blob: 99c9a87a15da9ecbfb44a773833d96d03bda6381 [file] [log] [blame]
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_fir_lattice_q31.c
*
* Description: Q31 FIR lattice filter processing function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup FIR_Lattice
* @{
*/
/**
* @brief Processing function for the Q31 FIR lattice filter.
* @param[in] *S points to an instance of the Q31 FIR lattice structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of samples to process.
* @return none.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
* In order to avoid overflows the input signal must be scaled down by 2*log2(numStages) bits.
*/
void arm_fir_lattice_q31(
const arm_fir_lattice_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t *pState; /* State pointer */
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *px; /* temporary state pointer */
q31_t *pk; /* temporary coefficient pointer */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t fcurr1, fnext1, gcurr1 = 0, gnext1; /* temporary variables for first sample in loop unrolling */
q63_t fcurr2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */
q63_t fcurr3, fnext3, gnext3; /* temporary variables for third sample in loop unrolling */
q63_t fcurr4, fnext4, gnext4; /* temporary variables for fourth sample in loop unrolling */
uint32_t numStages = S->numStages; /* Length of the filter */
uint32_t blkCnt, stageCnt; /* temporary variables for counts */
pState = &S->pState[0];
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Read two samples from input buffer */
/* f0(n) = x(n) */
fcurr1 = *pSrc++;
/* f0(n) = x(n) */
fcurr2 = *pSrc++;
/* Initialize coeff pointer */
pk = (pCoeffs);
/* Initialize state pointer */
px = pState;
/* Read g0(n-1) from state */
gcurr1 = *px;
/* Process first sample for first tap */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext1 = (q31_t) (((q63_t) gcurr1 * (*pk)) >> 31) + fcurr1;
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext1 = (q31_t) (((q63_t) fcurr1 * (*pk)) >> 31) + gcurr1;
/* Process second sample for first tap */
/* for sample 2 processing */
fnext2 = (q31_t) (((q63_t) fcurr1 * (*pk)) >> 31) + fcurr2;
gnext2 = (q31_t) (((q63_t) fcurr2 * (*pk)) >> 31) + fcurr1;
/* Read next two samples from input buffer */
/* f0(n+2) = x(n+2) */
fcurr3 = *pSrc++;
fcurr4 = *pSrc++;
/* Copy only last input samples into the state buffer
which will be used for next four samples processing */
*px++ = (q31_t) fcurr4;
/* Process third sample for first tap */
fnext3 = (q31_t) (((q63_t) fcurr2 * (*pk)) >> 31) + fcurr3;
gnext3 = (q31_t) (((q63_t) fcurr3 * (*pk)) >> 31) + fcurr2;
/* Process fourth sample for first tap */
fnext4 = (q31_t) (((q63_t) fcurr3 * (*pk)) >> 31) + fcurr4;
gnext4 = (q31_t) (((q63_t) fcurr4 * (*pk++)) >> 31) + fcurr3;
/* save g1(n) in state buffer for next sample processing */
/* *px++ = gnext4; */
/* Update of f values for next coefficient set processing */
fcurr1 = fnext1;
fcurr2 = fnext2;
fcurr3 = fnext3;
fcurr4 = fnext4;
/* Loop unrolling. Process 4 taps at a time . */
stageCnt = (numStages - 1u) >> 2u;
/* Loop over the number of taps. Unroll by a factor of 4.
** Repeat until we've computed numStages-3 coefficients. */
/* Process 2nd, 3rd, 4th and 5th taps ... here */
while(stageCnt > 0u)
{
/* Read g1(n-1), g3(n-1) .... from state */
gcurr1 = *px;
/* save g1(n) in state buffer */
*px++ = (q31_t) gnext4;
/* Process first sample for 2nd, 6th .. tap */
/* Sample processing for K2, K6.... */
/* f2(n) = f1(n) + K2 * g1(n-1) */
fnext1 = (q31_t) (((q63_t) gcurr1 * (*pk)) >> 31) + fcurr1;
/* Process second sample for 2nd, 6th .. tap */
/* for sample 2 processing */
fnext2 = (q31_t) (((q63_t) gnext1 * (*pk)) >> 31) + fcurr2;
/* Process third sample for 2nd, 6th .. tap */
fnext3 = (q31_t) (((q63_t) gnext2 * (*pk)) >> 31) + fcurr3;
/* Process fourth sample for 2nd, 6th .. tap */
fnext4 = (q31_t) (((q63_t) gnext3 * (*pk)) >> 31) + fcurr4;
/* g2(n) = f1(n) * K2 + g1(n-1) */
/* Calculation of state values for next stage */
gnext4 = (q31_t) (((q63_t) fcurr4 * (*pk)) >> 31) + gnext3;
gnext3 = (q31_t) (((q63_t) fcurr3 * (*pk)) >> 31) + gnext2;
gnext2 = (q31_t) (((q63_t) fcurr2 * (*pk)) >> 31) + gnext1;
gnext1 = (q31_t) (((q63_t) fcurr1 * (*pk++)) >> 31) + gcurr1;
/* Read g2(n-1), g4(n-1) .... from state */
gcurr1 = *px;
/* save g2(n) in state buffer */
*px++ = (q31_t) gnext4;
/* Sample processing for K3, K7.... */
/* Process first sample for 3rd, 7th .. tap */
/* f3(n) = f2(n) + K3 * g2(n-1) */
fcurr1 = (q31_t) (((q63_t) gcurr1 * (*pk)) >> 31) + fnext1;
/* Process second sample for 3rd, 7th .. tap */
fcurr2 = (q31_t) (((q63_t) gnext1 * (*pk)) >> 31) + fnext2;
/* Process third sample for 3rd, 7th .. tap */
fcurr3 = (q31_t) (((q63_t) gnext2 * (*pk)) >> 31) + fnext3;
/* Process fourth sample for 3rd, 7th .. tap */
fcurr4 = (q31_t) (((q63_t) gnext3 * (*pk)) >> 31) + fnext4;
/* Calculation of state values for next stage */
/* gnext4 = fnext4 * (*pk) + gnext3; */
gnext4 = (q31_t) (((q63_t) fnext4 * (*pk)) >> 31) + gnext3;
gnext3 = (q31_t) (((q63_t) fnext3 * (*pk)) >> 31) + gnext2;
/* gnext2 = fnext2 * (*pk) + gnext1; */
gnext2 = (q31_t) (((q63_t) fnext2 * (*pk)) >> 31) + gnext1;
/* g1(n) = f0(n) * K1 + g0(n-1) */
/* gnext1 = fnext1 * (*pk++) + gcurr1; */
gnext1 = (q31_t) (((q63_t) fnext1 * (*pk++)) >> 31) + gcurr1;
/* Read g1(n-1), g3(n-1) .... from state */
gcurr1 = *px;
/* save g1(n) in state buffer */
*px++ = (q31_t) gnext4;
/* Sample processing for K4, K8.... */
/* Process first sample for 4th, 8th .. tap */
/* f4(n) = f3(n) + K4 * g3(n-1) */
fnext1 = (q31_t) (((q63_t) gcurr1 * (*pk)) >> 31) + fcurr1;
/* Process second sample for 4th, 8th .. tap */
/* for sample 2 processing */
fnext2 = (q31_t) (((q63_t) gnext1 * (*pk)) >> 31) + fcurr2;
/* Process third sample for 4th, 8th .. tap */
fnext3 = (q31_t) (((q63_t) gnext2 * (*pk)) >> 31) + fcurr3;
/* Process fourth sample for 4th, 8th .. tap */
fnext4 = (q31_t) (((q63_t) gnext3 * (*pk)) >> 31) + fcurr4;
/* g4(n) = f3(n) * K4 + g3(n-1) */
/* Calculation of state values for next stage */
gnext4 = (q31_t) (((q63_t) fcurr4 * (*pk)) >> 31) + gnext3;
gnext3 = (q31_t) (((q63_t) fcurr3 * (*pk)) >> 31) + gnext2;
gnext2 = (q31_t) (((q63_t) fcurr2 * (*pk)) >> 31) + gnext1;
gnext1 = (q31_t) (((q63_t) fcurr1 * (*pk++)) >> 31) + gcurr1;
/* Read g2(n-1), g4(n-1) .... from state */
gcurr1 = *px;
/* save g4(n) in state buffer */
*px++ = (q31_t) gnext4;
/* Sample processing for K5, K9.... */
/* Process first sample for 5th, 9th .. tap */
/* f5(n) = f4(n) + K5 * g4(n-1) */
fcurr1 = (q31_t) (((q63_t) gcurr1 * (*pk)) >> 31) + fnext1;
/* Process second sample for 5th, 9th .. tap */
fcurr2 = (q31_t) (((q63_t) gnext1 * (*pk)) >> 31) + fnext2;
/* Process third sample for 5th, 9th .. tap */
fcurr3 = (q31_t) (((q63_t) gnext2 * (*pk)) >> 31) + fnext3;
/* Process fourth sample for 5th, 9th .. tap */
fcurr4 = (q31_t) (((q63_t) gnext3 * (*pk)) >> 31) + fnext4;
/* Calculation of state values for next stage */
/* g5(n) = f4(n) * K5 + g4(n-1) */
gnext4 = (q31_t) (((q63_t) fnext4 * (*pk)) >> 31) + gnext3;
gnext3 = (q31_t) (((q63_t) fnext3 * (*pk)) >> 31) + gnext2;
gnext2 = (q31_t) (((q63_t) fnext2 * (*pk)) >> 31) + gnext1;
gnext1 = (q31_t) (((q63_t) fnext1 * (*pk++)) >> 31) + gcurr1;
stageCnt--;
}
/* If the (filter length -1) is not a multiple of 4, compute the remaining filter taps */
stageCnt = (numStages - 1u) % 0x4u;
while(stageCnt > 0u)
{
gcurr1 = *px;
/* save g value in state buffer */
*px++ = (q31_t) gnext4;
/* Process four samples for last three taps here */
fnext1 = (q31_t) (((q63_t) gcurr1 * (*pk)) >> 31) + fcurr1;
fnext2 = (q31_t) (((q63_t) gnext1 * (*pk)) >> 31) + fcurr2;
fnext3 = (q31_t) (((q63_t) gnext2 * (*pk)) >> 31) + fcurr3;
fnext4 = (q31_t) (((q63_t) gnext3 * (*pk)) >> 31) + fcurr4;
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext4 = (q31_t) (((q63_t) fcurr4 * (*pk)) >> 31) + gnext3;
gnext3 = (q31_t) (((q63_t) fcurr3 * (*pk)) >> 31) + gnext2;
gnext2 = (q31_t) (((q63_t) fcurr2 * (*pk)) >> 31) + gnext1;
gnext1 = (q31_t) (((q63_t) fcurr1 * (*pk++)) >> 31) + gcurr1;
/* Update of f values for next coefficient set processing */
fcurr1 = fnext1;
fcurr2 = fnext2;
fcurr3 = fnext3;
fcurr4 = fnext4;
stageCnt--;
}
/* The results in the 4 accumulators, store in the destination buffer. */
/* y(n) = fN(n) */
*pDst++ = fcurr1;
*pDst++ = (q31_t) fcurr2;
*pDst++ = (q31_t) fcurr3;
*pDst++ = (q31_t) fcurr4;
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* f0(n) = x(n) */
fcurr1 = *pSrc++;
/* Initialize coeff pointer */
pk = (pCoeffs);
/* Initialize state pointer */
px = pState;
/* read g2(n) from state buffer */
gcurr1 = *px;
/* for sample 1 processing */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext1 = (q31_t) (((q63_t) gcurr1 * (*pk)) >> 31) + fcurr1;
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext1 = (q31_t) (((q63_t) fcurr1 * (*pk++)) >> 31) + gcurr1;
/* save g1(n) in state buffer */
*px++ = fcurr1;
/* f1(n) is saved in fcurr1
for next stage processing */
fcurr1 = fnext1;
stageCnt = (numStages - 1u);
/* stage loop */
while(stageCnt > 0u)
{
/* read g2(n) from state buffer */
gcurr1 = *px;
/* save g1(n) in state buffer */
*px++ = gnext1;
/* Sample processing for K2, K3.... */
/* f2(n) = f1(n) + K2 * g1(n-1) */
fnext1 = (q31_t) (((q63_t) gcurr1 * (*pk)) >> 31) + fcurr1;
/* g2(n) = f1(n) * K2 + g1(n-1) */
gnext1 = (q31_t) (((q63_t) fcurr1 * (*pk++)) >> 31) + gcurr1;
/* f1(n) is saved in fcurr1
for next stage processing */
fcurr1 = fnext1;
stageCnt--;
}
/* y(n) = fN(n) */
*pDst++ = fcurr1;
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q31_t fcurr, fnext, gcurr, gnext; /* temporary variables */
uint32_t numStages = S->numStages; /* Length of the filter */
uint32_t blkCnt, stageCnt; /* temporary variables for counts */
pState = &S->pState[0];
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* f0(n) = x(n) */
fcurr = *pSrc++;
/* Initialize coeff pointer */
pk = (pCoeffs);
/* Initialize state pointer */
px = pState;
/* read g0(n-1) from state buffer */
gcurr = *px;
/* for sample 1 processing */
/* f1(n) = f0(n) + K1 * g0(n-1) */
fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr;
/* g1(n) = f0(n) * K1 + g0(n-1) */
gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr;
/* save g1(n) in state buffer */
*px++ = fcurr;
/* f1(n) is saved in fcurr1
for next stage processing */
fcurr = fnext;
stageCnt = (numStages - 1u);
/* stage loop */
while(stageCnt > 0u)
{
/* read g2(n) from state buffer */
gcurr = *px;
/* save g1(n) in state buffer */
*px++ = gnext;
/* Sample processing for K2, K3.... */
/* f2(n) = f1(n) + K2 * g1(n-1) */
fnext = (q31_t) (((q63_t) gcurr * (*pk)) >> 31) + fcurr;
/* g2(n) = f1(n) * K2 + g1(n-1) */
gnext = (q31_t) (((q63_t) fcurr * (*pk++)) >> 31) + gcurr;
/* f1(n) is saved in fcurr1
for next stage processing */
fcurr = fnext;
stageCnt--;
}
/* y(n) = fN(n) */
*pDst++ = fcurr;
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of FIR_Lattice group
*/