precision division.
beta^(m-1) <= a < beta^m ==> beta^(m-2) <= a/b < beta^m */
r_ptr = roomptr;
q_ptr = roomptr + 1;
{
mp_limb_t den = b_ptr[0];
mp_limb_t remainder = 0;
const mp_limb_t *sourceptr = a_ptr + a_len;
mp_limb_t *destptr = q_ptr + a_len;
size_t count;
for (count = a_len; count > 0; count--)
{
mp_twolimb_t num =
((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--sourceptr;
*--destptr = num / den;
remainder = num % den;
}
/* Normalise and store r. */
if (remainder > 0)
{
r_ptr[0] = remainder;
r_len = 1;
}
else
r_len = 0;
/* Normalise q. */
q_len = a_len;
if (q_ptr[q_len - 1] == 0)
q_len--;
}
}
else
{
/* n>1: multiple precision division.
beta^(m-1) <= a < beta^m, beta^(n-1) <= b < beta^n ==>
beta^(m-n-1) <= a/b < beta^(m-n+1). */
/* Determine s. */
size_t s;
{
mp_limb_t msd = b_ptr[b_len - 1]; /* = b[n-1], > 0 */
/* Determine s = GMP_LIMB_BITS - integer_length (msd).
Code copied from gnulib's integer_length.c. */
# if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
s = __builtin_clz (msd);
# else
# if defined DBL_EXPBIT0_WORD && defined DBL_EXPBIT0_BIT
if (GMP_LIMB_BITS <= DBL_MANT_BIT)
{
/* Use 'double' operations.
Assumes an IEEE 754 'double' implementation. */
# define DBL_EXP_MASK ((DBL_MAX_EXP - DBL_MIN_EXP) | 7)
# define DBL_EXP_BIAS (DBL_EXP_MASK / 2 - 1)
# define NWORDS \
((sizeof (double) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
union { double value; unsigned int word[NWORDS]; } m;
/* Use a single integer to floating-point conversion. */
m.value = msd;
s = GMP_LIMB_BITS
- (((m.word[DBL_EXPBIT0_WORD] >> DBL_EXPBIT0_BIT) & DBL_EXP_MASK)
- DBL_EXP_BIAS);
}
else
# undef NWORDS
# endif
{
s = 31;
if (msd >= 0x10000)
{
msd = msd >> 16;
s -= 16;
}
if (msd >= 0x100)
{
msd = msd >> 8;
s -= 8;
}
if (msd >= 0x10)
{
msd = msd >> 4;
s -= 4;
}
if (msd >= 0x4)
{
msd = msd >> 2;
s -= 2;
}
if (msd >= 0x2)
{
msd = msd >> 1;
s -= 1;
}
}
# endif
}
/* 0 <= s < GMP_LIMB_BITS.
Copy b, shifting it left by s bits. */
if (s > 0)
{
tmp_roomptr = (mp_limb_t *) malloc (b_len * sizeof (mp_limb_t));
if (tmp_roomptr == NULL)
{
free (roomptr);
return NULL;
}
{
const mp_limb_t *sourceptr = b_ptr;
mp_limb_t *destptr = tmp_roomptr;
mp_twolimb_t accu = 0;
size_t count;
for (count = b_len; count > 0; count--)
{
accu += (mp_twolimb_t) *sourceptr++ << s;
*destptr++ = (mp_limb_t) accu;
accu = accu >> GMP_LIMB_BITS;
}
/* accu must be zero, since that was how s was determined. */
if (accu != 0)
abort ();
}
b_ptr = tmp_roomptr;
}
/* Copy a, shifting it left by s bits, yields r.
Memory layout:
At the beginning: r = roomptr[0..a_len],
at the end: r = roomptr[0..b_len-1], q = roomptr[b_len..a_len] */
r_ptr = roomptr;
if (s == 0)
{
memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t));
r_ptr[a_len] = 0;
}
else
{
const mp_limb_t *sourceptr = a_ptr;
mp_limb_t *destptr = r_ptr;
mp_twolimb_t accu = 0;
size_t count;
for (count = a_len; count > 0; count--)
{
accu += (mp_twolimb_t) *sourceptr++ << s;
*destptr++ = (mp_limb_t) accu;
accu = accu >> GMP_LIMB_BITS;
}
*destptr++ = (mp_limb_t) accu;
}
q_ptr = roomptr + b_len;
q_len = a_len - b_len + 1; /* q will have m-n+1 limbs */
{
size_t j = a_len - b_len; /* m-n */
mp_limb_t b_msd = b_ptr[b_len - 1]; /* b[n-1] */
mp_limb_t b_2msd = b_ptr[b_len - 2]; /* b[n-2] */
mp_twolimb_t b_msdd = /* b[n-1]*beta+b[n-2] */
((mp_twolimb_t) b_msd << GMP_LIMB_BITS) | b_2msd;
/* Division loop, traversed m-n+1 times.
j counts down, b is unchanged, beta/2 <= b[n-1] < beta. */
for (;;)
{
mp_limb_t q_star;
mp_limb_t c1;
if (r_ptr[j + b_len] < b_msd) /* r[j+n] < b[n-1] ? */
{
/* Divide r[j+n]*beta+r[j+n-1] by b[n-1], no overflow. */
mp_twolimb_t num =
((mp_twolimb_t) r_ptr[j + b_len] << GMP_LIMB_BITS)
| r_ptr[j + b_len - 1];
q_star = num / b_msd;
c1 = num % b_msd;
}
else
{
/* Overflow, hence r[j+n]*beta+r[j+n-1] >= beta*b[n-1]. */
q_star = (mp_limb_t)~(mp_limb_t)0; /* q* = beta-1 */
/* Test whether r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] >= beta
<==> r[j+n]*beta+r[j+n-1] + b[n-1] >= beta*b[n-1]+beta
<==> b[n-1] < floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta)
{<= beta !}.
If yes, jump directly to the subtraction loop.
(Otherwise, r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] < beta
<==> floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) = b[n-1] ) */
if (r_ptr[j + b_len] > b_msd
|| (c1 = r_ptr[j + b_len - 1] + b_msd) < b_msd)
/* r[j+n] >= b[n-1]+1 or
r[j+n] = b[n-1] and the addition r[j+n-1]+b[n-1] gives a
carry. */
goto subtract;
}
/* q_star = q*,
c1 = (r[j+n]*beta+r[j+n-1]) - q* * b[n-1] (>=0, <beta). */
{
mp_twolimb_t c2 = /* c1*beta+r[j+n-2] */
((mp_twolimb_t) c1 << GMP_LIMB_BITS) | r_ptr[j + b_len - 2];
mp_twolimb_t c3 = /* b[n-2] * q* */
(mp_twolimb_t) b_2msd * (mp_twolimb_t) q_star;
/* While c2 < c3, increase c2 and decrease c3.
Consider c3-c2. While it is > 0, decrease it by
b[n-1]*beta+b[n-2]. Because of b[n-1]*beta+b[n-2] >= beta^2/2
this can happen only twice. */
if (c3 > c2)
{
q_star = q_star - 1; /* q* := q* - 1 */
if (c3 - c2 > b_msdd)
q_star = q_star - 1; /* q* := q* - 1 */
}
}
if (q_star > 0)
subtract:
{
/* Subtract r := r - b * q* * beta^j. */
mp_limb_t cr;
{
const mp_limb_t *sourceptr = b_ptr;
mp_limb_t *destptr = r_ptr + j;
mp_twolimb_t carry = 0;
size_t count;
for (count = b_len; count > 0; count--)
{
/* Here 0 <= carry <= q*. */
carry =
carry
+ (mp_twolimb_t) q_star * (mp_twolimb_t) *sourceptr++
+ (mp_limb_t) ~(*destptr);
/* Here 0 <= carry <= beta*q* + beta-1. */
*destptr++ = ~(mp_limb_t) carry;
carry = carry >> GMP_LIMB_BITS; /* <= q* */
}
cr = (mp_limb_t) carry;
}
/* Subtract cr from r_ptr[j + b_len], then forget about
r_ptr[j + b_len]. */
if (cr > r_ptr[j + b_len])
{
/* Subtraction gave a carry. */
q_star = q_star - 1; /* q* := q* - 1 */
/* Add b back. */
{
const mp_limb_t *sourceptr = b_ptr;
mp_limb_t *destptr = r_ptr + j;
mp_limb_t carry = 0;
size_t count;
for (count = b_len; count > 0; count--)
{
mp_limb_t source1 = *sourceptr++;
mp_limb_t source2 = *destptr;
*destptr++ = source1 + source2 + carry;
carry =
(carry
? source1 >= (mp_limb_t) ~source2
: source1 > (mp_limb_t) ~source2);
}
}
/* Forget about the carry and about r[j+n]. */
}
}
/* q* is determined. Store it as q[j]. */
q_ptr[j] = q_star;
if (j == 0)
break;
j--;
}
}
r_len = b_len;
/* Normalise q. */
if (q_ptr[q_len - 1] == 0)
q_len--;
# if 0 /* Not needed here, since we need r only to compare it with b/2, and
b is shifted left by s bits. */
/* Shift r right by s bits. */
if (s > 0)
{
mp_limb_t ptr = r_ptr + r_len;
mp_twolimb_t accu = 0;
size_t count;
for (count = r_len; count > 0; count--)
{
accu = (mp_twolimb_t) (mp_limb_t) accu << GMP_LIMB_BITS;
accu += (mp_twolimb_t) *--ptr << (GMP_LIMB_BITS - s);
*ptr = (mp_limb_t) (accu >> GMP_LIMB_BITS);
}
}
# endif
/* Normalise r. */
while (r_len > 0 && r_ptr[r_len - 1] == 0)
r_len--;
}
/* Compare r << 1 with b. */
if (r_len > b_len)
goto increment_q;
{
size_t i;
for (i = b_len;;)
{
mp_limb_t r_i =
(i <= r_len && i > 0 ? r_ptr[i - 1] >> (GMP_LIMB_BITS - 1) : 0)
| (i < r_len ? r_ptr[i] << 1 : 0);
mp_limb_t b_i = (i < b_len ? b_ptr[i] : 0);
if (r_i > b_i)
goto increment_q;
if (r_i < b_i)
goto keep_q;
if (i == 0)
break;
i--;
}
}
if (q_len > 0 && ((q_ptr[0] & 1) != 0))
/* q is odd. */
increment_q:
{
size_t i;
for (i = 0; i < q_len; i++)
if (++(q_ptr[i]) != 0)
goto keep_q;
q_ptr[q_len++] = 1;
}
keep_q:
if (tmp_roomptr != NULL)
free (tmp_roomptr);
q->limbs = q_ptr;
q->nlimbs = q_len;
return roomptr;
}
/* Convert a bignum a >= 0, multiplied with 10^extra_zeroes, to decimal
representation.
Destroys the contents of a.
Return the allocated memory - containing the decimal digits in low-to-high
order, terminated with a NUL character - in case of success, NULL in case
of memory allocation failure. */
static char *
convert_to_decimal (mpn_t a, size_t extra_zeroes)
{
mp_limb_t *a_ptr = a.limbs;
size_t a_len = a.nlimbs;
/* 0.03345 is slightly larger than log(2)/(9*log(10)). */
size_t c_len = 9 * ((size_t)(a_len * (GMP_LIMB_BITS * 0.03345f)) + 1);
char *c_ptr = (char *) malloc (xsum (c_len, extra_zeroes));
if (c_ptr != NULL)
{
char *d_ptr = c_ptr;
for (; extra_zeroes > 0; extra_zeroes--)
*d_ptr++ = '0';
while (a_len > 0)
{
/* Divide a by 10^9, in-place. */
mp_limb_t remainder = 0;
mp_limb_t *ptr = a_ptr + a_len;
size_t count;
for (count = a_len; count > 0; count--)
{
mp_twolimb_t num =
((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--ptr;
*ptr = num / 1000000000;
remainder = num % 1000000000;
}
/* Store the remainder as 9 decimal digits. */
for (count = 9; count > 0; count--)
{
*d_ptr++ = '0' + (remainder % 10);
remainder = remainder / 10;
}
/* Normalize a. */
if (a_ptr[a_len - 1] == 0)
a_len--;
}
/* Remove leading zeroes. */
while (d_ptr > c_ptr && d_ptr[-1] == '0')
d_ptr--;
/* But keep at least one zero. */
if (d_ptr == c_ptr)
*d_ptr++ = '0';
/* Terminate the string. */
*d_ptr = '\0';
}
return c_ptr;
}
# if NEED_PRINTF_LONG_DOUBLE
/* Assuming x is finite and >= 0:
write x as x = 2^e * m, where m is a bignum.
Return the allocated memory in case of success, NULL in case of memory
allocation failure. */
static void *
decode_long_double (long double x, int *ep, mpn_t *mp)
{
mpn_t m;
int exp;
long double y;
size_t i;
/* Allocate memory for result. */
m.nlimbs = (LDBL_MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS;
m.limbs = (mp_limb_t *) malloc (m.nlimbs * sizeof (mp_limb_t));
if (m.limbs == NULL)
return NULL;
/* Split into exponential part and mantissa. */
y = frexpl (x, &exp);
if (!(y >= 0.0L && y < 1.0L))
abort ();
/* x = 2^exp * y = 2^(exp - LDBL_MANT_BIT) * (y * 2^LDBL_MANT_BIT), and the
latter is an integer. */
/* Convert the mantissa (y * 2^LDBL_MANT_BIT) to a sequence of limbs.
I'm not sure whether it's safe to cast a 'long double' value between
2^31 and 2^32 to 'unsigned int', therefore play safe and cast only
'long double' values between 0 and 2^16 (to 'unsigned int' or 'int',
doesn't matter). */
# if (LDBL_MANT_BIT % GMP_LIMB_BITS) != 0
# if (LDBL_MANT_BIT % GMP_LIMB_BITS) > GMP_LIMB_BITS / 2
{
mp_limb_t hi, lo;
y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % (GMP_LIMB_BITS / 2));
hi = (int) y;
y -= hi;
if (!(y >= 0.0L && y < 1.0L))
abort ();
y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
lo = (int) y;
y -= lo;
if (!(y >= 0.0L && y < 1.0L))
abort ();
m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = (hi << (GMP_LIMB_BITS / 2)) | lo;
}
# else
{
mp_limb_t d;
y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % GMP_LIMB_BITS);
d = (int) y;
y -= d;
if (!(y >= 0.0L && y < 1.0L))
abort ();
m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = d;
}
# endif
# endif
for (i = LDBL_MANT_BIT / GMP_LIMB_BITS; i > 0; )
{
mp_limb_t hi, lo;
y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
hi = (int) y;
y -= hi;
if (!(y >= 0.0L && y < 1.0L))
abort ();
y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
lo = (int) y;
y -= lo;
if (!(y >= 0.0L && y < 1.0L))
abort ();
m.limbs[--i] = (hi << (GMP_LIMB_BITS / 2)) | lo;
}
# if 0 /* On FreeBSD 6.1/x86, 'long double' numbers sometimes have excess
precision. */
if (!(y == 0.0L))
abort ();
# endif
/* Normalise. */
while (m.nlimbs > 0 && m.limbs[m.nlimbs - 1] == 0)
m.nlimbs--;
*mp = m;
*ep = exp - LDBL_MANT_BIT;
return m.limbs;
}
# endif
# if NEED_PRINTF_DOUBLE
/* Assuming x is finite and >= 0:
write x as x = 2^e * m, where m is a bignum.
Return the allocated memory in case of success, NULL in case of memory
allocation failure. */
static void *
decode_double (double x, int *ep, mpn_t *mp)
{
mpn_t m;
int exp;
double y;
size_t i;
/* Allocate memory for result. */
m.nlimbs = (DBL_MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS;
m.limbs = (mp_limb_t *) malloc (m.nlimbs * sizeof (mp_limb_t));
if (m.limbs == NULL)
return NULL;
/* Split into exponential part and mantissa. */
y = frexp (x, &exp);
if (!(y >= 0.0 && y < 1.0))
abort ();
/* x = 2^exp * y = 2^(exp - DBL_MANT_BIT) * (y * 2^DBL_MANT_BIT), and the
latter is an integer. */
/* Convert the mantissa (y * 2^DBL_MANT_BIT) to a sequence of limbs.
I'm not sure whether it's safe to cast a 'double' value between
2^31 and 2^32 to 'unsigned int', therefore play safe and cast only
'double' values between 0 and 2^16 (to 'unsigned int' or 'int',
doesn't matter). */
# if (DBL_MANT_BIT % GMP_LIMB_BITS) != 0
# if (DBL_MANT_BIT % GMP_LIMB_BITS) > GMP_LIMB_BITS / 2
{
mp_limb_t hi, lo;
y *= (mp_limb_t) 1 << (DBL_MANT_BIT % (GMP_LIMB_BITS / 2));
hi = (int) y;
y -= hi;
if (!(y >= 0.0 && y < 1.0))
abort ();
y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
lo = (int) y;
y -= lo;
if (!(y >= 0.0 && y < 1.0))
abort ();
m.limbs[DBL_MANT_BIT / GMP_LIMB_BITS] = (hi << (GMP_LIMB_BITS / 2)) | lo;
}
# else
{
mp_limb_t d;
y *= (mp_limb_t) 1 << (DBL_MANT_BIT % GMP_LIMB_BITS);
d = (int) y;
y -= d;
if (!(y >= 0.0 && y < 1.0))
abort ();
m.limbs[DBL_MANT_BIT / GMP_LIMB_BITS] = d;
}
# endif
# endif
for (i = DBL_MANT_BIT / GMP_LIMB_BITS; i > 0; )
{
mp_limb_t hi, lo;
y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
hi = (int) y;
y -= hi;
if (!(y >= 0.0 && y < 1.0))
abort ();
y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
lo = (int) y;
y -= lo;
if (!(y >= 0.0 && y < 1.0))
abort ();
m.limbs[--i] = (hi << (GMP_LIMB_BITS / 2)) | lo;
}
if (!(y == 0.0))
abort ();
/* Normalise. */
while (m.nlimbs > 0 && m.limbs[m.nlimbs - 1] == 0)
m.nlimbs--;
*mp = m;
*ep = exp - DBL_MANT_BIT;
return m.limbs;
}
# endif
/* Assuming x = 2^e * m is finite and >= 0, and n is an integer:
Returns the decimal representation of round (x * 10^n).
Return the allocated memory - containing the decimal digits in low-to-high
order, terminated with a NUL character - in case of success, NULL in case
of memory allocation failure. */
static char *
scale10_round_decimal_decoded (int e, mpn_t m, void *memory, int n)
{
int s;
size_t extra_zeroes;
unsigned int abs_n;
unsigned int abs_s;
mp_limb_t *pow5_ptr;
size_t pow5_len;
unsigned int s_limbs;
unsigned int s_bits;
mpn_t pow5;
mpn_t z;
void *z_memory;
char *digits;
if (memory == NULL)
return NULL;
/* x = 2^e * m, hence
y = round (2^e * 10^n * m) = round (2^(e+n) * 5^n * m)
= round (2^s * 5^n * m). */
s = e + n;
extra_zeroes = 0;
/* Factor out a common power of 10 if possible. */
if (s > 0 && n > 0)
{
extra_zeroes = (s < n ? s : n);
s -= extra_zeroes;
n -= extra_zeroes;
}
/* Here y = round (2^s * 5^n * m) * 10^extra_zeroes.
Before converting to decimal, we need to compute
z = round (2^s * 5^n * m). */
/* Compute 5^|n|, possibly shifted by |s| bits if n and s have the same
sign. 2.322 is slightly larger than log(5)/log(2). */
abs_n = (n >= 0 ? n : -n);
abs_s = (s >= 0 ? s : -s);
pow5_ptr = (mp_limb_t *) malloc (((int)(abs_n * (2.322f / GMP_LIMB_BITS)) + 1
+ abs_s / GMP_LIMB_BITS + 1)
* sizeof (mp_limb_t));
if (pow5_ptr == NULL)
{
free (memory);
return NULL;
}
/* Initialize with 1. */
pow5_ptr[0] = 1;
pow5_len = 1;
/* Multiply with 5^|n|. */
if (abs_n > 0)
{
static mp_limb_t const small_pow5[13 + 1] =
{
1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625,
48828125, 244140625, 1220703125
};
unsigned int n13;
for (n13 = 0; n13 <= abs_n; n13 += 13)
{
mp_limb_t digit1 = small_pow5[n13 + 13 <= abs_n ? 13 : abs_n - n13];
size_t j;
mp_twolimb_t carry = 0;
for (j = 0; j < pow5_len; j++)
{
mp_limb_t digit2 = pow5_ptr[j];
carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2;
pow5_ptr[j] = (mp_limb_t) carry;
carry = carry >> GMP_LIMB_BITS;
}
if (carry > 0)
pow5_ptr[pow5_len++] = (mp_limb_t) carry;
}
}
s_limbs = abs_s / GMP_LIMB_BITS;
s_bits = abs_s % GMP_LIMB_BITS;
if (n >= 0 ? s >= 0 : s <= 0)
{
/* Multiply with 2^|s|. */
if (s_bits > 0)
{
mp_limb_t *ptr = pow5_ptr;
mp_twolimb_t accu = 0;
size_t count;
for (count = pow5_len; count > 0; count--)
{
accu += (mp_twolimb_t) *ptr << s_bits;
*ptr++ = (mp_limb_t) accu;
accu = accu >> GMP_LIMB_BITS;
}
if (accu > 0)
{
*ptr = (mp_limb_t) accu;
pow5_len++;
}
}
if (s_limbs > 0)
{
size_t count;
for (count = pow5_len; count > 0;)
{
count--;
pow5_ptr[s_limbs + count] = pow5_ptr[count];
}
for (count = s_limbs; count > 0;)
{
count--;
pow5_ptr[count] = 0;
}
pow5_len += s_limbs;
}
pow5.limbs = pow5_ptr;
pow5.nlimbs = pow5_len;
if (n >= 0)
{
/* Multiply m with pow5. No division needed. */
z_memory = multiply (m, pow5, &z);
}
else
{
/* Divide m by pow5 and round. */
z_memory = divide (m, pow5, &z);
}
}
else
{
pow5.limbs = pow5_ptr;
pow5.nlimbs = pow5_len;
if (n >= 0)
{
/* n >= 0, s < 0.
Multiply m with pow5, then divide by 2^|s|. */
mpn_t numerator;
mpn_t denominator;
void *tmp_memory;
tmp_memory = multiply (m, pow5, &numerator);
if (tmp_memory == NULL)
{
free (pow5_ptr);
free (memory);
return NULL;
}
/* Construct 2^|s|. */
{
mp_limb_t *ptr = pow5_ptr + pow5_len;
size_t i;
for (i = 0; i < s_limbs; i++)
ptr[i] = 0;
ptr[s_limbs] = (mp_limb_t) 1 << s_bits;
denominator.limbs = ptr;
denominator.nlimbs = s_limbs + 1;
}
z_memory = divide (numerator, denominator, &z);
free (tmp_memory);
}
else
{
/* n < 0, s > 0.
Multiply m with 2^s, then divide by pow5. */
mpn_t numerator;
mp_limb_t *num_ptr;
num_ptr = (mp_limb_t *) malloc ((m.nlimbs + s_limbs + 1)
* sizeof (mp_limb_t));
if (num_ptr == NULL)
{
free (pow5_ptr);
free (memory);
return NULL;
}
{
mp_limb_t *destptr = num_ptr;
{
size_t i;
for (i = 0; i < s_limbs; i++)
*destptr++ = 0;
}
if (s_bits > 0)
{
const mp_limb_t *sourceptr = m.limbs;
mp_twolimb_t accu = 0;
size_t count;
for (count = m.nlimbs; count > 0; count--)
{
accu += (mp_twolimb_t) *sourceptr++ << s_bits;
*destptr++ = (mp_limb_t) accu;
accu = accu >> GMP_LIMB_BITS;
}
if (accu > 0)
*destptr++ = (mp_limb_t) accu;
}
else
{
const mp_limb_t *sourceptr = m.limbs;
size_t count;
for (count = m.nlimbs; count > 0; count--)
*destptr++ = *sourceptr++;
}
numerator.limbs = num_ptr;
numerator.nlimbs = destptr - num_ptr;
}
z_memory = divide (numerator, pow5, &z);
free (num_ptr);
}
}
free (pow5_ptr);
free (memory);
/* Here y = round (x * 10^n) = z * 10^extra_zeroes. */
if (z_memory == NULL)
return NULL;
digits = convert_to_decimal (z, extra_zeroes);
free (z_memory);
return digits;
}
# if NEED_PRINTF_LONG_DOUBLE
/* Assuming x is finite and >= 0, and n is an integer:
Returns the decimal representation of round (x * 10^n).
Return the allocated memory - containing the decimal digits in low-to-high
order, terminated with a NUL character - in case of success, NULL in case
of memory allocation failure. */
static char *
scale10_round_decimal_long_double (long double x, int n)
{
int e IF_LINT(= 0);
mpn_t m;
void *memory = decode_long_double (x, &e, &m);
return scale10_round_decimal_decoded (e, m, memory, n);
}
# endif
# if NEED_PRINTF_DOUBLE
/* Assuming x is finite and >= 0, and n is an integer:
Returns the decimal representation of round (x * 10^n).
Return the allocated memory - containing the decimal digits in low-to-high
order, terminated with a NUL character - in case of success, NULL in case
of memory allocation failure. */
static char *
scale10_round_decimal_double (double x, int n)
{
int e IF_LINT(= 0);
mpn_t m;
void *memory = decode_double (x, &e, &m);
return scale10_round_decimal_decoded (e, m, memory, n);
}
# endif
# if NEED_PRINTF_LONG_DOUBLE
/* Assuming x is finite and > 0:
Return an approximation for n with 10^n <= x < 10^(n+1).
The approximation is usually the right n, but may be off by 1 sometimes. */
static int
floorlog10l (long double x)
{
int exp;
long double y;
double z;
double l;
/* Split into exponential part and mantissa. */
y = frexpl (x, &exp);
if (!(y >= 0.0L && y < 1.0L))
abort ();
if (y == 0.0L)
return INT_MIN;
if (y < 0.5L)
{
while (y < (1.0L / (1 << (GMP_LIMB_BITS / 2)) / (1 << (GMP_LIMB_BITS / 2))))
{
y *= 1.0L * (1 << (GMP_LIMB_BITS / 2)) * (1 << (GMP_LIMB_BITS / 2));
exp -= GMP_LIMB_BITS;
}
if (y < (1.0L / (1 << 16)))
{
y *= 1.0L * (1 << 16);
exp -= 16;
}
if (y < (1.0L / (1 << 8)))
{
y *= 1.0L * (1 << 8);
exp -= 8;
}
if (y < (1.0L / (1 << 4)))
{
y *= 1.0L * (1 << 4);
exp -= 4;
}
if (y < (1.0L / (1 << 2)))
{
y *= 1.0L * (1 << 2);
exp -= 2;
}
if (y < (1.0L / (1 << 1)))
{
y *= 1.0L * (1 << 1);
exp -= 1;
}
}
if (!(y >= 0.5L && y < 1.0L))
abort ();
/* Compute an approximation for l = log2(x) = exp + log2(y). */
l = exp;
z = y;
if (z < 0.70710678118654752444)
{
z *= 1.4142135623730950488;
l -= 0.5;
}
if (z < 0.8408964152537145431)
{
z *= 1.1892071150027210667;
l -= 0.25;
}
if (z < 0.91700404320467123175)
{
z *= 1.0905077326652576592;
l -= 0.125;
}
if (z < 0.9576032806985736469)
{
z *= 1.0442737824274138403;
l -= 0.0625;
}
/* Now 0.95 <= z <= 1.01. */
z = 1 - z;
/* log2(1-z) = 1/log(2) * (- z - z^2/2 - z^3/3 - z^4/4 - ...)
Four terms are enough to get an approximation with error < 10^-7. */
l -= 1.4426950408889634074 * z * (1.0 + z * (0.5 + z * ((1.0 / 3) + z * 0.25)));
/* Finally multiply with log(2)/log(10), yields an approximation for
log10(x). */
l *= 0.30102999566398119523;
/* Round down to the next integer. */
return (int) l + (l < 0 ? -1 : 0);
}
# endif
# if NEED_PRINTF_DOUBLE
/* Assuming x is finite and > 0:
Return an approximation for n with 10^n <= x < 10^(n+1).
The approximation is usually the right n, but may be off by 1 sometimes. */
static int
floorlog10 (double x)
{
int exp;
double y;
double z;
double l;
/* Split into exponential part and mantissa. */
y = frexp (x, &exp);
if (!(y >= 0.0 && y < 1.0))
abort ();
if (y == 0.0)
return INT_MIN;
if (y < 0.5)
{
while (y < (1.0 / (1 << (GMP_LIMB_BITS / 2)) / (1 << (GMP_LIMB_BITS / 2))))
{
y *= 1.0 * (1 << (GMP_LIMB_BITS / 2)) * (1 << (GMP_LIMB_BITS / 2));
exp -= GMP_LIMB_BITS;
}
if (y < (1.0 / (1 << 16)))
{
y *= 1.0 * (1 << 16);
exp -= 16;
}
if (y < (1.0 / (1 << 8)))
{
y *= 1.0 * (1 << 8);
exp -= 8;
}
if (y < (1.0 / (1 << 4)))
{
y *= 1.0 * (1 << 4);
exp -= 4;
}
if (y < (1.0 / (1 << 2)))
{
y *= 1.0 * (1 << 2);
exp -= 2;
}
if (y < (1.0 / (1 << 1)))
{
y *= 1.0 * (1 << 1);
exp -= 1;
}
}
if (!(y >= 0.5 && y < 1.0))
abort ();
/* Compute an approximation for l = log2(x) = exp + log2(y). */
l = exp;
z = y;
if (z < 0.70710678118654752444)
{
z *= 1.4142135623730950488;
l -= 0.5;
}
if (z < 0.8408964152537145431)
{
z *= 1.1892071150027210667;
l -= 0.25;
}
if (z < 0.91700404320467123175)
{
z *= 1.0905077326652576592;
l -= 0.125;
}
if (z < 0.9576032806985736469)
{
z *= 1.0442737824274138403;
l -= 0.0625;
}
/* Now 0.95 <= z <= 1.01. */
z = 1 - z;
/* log2(1-z) = 1/log(2) * (- z - z^2/2 - z^3/3 - z^4/4 - ...)
Four terms are enough to get an approximation with error < 10^-7. */
l -= 1.4426950408889634074 * z * (1.0 + z * (0.5 + z * ((1.0 / 3) + z * 0.25)));
/* Finally multiply with log(2)/log(10), yields an approximation for
log10(x). */
l *= 0.30102999566398119523;
/* Round down to the next integer. */
return (int) l + (l < 0 ? -1 : 0);
}
# endif
/* Tests whether a string of digits consists of exactly PRECISION zeroes and
a single '1' digit. */
static int
is_borderline (const char *digits, size_t precision)
{
for (; precision > 0; precision--, digits++)
if (*digits != '0')
return 0;
if (*digits != '1')
return 0;
digits++;
return *digits == '\0';
}
#endif
#if !USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99
/* Use a different function name, to make it possible that the 'wchar_t'
parametrization and the 'char' parametrization get compiled in the same
translation unit. */
# if WIDE_CHAR_VERSION
# define MAX_ROOM_NEEDED wmax_room_needed
# else
# define MAX_ROOM_NEEDED max_room_needed
# endif
/* Returns the number of TCHAR_T units needed as temporary space for the result
of sprintf or SNPRINTF of a single conversion directive. */
static size_t
MAX_ROOM_NEEDED (const arguments *ap, size_t arg_index, FCHAR_T conversion,
arg_type type, int flags, size_t width, int has_precision,
size_t precision, int pad_ourselves)
{
size_t tmp_length;
switch (conversion)
{
case 'd': case 'i': case 'u':
# if HAVE_LONG_LONG_INT
if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT)
tmp_length =
(unsigned int) (sizeof (unsigned long long) * CHAR_BIT
* 0.30103 /* binary -> decimal */
)
+ 1; /* turn floor into ceil */
else
# endif
if (type == TYPE_LONGINT || type == TYPE_ULONGINT)
tmp_length =
(unsigned int) (sizeof (unsigned long) * CHAR_BIT
* 0.30103 /* binary -> decimal */
)
+ 1; /* turn floor into ceil */
else
tmp_length =
(unsigned int) (sizeof (unsigned int) * CHAR_BIT
* 0.30103 /* binary -> decimal */
)
+ 1; /* turn floor into ceil */
if (tmp_length < precision)
tmp_length = precision;
/* Multiply by 2, as an estimate for FLAG_GROUP. */
tmp_length = xsum (tmp_length, tmp_length);
/* Add 1, to account for a leading sign. */
tmp_length = xsum (tmp_length, 1);
break;
case 'o':
# if HAVE_LONG_LONG_INT
if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT)
tmp_length =
(unsigned int) (sizeof (unsigned long long) * CHAR_BIT
* 0.333334 /* binary -> octal */
)
+ 1; /* turn floor into ceil */
else
# endif
if (type == TYPE_LONGINT || type == TYPE_ULONGINT)
tmp_length =
(unsigned int) (sizeof (unsigned long) * CHAR_BIT
* 0.333334 /* binary -> octal */
)
+ 1; /* turn floor into ceil */
else
tmp_length =
(unsigned int) (sizeof (unsigned int) * CHAR_BIT
* 0.333334 /* binary -> octal */
)
+ 1; /* turn floor into ceil */
if (tmp_length < precision)
tmp_length = precision;
/* Add 1, to account for a leading sign. */
tmp_length = xsum (tmp_length, 1);
break;
case 'x': case 'X':
# if HAVE_LONG_LONG_INT
if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT)
tmp_length =
(unsigned int) (sizeof (unsigned long long) * CHAR_BIT
* 0.25 /* binary -> hexadecimal */
)
+ 1; /* turn floor into ceil */
else
# endif
if (type == TYPE_LONGINT || type == TYPE_ULONGINT)
tmp_length =
(unsigned int) (sizeof (unsigned long) * CHAR_BIT
* 0.25 /* binary -> hexadecimal */
)
+ 1; /* turn floor into ceil */
else
tmp_length =
(unsigned int) (sizeof (unsigned int) * CHAR_BIT
* 0.25 /* binary -> hexadecimal */
)
+ 1; /* turn floor into ceil */
if (tmp_length < precision)
tmp_length = precision;
/* Add 2, to account for a leading sign or alternate form. */
tmp_length = xsum (tmp_length, 2);
break;
case 'f': case 'F':
if (type == TYPE_LONGDOUBLE)
tmp_length =
(unsigned int) (LDBL_MAX_EXP
* 0.30103 /* binary -> decimal */
* 2 /* estimate for FLAG_GROUP */
)
+ 1 /* turn floor into ceil */
+ 10; /* sign, decimal point etc. */
else
tmp_length =
(unsigned int) (DBL_MAX_EXP
* 0.30103 /* binary -> decimal */
* 2 /* estimate for FLAG_GROUP */
)
+ 1 /* turn floor into ceil */
+ 10; /* sign, decimal point etc. */
tmp_length = xsum (tmp_length, precision);
break;
case 'e': case 'E': case 'g': case 'G':
tmp_length =
12; /* sign, decimal point, exponent etc. */
tmp_length = xsum (tmp_length, precision);
break;
case 'a': case 'A':
if (type == TYPE_LONGDOUBLE)
tmp_length =
(unsigned int) (LDBL_DIG
* 0.831 /* decimal -> hexadecimal */
)
+ 1; /* turn floor into ceil */
else
tmp_length =
(unsigned int) (DBL_DIG
* 0.831 /* decimal -> hexadecimal */
)
+ 1; /* turn floor into ceil */
if (tmp_length < precision)
tmp_length = precision;
/* Account for sign, decimal point etc. */
tmp_length = xsum (tmp_length, 12);
break;
case 'c':
# if HAVE_WINT_T && !WIDE_CHAR_VERSION
if (type == TYPE_WIDE_CHAR)
tmp_length = MB_CUR_MAX;
else
# endif
tmp_length = 1;
break;
case 's':
# if HAVE_WCHAR_T
if (type == TYPE_WIDE_STRING)
{
# if WIDE_CHAR_VERSION
/* ISO C says about %ls in fwprintf:
"If the precision is not specified or is greater than the size
of the array, the array shall contain a null wide character."
So if there is a precision, we must not use wcslen. */
const wchar_t *arg = ap->arg[arg_index].a.a_wide_string;
if (has_precision)
tmp_length = local_wcsnlen (arg, precision);
else
tmp_length = local_wcslen (arg);
# else
/* ISO C says about %ls in fprintf:
"If a precision is specified, no more than that many bytes are
written (including shift sequences, if any), and the array
shall contain a null wide character if, to equal the multibyte
character sequence length given by the precision, the function
would need to access a wide character one past the end of the
array."
So if there is a precision, we must not use wcslen. */
/* This case has already been handled separately in VASNPRINTF. */
abort ();
# endif
}
else
# endif
{
# if WIDE_CHAR_VERSION
/* ISO C says about %s in fwprintf:
"If the precision is not specified or is greater than the size
of the converted array, the converted array shall contain a
null wide character."
So if there is a precision, we must not use strlen. */
/* This case has already been handled separately in VASNPRINTF. */
abort ();
# else
/* ISO C says about %s in fprintf:
"If the precision is not specified or greater than the size of
the array, the array shall contain a null character."
So if there is a precision, we must not use strlen. */
const char *arg = ap->arg[arg_index].a.a_string;
if (has_precision)
tmp_length = local_strnlen (arg, precision);
else
tmp_length = strlen (arg);
# endif
}
break;
case 'p':
tmp_length =
(unsigned int) (sizeof (void *) * CHAR_BIT
* 0.25 /* binary -> hexadecimal */
)
+ 1 /* turn floor into ceil */
+ 2; /* account for leading 0x */
break;
default:
abort ();
}
if (!pad_ourselves)
{
# if ENABLE_UNISTDIO
/* Padding considers the number of characters, therefore the number of
elements after padding may be
> max (tmp_length, width)
but is certainly
<= tmp_length + width. */
tmp_length = xsum (tmp_length, width);
# else
/* Padding considers the number of elements, says POSIX. */
if (tmp_length < width)
tmp_length = width;
# endif
}
tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */
return tmp_length;
}
#endif
DCHAR_T *
VASNPRINTF (DCHAR_T *resultbuf, size_t *lengthp,
const FCHAR_T *format, va_list args)
{
DIRECTIVES d;
arguments a;
if (PRINTF_PARSE (format, &d, &a) < 0)
/* errno is already set. */
return NULL;
#define CLEANUP() \
if (d.dir != d.direct_alloc_dir) \
free (d.dir); \
if (a.arg != a.direct_alloc_arg) \
free (a.arg);
if (PRINTF_FETCHARGS (args, &a) < 0)
{
CLEANUP ();
errno = EINVAL;
return NULL;
}
{
size_t buf_neededlength;
TCHAR_T *buf;
TCHAR_T *buf_malloced;
const FCHAR_T *cp;
size_t i;
DIRECTIVE *dp;
/* Output string accumulator. */
DCHAR_T *result;
size_t allocated;
size_t length;
/* Allocate a small buffer that will hold a directive passed to
sprintf or snprintf. */
buf_neededlength =
xsum4 (7, d.max_width_length, d.max_precision_length, 6);
#if HAVE_ALLOCA
if (buf_neededlength < 4000 / sizeof (TCHAR_T))
{
buf = (TCHAR_T *) alloca (buf_neededlength * sizeof (TCHAR_T));
buf_malloced = NULL;
}
else
#endif
{
size_t buf_memsize = xtimes (buf_neededlength, sizeof (TCHAR_T));
if (size_overflow_p (buf_memsize))
goto out_of_memory_1;
buf = (TCHAR_T *) malloc (buf_memsize);
if (buf == NULL)
goto out_of_memory_1;
buf_malloced = buf;
}
if (resultbuf != NULL)
{
result = resultbuf;
allocated = *lengthp;
}
else
{
result = NULL;
allocated = 0;
}
length = 0;
/* Invariants:
result is either == resultbuf or == NULL or malloc-allocated.
If length > 0, then result != NULL. */
/* Ensures that allocated >= needed. Aborts through a jump to
out_of_memory if needed is SIZE_MAX or otherwise too big. */
#define ENSURE_ALLOCATION(needed) \
if ((needed) > allocated) \
{ \
size_t memory_size; \
DCHAR_T *memory; \
\
allocated = (allocated > 0 ? xtimes (allocated, 2) : 12); \
if ((needed) > allocated) \
allocated = (needed); \
memory_size = xtimes (allocated, sizeof (DCHAR_T)); \
if (size_overflow_p (memory_size)) \
goto out_of_memory; \
if (result == resultbuf || result == NULL) \
memory = (DCHAR_T *) malloc (memory_size); \
else \
memory = (DCHAR_T *) realloc (result, memory_size); \
if (memory == NULL) \
goto out_of_memory; \
if (result == resultbuf && length > 0) \
DCHAR_CPY (memory, result, length); \
result = memory; \
}
for (cp = format, i = 0, dp = &d.dir[0]; ; cp = dp->dir_end, i++, dp++)
{
if (cp != dp->dir_start)
{
size_t n = dp->dir_start - cp;
size_t augmented_length = xsum (length, n);
ENSURE_ALLOCATION (augmented_length);
/* This copies a piece of FCHAR_T[] into a DCHAR_T[]. Here we
need that the format string contains only ASCII characters
if FCHAR_T and DCHAR_T are not the same type. */
if (sizeof (FCHAR_T) == sizeof (DCHAR_T))
{
DCHAR_CPY (result + length, (const DCHAR_T *) cp, n);
length = augmented_length;
}
else
{
do
result[length++] = (unsigned char) *cp++;
while (--n > 0);
}
}
if (i == d.count)
break;
/* Execute a single directive. */
if (dp->conversion == '%')
{
size_t augmented_length;
if (!(dp->arg_index == ARG_NONE))
abort ();
augmented_length = xsum (length, 1);
ENSURE_ALLOCATION (augmented_length);
result[length] = '%';
length = augmented_length;
}
else
{
if (!(dp->arg_index != ARG_NONE))
abort ();
if (dp->conversion == 'n')
{
switch (a.arg[dp->arg_index].type)
{
case TYPE_COUNT_SCHAR_POINTER:
*a.arg[dp->arg_index].a.a_count_schar_pointer = length;
break;
case TYPE_COUNT_SHORT_POINTER:
*a.arg[dp->arg_index].a.a_count_short_pointer = length;
break;
case TYPE_COUNT_INT_POINTER:
*a.arg[dp->arg_index].a.a_count_int_pointer = length;
break;
case TYPE_COUNT_LONGINT_POINTER:
*a.arg[dp->arg_index].a.a_count_longint_pointer = length;
break;
#if HAVE_LONG_LONG_INT
case TYPE_COUNT_LONGLONGINT_POINTER:
*a.arg[dp->arg_index].a.a_count_longlongint_pointer = length;
break;
#endif
default:
abort ();
}
}
#if ENABLE_UNISTDIO
/* The unistdio extensions. */
else if (dp->conversion == 'U')
{
arg_type type = a.arg[dp->arg_index].type;
int flags = dp->flags;
int has_width;
size_t width;
int has_precision;
size_t precision;
has_width = 0;
width = 0;
if (dp->width_start != dp->width_end)
{
if (dp->width_arg_index != ARG_NONE)
{
int arg;
if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
abort ();
arg = a.arg[dp->width_arg_index].a.a_int;
if (arg < 0)
{
/* "A negative field width is taken as a '-' flag
followed by a positive field width." */
flags |= FLAG_LEFT;
width = (unsigned int) (-arg);
}
else
width = arg;
}
else
{
const FCHAR_T *digitp = dp->width_start;
do
width = xsum (xtimes (width, 10), *digitp++ - '0');
while (digitp != dp->width_end);
}
has_width = 1;
}
has_precision = 0;
precision = 0;
if (dp->precision_start != dp->precision_end)
{
if (dp->precision_arg_index != ARG_NONE)
{
int arg;
if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
abort ();
arg = a.arg[dp->precision_arg_index].a.a_int;
/* "A negative precision is taken as if the precision
were omitted." */
if (arg >= 0)
{
precision = arg;
has_precision = 1;
}
}
else
{
const FCHAR_T *digitp = dp->precision_start + 1;
precision = 0;
while (digitp != dp->precision_end)
precision = xsum (xtimes (precision, 10), *digitp++ - '0');
has_precision = 1;
}
}
switch (type)
{
case TYPE_U8_STRING:
{
const uint8_t *arg = a.arg[dp->arg_index].a.a_u8_string;
const uint8_t *arg_end;
size_t characters;
if (has_precision)
{
/* Use only PRECISION characters, from the left. */
arg_end = arg;
characters = 0;
for (; precision > 0; precision--)
{
int count = u8_strmblen (arg_end);
if (count == 0)
break;
if (count < 0)
{
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = EILSEQ;
return NULL;
}
arg_end += count;
characters++;
}
}
else if (has_width)
{
/* Use the entire string, and count the number of
characters. */
arg_end = arg;
characters = 0;
for (;;)
{
int count = u8_strmblen (arg_end);
if (count == 0)
break;
if (count < 0)
{
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = EILSEQ;
return NULL;
}
arg_end += count;
characters++;
}
}
else
{
/* Use the entire string. */
arg_end = arg + u8_strlen (arg);
/* The number of characters doesn't matter. */
characters = 0;
}
if (has_width && width > characters
&& !(dp->flags & FLAG_LEFT))
{
size_t n = width - characters;
ENSURE_ALLOCATION (xsum (length, n));
DCHAR_SET (result + length, ' ', n);
length += n;
}
# if DCHAR_IS_UINT8_T
{
size_t n = arg_end - arg;
ENSURE_ALLOCATION (xsum (length, n));
DCHAR_CPY (result + length, arg, n);
length += n;
}
# else
{ /* Convert. */
DCHAR_T *converted = result + length;
size_t converted_len = allocated - length;
# if DCHAR_IS_TCHAR
/* Convert from UTF-8 to locale encoding. */
converted =
u8_conv_to_encoding (locale_charset (),
iconveh_question_mark,
arg, arg_end - arg, NULL,
converted, &converted_len);
# else
/* Convert from UTF-8 to UTF-16/UTF-32. */
converted =
U8_TO_DCHAR (arg, arg_end - arg,
converted, &converted_len);
# endif
if (converted == NULL)
{
int saved_errno = errno;
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = saved_errno;
return NULL;
}
if (converted != result + length)
{
ENSURE_ALLOCATION (xsum (length, converted_len));
DCHAR_CPY (result + length, converted, converted_len);
free (converted);
}
length += converted_len;
}
# endif
if (has_width && width > characters
&& (dp->flags & FLAG_LEFT))
{
size_t n = width - characters;
ENSURE_ALLOCATION (xsum (length, n));
DCHAR_SET (result + length, ' ', n);
length += n;
}
}
break;
case TYPE_U16_STRING:
{
const uint16_t *arg = a.arg[dp->arg_index].a.a_u16_string;
const uint16_t *arg_end;
size_t characters;
if (has_precision)
{
/* Use only PRECISION characters, from the left. */
arg_end = arg;
characters = 0;
for (; precision > 0; precision--)
{
int count = u16_strmblen (arg_end);
if (count == 0)
break;
if (count < 0)
{
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = EILSEQ;
return NULL;
}
arg_end += count;
characters++;
}
}
else if (has_width)
{
/* Use the entire string, and count the number of
characters. */
arg_end = arg;
characters = 0;
for (;;)
{
int count = u16_strmblen (arg_end);
if (count == 0)
break;
if (count < 0)
{
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = EILSEQ;
return NULL;
}
arg_end += count;
characters++;
}
}
else
{
/* Use the entire string. */
arg_end = arg + u16_strlen (arg);
/* The number of characters doesn't matter. */
characters = 0;
}
if (has_width && width > characters
&& !(dp->flags & FLAG_LEFT))
{
size_t n = width - characters;
ENSURE_ALLOCATION (xsum (length, n));
DCHAR_SET (result + length, ' ', n);
length += n;
}
# if DCHAR_IS_UINT16_T
{
size_t n = arg_end - arg;
ENSURE_ALLOCATION (xsum (length, n));
DCHAR_CPY (result + length, arg, n);
length += n;
}
# else
{ /* Convert. */
DCHAR_T *converted = result + length;
size_t converted_len = allocated - length;
# if DCHAR_IS_TCHAR
/* Convert from UTF-16 to locale encoding. */
converted =
u16_conv_to_encoding (locale_charset (),
iconveh_question_mark,
arg, arg_end - arg, NULL,
converted, &converted_len);
# else
/* Convert from UTF-16 to UTF-8/UTF-32. */
converted =
U16_TO_DCHAR (arg, arg_end - arg,
converted, &converted_len);
# endif
if (converted == NULL)
{
int saved_errno = errno;
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = saved_errno;
return NULL;
}
if (converted != result + length)
{
ENSURE_ALLOCATION (xsum (length, converted_len));
DCHAR_CPY (result + length, converted, converted_len);
free (converted);
}
length += converted_len;
}
# endif
if (has_width && width > characters
&& (dp->flags & FLAG_LEFT))
{
size_t n = width - characters;
ENSURE_ALLOCATION (xsum (length, n));
DCHAR_SET (result + length, ' ', n);
length += n;
}
}
break;
case TYPE_U32_STRING:
{
const uint32_t *arg = a.arg[dp->arg_index].a.a_u32_string;
const uint32_t *arg_end;
size_t characters;
if (has_precision)
{
/* Use only PRECISION characters, from the left. */
arg_end = arg;
characters = 0;
for (; precision > 0; precision--)
{
int count = u32_strmblen (arg_end);
if (count == 0)
break;
if (count < 0)
{
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = EILSEQ;
return NULL;
}
arg_end += count;
characters++;
}
}
else if (has_width)
{
/* Use the entire string, and count the number of
characters. */
arg_end = arg;
characters = 0;
for (;;)
{
int count = u32_strmblen (arg_end);
if (count == 0)
break;
if (count < 0)
{
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = EILSEQ;
return NULL;
}
arg_end += count;
characters++;
}
}
else
{
/* Use the entire string. */
arg_end = arg + u32_strlen (arg);
/* The number of characters doesn't matter. */
characters = 0;
}
if (has_width && width > characters
&& !(dp->flags & FLAG_LEFT))
{
size_t n = width - characters;
ENSURE_ALLOCATION (xsum (length, n));
DCHAR_SET (result + length, ' ', n);
length += n;
}
# if DCHAR_IS_UINT32_T
{
size_t n = arg_end - arg;
ENSURE_ALLOCATION (xsum (length, n));
DCHAR_CPY (result + length, arg, n);
length += n;
}
# else
{ /* Convert. */
DCHAR_T *converted = result + length;
size_t converted_len = allocated - length;
# if DCHAR_IS_TCHAR
/* Convert from UTF-32 to locale encoding. */
converted =
u32_conv_to_encoding (locale_charset (),
iconveh_question_mark,
arg, arg_end - arg, NULL,
converted, &converted_len);
# else
/* Convert from UTF-32 to UTF-8/UTF-16. */
converted =
U32_TO_DCHAR (arg, arg_end - arg,
converted, &converted_len);
# endif
if (converted == NULL)
{
int saved_errno = errno;
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = saved_errno;
return NULL;
}
if (converted != result + length)
{
ENSURE_ALLOCATION (xsum (length, converted_len));
DCHAR_CPY (result + length, converted, converted_len);
free (converted);
}
length += converted_len;
}
# endif
if (has_width && width > characters
&& (dp->flags & FLAG_LEFT))
{
size_t n = width - characters;
ENSURE_ALLOCATION (xsum (length, n));
DCHAR_SET (result + length, ' ', n);
length += n;
}
}
break;
default:
abort ();
}
}
#endif
#if (!USE_SNPRINTF || !HAVE_SNPRINTF_RETVAL_C99 || (NEED_PRINTF_DIRECTIVE_LS && !defined IN_LIBINTL)) && HAVE_WCHAR_T
else if (dp->conversion == 's'
# if WIDE_CHAR_VERSION
&& a.arg[dp->arg_index].type != TYPE_WIDE_STRING
# else
&& a.arg[dp->arg_index].type == TYPE_WIDE_STRING
# endif
)
{
/* The normal handling of the 's' directive below requires
allocating a temporary buffer. The determination of its
length (tmp_length), in the case when a precision is
specified, below requires a conversion between a char[]
string and a wchar_t[] wide string. It could be done, but
we have no guarantee that the implementation of sprintf will
use the exactly same algorithm. Without this guarantee, it
is possible to have buffer overrun bugs. In order to avoid
such bugs, we implement the entire processing of the 's'
directive ourselves. */
int flags = dp->flags;
int has_width;
size_t width;
int has_precision;
size_t precision;
has_width = 0;
width = 0;
if (dp->width_start != dp->width_end)
{
if (dp->width_arg_index != ARG_NONE)
{
int arg;
if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
abort ();
arg = a.arg[dp->width_arg_index].a.a_int;
if (arg < 0)
{
/* "A negative field width is taken as a '-' flag
followed by a positive field width." */
flags |= FLAG_LEFT;
width = (unsigned int) (-arg);
}
else
width = arg;
}
else
{
const FCHAR_T *digitp = dp->width_start;
do
width = xsum (xtimes (width, 10), *digitp++ - '0');
while (digitp != dp->width_end);
}
has_width = 1;
}
has_precision = 0;
precision = 6;
if (dp->precision_start != dp->precision_end)
{
if (dp->precision_arg_index != ARG_NONE)
{
int arg;
if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
abort ();
arg = a.arg[dp->precision_arg_index].a.a_int;
/* "A negative precision is taken as if the precision
were omitted." */
if (arg >= 0)
{
precision = arg;
has_precision = 1;
}
}
else
{
const FCHAR_T *digitp = dp->precision_start + 1;
precision = 0;
while (digitp != dp->precision_end)
precision = xsum (xtimes (precision, 10), *digitp++ - '0');
has_precision = 1;
}
}
# if WIDE_CHAR_VERSION
/* %s in vasnwprintf. See the specification of fwprintf. */
{
const char *arg = a.arg[dp->arg_index].a.a_string;
const char *arg_end;
size_t characters;
if (has_precision)
{
/* Use only as many bytes as needed to produce PRECISION
wide characters, from the left. */
# if HAVE_MBRTOWC
mbstate_t state;
memset (&state, '\0', sizeof (mbstate_t));
# endif
arg_end = arg;
characters = 0;
for (; precision > 0; precision--)
{
int count;
# if HAVE_MBRTOWC
count = mbrlen (arg_end, MB_CUR_MAX, &state);
# else
count = mblen (arg_end, MB_CUR_MAX);
# endif
if (count == 0)
/* Found the terminating NUL. */
break;
if (count < 0)
{
/* Invalid or incomplete multibyte character. */
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = EILSEQ;
return NULL;
}
arg_end += count;
characters++;
}
}
else if (has_width)
{
/* Use the entire string, and count the number of wide
characters. */
# if HAVE_MBRTOWC
mbstate_t state;
memset (&state, '\0', sizeof (mbstate_t));
# endif
arg_end = arg;
characters = 0;
for (;;)
{
int count;
# if HAVE_MBRTOWC
count = mbrlen (arg_end, MB_CUR_MAX, &state);
# else
count = mblen (arg_end, MB_CUR_MAX);
# endif
if (count == 0)
/* Found the terminating NUL. */
break;
if (count < 0)
{
/* Invalid or incomplete multibyte character. */
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = EILSEQ;
return NULL;
}
arg_end += count;
characters++;
}
}
else
{
/* Use the entire string. */
arg_end = arg + strlen (arg);
/* The number of characters doesn't matter. */
characters = 0;
}
if (has_width && width > characters
&& !(dp->flags & FLAG_LEFT))
{
size_t n = width - characters;
ENSURE_ALLOCATION (xsum (length, n));
DCHAR_SET (result + length, ' ', n);
length += n;
}
if (has_precision || has_width)
{
/* We know the number of wide characters in advance. */
size_t remaining;
# if HAVE_MBRTOWC
mbstate_t state;
memset (&state, '\0', sizeof (mbstate_t));
# endif
ENSURE_ALLOCATION (xsum (length, characters));
for (remaining = characters; remaining > 0; remaining--)
{
wchar_t wc;
int count;
# if HAVE_MBRTOWC
count = mbrtowc (&wc, arg, arg_end - arg, &state);
# else
count = mbtowc (&wc, arg, arg_end - arg);
# endif
if (count <= 0)
/* mbrtowc not consistent with mbrlen, or mbtowc
not consistent with mblen. */
abort ();
result[length++] = wc;
arg += count;
}
if (!(arg == arg_end))
abort ();
}
else
{
# if HAVE_MBRTOWC
mbstate_t state;
memset (&state, '\0', sizeof (mbstate_t));
# endif
while (arg < arg_end)
{
wchar_t wc;
int count;
# if HAVE_MBRTOWC
count = mbrtowc (&wc, arg, arg_end - arg, &state);
# else
count = mbtowc (&wc, arg, arg_end - arg);
# endif
if (count <= 0)
/* mbrtowc not consistent with mbrlen, or mbtowc
not consistent with mblen. */
abort ();
ENSURE_ALLOCATION (xsum (length, 1));
result[length++] = wc;
arg += count;
}
}
if (has_width && width > characters
&& (dp->flags & FLAG_LEFT))
{
size_t n = width - characters;
ENSURE_ALLOCATION (xsum (length, n));
DCHAR_SET (result + length, ' ', n);
length += n;
}
}
# else
/* %ls in vasnprintf. See the specification of fprintf. */
{
const wchar_t *arg = a.arg[dp->arg_index].a.a_wide_string;
const wchar_t *arg_end;
size_t characters;
# if !DCHAR_IS_TCHAR
/* This code assumes that TCHAR_T is 'char'. */
verify (sizeof (TCHAR_T) == 1);
TCHAR_T *tmpsrc;
DCHAR_T *tmpdst;
size_t tmpdst_len;
# endif
size_t w;
if (has_precision)
{
/* Use only as many wide characters as needed to produce
at most PRECISION bytes, from the left. */
# if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t
mbstate_t state;
memset (&state, '\0', sizeof (mbstate_t));
# endif
arg_end = arg;
characters = 0;
while (precision > 0)
{
char cbuf[64]; /* Assume MB_CUR_MAX <= 64. */
int count;
if (*arg_end == 0)
/* Found the terminating null wide character. */
break;
# if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t
count = wcrtomb (cbuf, *arg_end, &state);
# else
count = wctomb (cbuf, *arg_end);
# endif
if (count < 0)
{
/* Cannot convert. */
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = EILSEQ;
return NULL;
}
if (precision < count)
break;
arg_end++;
characters += count;
precision -= count;
}
}
# if DCHAR_IS_TCHAR
else if (has_width)
# else
else
# endif
{
/* Use the entire string, and count the number of
bytes. */
# if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t
mbstate_t state;
memset (&state, '\0', sizeof (mbstate_t));
# endif
arg_end = arg;
characters = 0;
for (;;)
{
char cbuf[64]; /* Assume MB_CUR_MAX <= 64. */
int count;
if (*arg_end == 0)
/* Found the terminating null wide character. */
break;
# if HAVE_WCRTOMB && !defined GNULIB_defined_mbstate_t
count = wcrtomb (cbuf, *arg_end, &state);
# else
count = wctomb (cbuf, *arg_end);
# endif
if (count < 0)
{
/* Cannot convert. */
if (!(result == resultbuf || result == NULL))
free (result);
if (buf_malloced != NULL)
free (buf_malloced);
CLEANUP ();
errno = EILSEQ;
return NULL;
}
arg_end++;
characters += count;
}
}
# if DCHAR_IS_TCHAR
else
{
/* Use the entire string. */