blob: 962996bf9ff130c360ab9c94872f2eb19cef35b8 [file] [log] [blame]
;==================================================================
; Copyright ARM Ltd 2005. All rights reserved.
;
; Cortex-A8 Dhrystone example - Startup Code
;==================================================================
PRESERVE8
AREA CORTEXA8, CODE, READONLY
ENTRY
; Standard definitions of mode bits and interrupt (I & F) flags in PSRs
Mode_USR EQU 0x10
Mode_FIQ EQU 0x11
Mode_IRQ EQU 0x12
Mode_SVC EQU 0x13
Mode_ABT EQU 0x17
Mode_UNDEF EQU 0x1B
Mode_SYS EQU 0x1F
I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled
F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled
;==================================================================
; Disable Cortex-A8 MMU if enabled
;==================================================================
EXPORT Start
Start
MRC p15, 0, r0, c1, c0, 0 ; Read CP15 Control Register into r0
TST r0, #0x1 ; Is the MMU enabled?
BICNE r0, r0, #0x1 ; Clear bit 0
MCRNE p15, 0, r0, c1, c0, 0 ; Write value back
;==================================================================
; Initialise Supervisor Mode Stack
; Note stack must be 8 byte aligned.
;==================================================================
IMPORT ||Image$$STACK$$ZI$$Limit|| ; Linker symbol from scatter file
LDR SP, =||Image$$STACK$$ZI$$Limit||
;==================================================================
; TLB maintenance, Invalidate Data and Instruction TLB's
;==================================================================
MOV r0,#0
MCR p15, 0, r0, c8, c7, 0 ; Cortex-A8 I-TLB and D-TLB invalidation
;==================================================================
; Cache Invalidation code for Cortex-A8
;==================================================================
; Invalidate L1 Instruction Cache
MRC p15, 1, r0, c0, c0, 1 ; Read CLIDR
TST r0, #0x3 ; Harvard Cache?
MOV r0, #0
MCRNE p15, 0, r0, c7, c5, 0 ; Invalidate Instruction Cache
; Invalidate Data/Unified Caches
MRC p15, 1, r0, c0, c0, 1 ; Read CLIDR
ANDS r3, r0, #&7000000
MOV r3, r3, LSR #23 ; Total cache levels << 1
BEQ Finished
MOV r10, #0 ; R10 holds current cache level << 1
Loop1 ADD r2, r10, r10, LSR #1 ; R2 holds cache "Set" position
MOV r1, r0, LSR r2 ; Bottom 3 bits are the Cache-type for this level
AND r1, R1, #7 ; Get those 3 bits alone
CMP r1, #2
BLT Skip ; No cache or only instruction cache at this level
MCR p15, 2, r10, c0, c0, 0 ; Write the Cache Size selection register
MOV r1, #0
MCR p15, 0, r1, c7, c5, 4 ; PrefetchFlush to sync the change to the CacheSizeID reg
MRC p15, 1, r1, c0, c0, 0 ; Reads current Cache Size ID register
AND r2, r1, #&7 ; Extract the line length field
ADD r2, r2, #4 ; Add 4 for the line length offset (log2 16 bytes)
LDR r4, =0x3FF
ANDS r4, r4, r1, LSR #3 ; R4 is the max number on the way size (right aligned)
CLZ r5, r4 ; R5 is the bit position of the way size increment
LDR r7, =0x00007FFF
ANDS r7, r7, r1, LSR #13 ; R7 is the max number of the index size (right aligned)
Loop2 MOV r9, r4 ; R9 working copy of the max way size (right aligned)
Loop3 ORR r11, r10, r9, LSL r5 ; Factor in the Way number and cache number into R11
ORR r11, r11, r7, LSL r2 ; Factor in the Set number
MCR p15, 0, r11, c7, c14, 2 ; Clean and Invalidate by set/way
SUBS r9, r9, #1 ; Decrement the Way number
BGE Loop3
SUBS r7, r7, #1 ; Decrement the Set number
BGE Loop2
Skip ADD r10, r10, #2 ; increment the cache number
CMP r3, r10
BGT Loop1
Finished
;===================================================================
; Cortex-A8 MMU Configuration
; Set translation table base
;===================================================================
IMPORT ||Image$$TTB$$ZI$$Base|| ; from scatter file.;
; Cortex-A8 supports two translation tables
; Configure translation table base (TTB) control register cp15,c2
; to a value of all zeros, indicates we are using TTB register 0.
MOV r0,#0x0
MCR p15, 0, r0, c2, c0, 2
; write the address of our page table base to TTB register 0.;
; We are setting to outer-noncachable [4:3] is zero
LDR r0,=||Image$$TTB$$ZI$$Base||
MCR p15, 0, r0, c2, c0, 0
;===================================================================
; Cortex-A8 PAGE TABLE generation, using standard Arch v6 tables
;
; AP[11:10] - Access Permissions = b11, Read/Write Access
; Domain[8:5] - Domain = b1111, Domain 15
; Type[1:0] - Descriptor Type = b10, 1Mb descriptors
;
; TEX C B
; 000 0 0 Strongly Ordered
; 001 1 1 Outer and inner write back, write allocate Normal
;===================================================================
LDR r1,=0xfff ; loop counter
LDR r2,=2_00000000000000000000110111100010
; r0 contains the address of the translation table base
; r1 is loop counter
; r2 is level1 descriptor (bits 19:0)
; use loop counter to create 4096 individual table entries
; this writes from address 0x7FFC down to 0x4000 in word steps (4bytes).
init_ttb_1
ORR r3, r2, r1, LSL#20 ; r3 now contains full level1 descriptor to write
STR r3, [r0, r1, LSL#2] ; str table entry at TTB base + loopcount*4
SUBS r1, r1, #1 ; decrement loop counter
BPL init_ttb_1
; In this example we will change the cacheable attribute in the first descriptor.
; Virtual memory from 0 to 1MB will be cacheable (write back mode).
; TEX[14:12]=001 and CB[3:2]= 11, Outer and inner write back, write allocate.
ORR r3,r3,#2_0000000001100 ; Set CB bits
ORR r3,r3,#2_1000000000000 ; Set TEX bits
STR r3,[r0]
ADD r2, r3, #0x100000 ; alter r3 to have correct base address for second descriptor (flat mapping)
STR r2, [r0, #4] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
ADD r2, r3, #0x200000 ; alter r3 to have correct base address for 3 descriptor (flat mapping)
STR r2, [r0, #8] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
ADD r2, r3, #0x300000 ; alter r3 to have correct base address for 4 descriptor (flat mapping)
STR r2, [r0, #0xc] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
ADD r2, r3, #0x400000 ; alter r3 to have correct base address for 5 descriptor (flat mapping)
STR r2, [r0, #0x10] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
ADD r2, r3, #0x500000 ; alter r3 to have correct base address for 6 descriptor (flat mapping)
STR r2, [r0, #0x14] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
ADD r2, r3, #0x600000 ; alter r3 to have correct base address for 7 descriptor (flat mapping)
STR r2, [r0, #0x18] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
ADD r2, r3, #0x700000 ; alter r3 to have correct base address for 8 descriptor (flat mapping)
STR r2, [r0, #0x1c] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
ADD r2, r3, #0x800000 ; alter r3 to have correct base address for 9 descriptor (flat mapping)
STR r2, [r0, #0x20] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
ADD r2, r3, #0x900000 ; alter r3 to have correct base address for 10 descriptor (flat mapping)
STR r2, [r0, #0x24] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
ADD r2, r3, #0xa00000 ; alter r3 to have correct base address for 11 descriptor (flat mapping)
STR r2, [r0, #0x28] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
ADD r2, r3, #0xb00000 ; alter r3 to have correct base address for 12 descriptor (flat mapping)
STR r2, [r0, #0x2c] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
ADD r2, r3, #0xc00000 ; alter r3 to have correct base address for 13 descriptor (flat mapping)
STR r2, [r0, #0x30] ; store the new descriptor at r0 + 4 (overwrite second section descriptor)
;===================================================================
; Setup domain control register - Enable all domains to client mode
;===================================================================
MRC p15, 0, r0, c3, c0, 0 ; Read Domain Access Control Register
LDR r0, =0x55555555 ; Initialize every domain entry to b01 (client)
MCR p15, 0, r0, c3, c0, 0 ; Write Domain Access Control Register
;===================================================================
; Setup L2 Cache - L2 Cache Auxiliary Control
;===================================================================
MOV r0, #0
;MCR p15, 1, r0, c9, c0, 2 ; Write L2 Auxilary Control Register
;==================================================================
; Enable access to NEON/VFP by enabling access to Coprocessors 10 and 11.
; Enables Full Access i.e. in both priv and non priv modes
;==================================================================
MRC p15, 0, r0, c1, c0, 2 ; read CP access register
ORR r0, r0, #(0x3 <<20) ; enable access CP 10
ORR r0, r0, #(0x3 <<22) ; enable access CP 11
MCR p15, 0, r0, c1, c0, 2 ; write CP access register back
;==================================================================
; Switch on the VFP and Neon Hardware
;=================================================================
MOV r0, #0 ; Set up a register
ORR r0, r0, #(0x1 << 30)
FMXR FPEXC, r0 ; Write FPEXC register, EN bit set.
;===================================================================
; Enable MMU and Branch to __main
;===================================================================
IMPORT __main ; before MMU enabled import label to __main
LDR r12,=__main ; save this in register for possible long jump
MRC p15, 0, r0, c1, c0, 0 ; read CP15 register 1 into r0
ORR r0, r0, #0x1 ; enable MMU before scatter loading
MCR p15, 0, r0, c1, c0, 0 ; write CP15 register 1
; Now the MMU is enabled, virtual to physical address translations will occur.
; This will affect the next instruction fetches.
;
; The two instructions currently in the ARM pipeline will have been fetched
; before the MMU was enabled. This property is useful because the next two
; instructions are safe even if new instruction fetches fail. If this routine
; was mapped out of the new virtual memory map, the branch to __main would
; still succeed.
BX r12 ; branch to __main C library entry point
END ; mark the end of this file