blob: 7356a8a2cf8e578721ab6c243223a9ffb4102f66 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.linear;
import java.util.Arrays;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;
/**
* Calculates the QR-decomposition of a matrix.
* <p>The QR-decomposition of a matrix A consists of two matrices Q and R
* that satisfy: A = QR, Q is orthogonal (Q<sup>T</sup>Q = I), and R is
* upper triangular. If A is m&times;n, Q is m&times;m and R m&times;n.</p>
* <p>This class compute the decomposition using Householder reflectors.</p>
* <p>For efficiency purposes, the decomposition in packed form is transposed.
* This allows inner loop to iterate inside rows, which is much more cache-efficient
* in Java.</p>
*
* @see <a href="http://mathworld.wolfram.com/QRDecomposition.html">MathWorld</a>
* @see <a href="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</a>
*
* @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
* @since 1.2
*/
public class QRDecompositionImpl implements QRDecomposition {
/**
* A packed TRANSPOSED representation of the QR decomposition.
* <p>The elements BELOW the diagonal are the elements of the UPPER triangular
* matrix R, and the rows ABOVE the diagonal are the Householder reflector vectors
* from which an explicit form of Q can be recomputed if desired.</p>
*/
private double[][] qrt;
/** The diagonal elements of R. */
private double[] rDiag;
/** Cached value of Q. */
private RealMatrix cachedQ;
/** Cached value of QT. */
private RealMatrix cachedQT;
/** Cached value of R. */
private RealMatrix cachedR;
/** Cached value of H. */
private RealMatrix cachedH;
/**
* Calculates the QR-decomposition of the given matrix.
* @param matrix The matrix to decompose.
*/
public QRDecompositionImpl(RealMatrix matrix) {
final int m = matrix.getRowDimension();
final int n = matrix.getColumnDimension();
qrt = matrix.transpose().getData();
rDiag = new double[FastMath.min(m, n)];
cachedQ = null;
cachedQT = null;
cachedR = null;
cachedH = null;
/*
* The QR decomposition of a matrix A is calculated using Householder
* reflectors by repeating the following operations to each minor
* A(minor,minor) of A:
*/
for (int minor = 0; minor < FastMath.min(m, n); minor++) {
final double[] qrtMinor = qrt[minor];
/*
* Let x be the first column of the minor, and a^2 = |x|^2.
* x will be in the positions qr[minor][minor] through qr[m][minor].
* The first column of the transformed minor will be (a,0,0,..)'
* The sign of a is chosen to be opposite to the sign of the first
* component of x. Let's find a:
*/
double xNormSqr = 0;
for (int row = minor; row < m; row++) {
final double c = qrtMinor[row];
xNormSqr += c * c;
}
final double a = (qrtMinor[minor] > 0) ? -FastMath.sqrt(xNormSqr) : FastMath.sqrt(xNormSqr);
rDiag[minor] = a;
if (a != 0.0) {
/*
* Calculate the normalized reflection vector v and transform
* the first column. We know the norm of v beforehand: v = x-ae
* so |v|^2 = <x-ae,x-ae> = <x,x>-2a<x,e>+a^2<e,e> =
* a^2+a^2-2a<x,e> = 2a*(a - <x,e>).
* Here <x, e> is now qr[minor][minor].
* v = x-ae is stored in the column at qr:
*/
qrtMinor[minor] -= a; // now |v|^2 = -2a*(qr[minor][minor])
/*
* Transform the rest of the columns of the minor:
* They will be transformed by the matrix H = I-2vv'/|v|^2.
* If x is a column vector of the minor, then
* Hx = (I-2vv'/|v|^2)x = x-2vv'x/|v|^2 = x - 2<x,v>/|v|^2 v.
* Therefore the transformation is easily calculated by
* subtracting the column vector (2<x,v>/|v|^2)v from x.
*
* Let 2<x,v>/|v|^2 = alpha. From above we have
* |v|^2 = -2a*(qr[minor][minor]), so
* alpha = -<x,v>/(a*qr[minor][minor])
*/
for (int col = minor+1; col < n; col++) {
final double[] qrtCol = qrt[col];
double alpha = 0;
for (int row = minor; row < m; row++) {
alpha -= qrtCol[row] * qrtMinor[row];
}
alpha /= a * qrtMinor[minor];
// Subtract the column vector alpha*v from x.
for (int row = minor; row < m; row++) {
qrtCol[row] -= alpha * qrtMinor[row];
}
}
}
}
}
/** {@inheritDoc} */
public RealMatrix getR() {
if (cachedR == null) {
// R is supposed to be m x n
final int n = qrt.length;
final int m = qrt[0].length;
cachedR = MatrixUtils.createRealMatrix(m, n);
// copy the diagonal from rDiag and the upper triangle of qr
for (int row = FastMath.min(m, n) - 1; row >= 0; row--) {
cachedR.setEntry(row, row, rDiag[row]);
for (int col = row + 1; col < n; col++) {
cachedR.setEntry(row, col, qrt[col][row]);
}
}
}
// return the cached matrix
return cachedR;
}
/** {@inheritDoc} */
public RealMatrix getQ() {
if (cachedQ == null) {
cachedQ = getQT().transpose();
}
return cachedQ;
}
/** {@inheritDoc} */
public RealMatrix getQT() {
if (cachedQT == null) {
// QT is supposed to be m x m
final int n = qrt.length;
final int m = qrt[0].length;
cachedQT = MatrixUtils.createRealMatrix(m, m);
/*
* Q = Q1 Q2 ... Q_m, so Q is formed by first constructing Q_m and then
* applying the Householder transformations Q_(m-1),Q_(m-2),...,Q1 in
* succession to the result
*/
for (int minor = m - 1; minor >= FastMath.min(m, n); minor--) {
cachedQT.setEntry(minor, minor, 1.0);
}
for (int minor = FastMath.min(m, n)-1; minor >= 0; minor--){
final double[] qrtMinor = qrt[minor];
cachedQT.setEntry(minor, minor, 1.0);
if (qrtMinor[minor] != 0.0) {
for (int col = minor; col < m; col++) {
double alpha = 0;
for (int row = minor; row < m; row++) {
alpha -= cachedQT.getEntry(col, row) * qrtMinor[row];
}
alpha /= rDiag[minor] * qrtMinor[minor];
for (int row = minor; row < m; row++) {
cachedQT.addToEntry(col, row, -alpha * qrtMinor[row]);
}
}
}
}
}
// return the cached matrix
return cachedQT;
}
/** {@inheritDoc} */
public RealMatrix getH() {
if (cachedH == null) {
final int n = qrt.length;
final int m = qrt[0].length;
cachedH = MatrixUtils.createRealMatrix(m, n);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < FastMath.min(i + 1, n); ++j) {
cachedH.setEntry(i, j, qrt[j][i] / -rDiag[j]);
}
}
}
// return the cached matrix
return cachedH;
}
/** {@inheritDoc} */
public DecompositionSolver getSolver() {
return new Solver(qrt, rDiag);
}
/** Specialized solver. */
private static class Solver implements DecompositionSolver {
/**
* A packed TRANSPOSED representation of the QR decomposition.
* <p>The elements BELOW the diagonal are the elements of the UPPER triangular
* matrix R, and the rows ABOVE the diagonal are the Householder reflector vectors
* from which an explicit form of Q can be recomputed if desired.</p>
*/
private final double[][] qrt;
/** The diagonal elements of R. */
private final double[] rDiag;
/**
* Build a solver from decomposed matrix.
* @param qrt packed TRANSPOSED representation of the QR decomposition
* @param rDiag diagonal elements of R
*/
private Solver(final double[][] qrt, final double[] rDiag) {
this.qrt = qrt;
this.rDiag = rDiag;
}
/** {@inheritDoc} */
public boolean isNonSingular() {
for (double diag : rDiag) {
if (diag == 0) {
return false;
}
}
return true;
}
/** {@inheritDoc} */
public double[] solve(double[] b)
throws IllegalArgumentException, InvalidMatrixException {
final int n = qrt.length;
final int m = qrt[0].length;
if (b.length != m) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.VECTOR_LENGTH_MISMATCH,
b.length, m);
}
if (!isNonSingular()) {
throw new SingularMatrixException();
}
final double[] x = new double[n];
final double[] y = b.clone();
// apply Householder transforms to solve Q.y = b
for (int minor = 0; minor < FastMath.min(m, n); minor++) {
final double[] qrtMinor = qrt[minor];
double dotProduct = 0;
for (int row = minor; row < m; row++) {
dotProduct += y[row] * qrtMinor[row];
}
dotProduct /= rDiag[minor] * qrtMinor[minor];
for (int row = minor; row < m; row++) {
y[row] += dotProduct * qrtMinor[row];
}
}
// solve triangular system R.x = y
for (int row = rDiag.length - 1; row >= 0; --row) {
y[row] /= rDiag[row];
final double yRow = y[row];
final double[] qrtRow = qrt[row];
x[row] = yRow;
for (int i = 0; i < row; i++) {
y[i] -= yRow * qrtRow[i];
}
}
return x;
}
/** {@inheritDoc} */
public RealVector solve(RealVector b)
throws IllegalArgumentException, InvalidMatrixException {
try {
return solve((ArrayRealVector) b);
} catch (ClassCastException cce) {
return new ArrayRealVector(solve(b.getData()), false);
}
}
/** Solve the linear equation A &times; X = B.
* <p>The A matrix is implicit here. It is </p>
* @param b right-hand side of the equation A &times; X = B
* @return a vector X that minimizes the two norm of A &times; X - B
* @throws IllegalArgumentException if matrices dimensions don't match
* @throws InvalidMatrixException if decomposed matrix is singular
*/
public ArrayRealVector solve(ArrayRealVector b)
throws IllegalArgumentException, InvalidMatrixException {
return new ArrayRealVector(solve(b.getDataRef()), false);
}
/** {@inheritDoc} */
public RealMatrix solve(RealMatrix b)
throws IllegalArgumentException, InvalidMatrixException {
final int n = qrt.length;
final int m = qrt[0].length;
if (b.getRowDimension() != m) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.DIMENSIONS_MISMATCH_2x2,
b.getRowDimension(), b.getColumnDimension(), m, "n");
}
if (!isNonSingular()) {
throw new SingularMatrixException();
}
final int columns = b.getColumnDimension();
final int blockSize = BlockRealMatrix.BLOCK_SIZE;
final int cBlocks = (columns + blockSize - 1) / blockSize;
final double[][] xBlocks = BlockRealMatrix.createBlocksLayout(n, columns);
final double[][] y = new double[b.getRowDimension()][blockSize];
final double[] alpha = new double[blockSize];
for (int kBlock = 0; kBlock < cBlocks; ++kBlock) {
final int kStart = kBlock * blockSize;
final int kEnd = FastMath.min(kStart + blockSize, columns);
final int kWidth = kEnd - kStart;
// get the right hand side vector
b.copySubMatrix(0, m - 1, kStart, kEnd - 1, y);
// apply Householder transforms to solve Q.y = b
for (int minor = 0; minor < FastMath.min(m, n); minor++) {
final double[] qrtMinor = qrt[minor];
final double factor = 1.0 / (rDiag[minor] * qrtMinor[minor]);
Arrays.fill(alpha, 0, kWidth, 0.0);
for (int row = minor; row < m; ++row) {
final double d = qrtMinor[row];
final double[] yRow = y[row];
for (int k = 0; k < kWidth; ++k) {
alpha[k] += d * yRow[k];
}
}
for (int k = 0; k < kWidth; ++k) {
alpha[k] *= factor;
}
for (int row = minor; row < m; ++row) {
final double d = qrtMinor[row];
final double[] yRow = y[row];
for (int k = 0; k < kWidth; ++k) {
yRow[k] += alpha[k] * d;
}
}
}
// solve triangular system R.x = y
for (int j = rDiag.length - 1; j >= 0; --j) {
final int jBlock = j / blockSize;
final int jStart = jBlock * blockSize;
final double factor = 1.0 / rDiag[j];
final double[] yJ = y[j];
final double[] xBlock = xBlocks[jBlock * cBlocks + kBlock];
int index = (j - jStart) * kWidth;
for (int k = 0; k < kWidth; ++k) {
yJ[k] *= factor;
xBlock[index++] = yJ[k];
}
final double[] qrtJ = qrt[j];
for (int i = 0; i < j; ++i) {
final double rIJ = qrtJ[i];
final double[] yI = y[i];
for (int k = 0; k < kWidth; ++k) {
yI[k] -= yJ[k] * rIJ;
}
}
}
}
return new BlockRealMatrix(n, columns, xBlocks, false);
}
/** {@inheritDoc} */
public RealMatrix getInverse()
throws InvalidMatrixException {
return solve(MatrixUtils.createRealIdentityMatrix(rDiag.length));
}
}
}