blob: 8e4982415d007d37c046ef8a0a6046f3fbe3fe3a [file] [log] [blame]
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* clatd_test.cpp - unit tests for clatd
*/
#include <iostream>
#include <arpa/inet.h>
#include <netinet/in6.h>
#include <stdio.h>
#include <sys/uio.h>
#include <gtest/gtest.h>
#include "netutils/ifc.h"
#include "tun_interface.h"
extern "C" {
#include "clatd.h"
#include "config.h"
#include "getaddr.h"
#include "netutils/checksum.h"
#include "translate.h"
#include "tun.h"
}
// For convenience.
#define ARRAYSIZE(x) sizeof((x)) / sizeof((x)[0])
using android::net::TunInterface;
// Default translation parameters.
static const char kIPv4LocalAddr[] = "192.0.0.4";
static const char kIPv6LocalAddr[] = "2001:db8:0:b11::464";
static const char kIPv6PlatSubnet[] = "64:ff9b::";
// clang-format off
// Test packet portions. Defined as macros because it's easy to concatenate them to make packets.
#define IPV4_HEADER(p, c1, c2) \
0x45, 0x00, 0, 41, /* Version=4, IHL=5, ToS=0x80, len=41 */ \
0x00, 0x00, 0x40, 0x00, /* ID=0x0000, flags=IP_DF, offset=0 */ \
55, (p), (c1), (c2), /* TTL=55, protocol=p, checksum=c1,c2 */ \
192, 0, 0, 4, /* Src=192.0.0.4 */ \
8, 8, 8, 8, /* Dst=8.8.8.8 */
#define IPV4_UDP_HEADER IPV4_HEADER(IPPROTO_UDP, 0x73, 0xb0)
#define IPV4_ICMP_HEADER IPV4_HEADER(IPPROTO_ICMP, 0x73, 0xc0)
#define IPV6_HEADER(p) \
0x60, 0x00, 0, 0, /* Version=6, tclass=0x00, flowlabel=0 */ \
0, 21, (p), 55, /* plen=11, nxthdr=p, hlim=55 */ \
0x20, 0x01, 0x0d, 0xb8, /* Src=2001:db8:0:b11::464 */ \
0x00, 0x00, 0x0b, 0x11, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x04, 0x64, \
0x00, 0x64, 0xff, 0x9b, /* Dst=64:ff9b::8.8.8.8 */ \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, \
0x08, 0x08, 0x08, 0x08,
#define IPV6_UDP_HEADER IPV6_HEADER(IPPROTO_UDP)
#define IPV6_ICMPV6_HEADER IPV6_HEADER(IPPROTO_ICMPV6)
#define UDP_LEN 21
#define UDP_HEADER \
0xc8, 0x8b, 0, 53, /* Port 51339->53 */ \
0x00, UDP_LEN, 0, 0, /* Length 21, checksum empty for now */
#define PAYLOAD 'H', 'e', 'l', 'l', 'o', ' ', 0x4e, 0xb8, 0x96, 0xe7, 0x95, 0x8c, 0x00
#define IPV4_PING \
0x08, 0x00, 0x88, 0xd0, /* Type 8, code 0, checksum 0x88d0 */ \
0xd0, 0x0d, 0x00, 0x03, /* ID=0xd00d, seq=3 */
#define IPV6_PING \
0x80, 0x00, 0xc3, 0x42, /* Type 128, code 0, checksum 0xc342 */ \
0xd0, 0x0d, 0x00, 0x03, /* ID=0xd00d, seq=3 */
// Macros to return pseudo-headers from packets.
#define IPV4_PSEUDOHEADER(ip, tlen) \
ip[12], ip[13], ip[14], ip[15], /* Source address */ \
ip[16], ip[17], ip[18], ip[19], /* Destination address */ \
0, ip[9], /* 0, protocol */ \
((tlen) >> 16) & 0xff, (tlen) & 0xff, /* Transport length */
#define IPV6_PSEUDOHEADER(ip6, protocol, tlen) \
ip6[8], ip6[9], ip6[10], ip6[11], /* Source address */ \
ip6[12], ip6[13], ip6[14], ip6[15], \
ip6[16], ip6[17], ip6[18], ip6[19], \
ip6[20], ip6[21], ip6[22], ip6[23], \
ip6[24], ip6[25], ip6[26], ip6[27], /* Destination address */ \
ip6[28], ip6[29], ip6[30], ip6[31], \
ip6[32], ip6[33], ip6[34], ip6[35], \
ip6[36], ip6[37], ip6[38], ip6[39], \
((tlen) >> 24) & 0xff, /* Transport length */ \
((tlen) >> 16) & 0xff, \
((tlen) >> 8) & 0xff, \
(tlen) & 0xff, \
0, 0, 0, (protocol),
// A fragmented DNS request.
static const uint8_t kIPv4Frag1[] = {
0x45, 0x00, 0x00, 0x24, 0xfe, 0x47, 0x20, 0x00, 0x40, 0x11,
0x8c, 0x6d, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
0x14, 0x5d, 0x00, 0x35, 0x00, 0x29, 0x68, 0xbb, 0x50, 0x47,
0x01, 0x00, 0x00, 0x01, 0x00, 0x00
};
static const uint8_t kIPv4Frag2[] = {
0x45, 0x00, 0x00, 0x24, 0xfe, 0x47, 0x20, 0x02, 0x40, 0x11,
0x8c, 0x6b, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
0x00, 0x00, 0x00, 0x00, 0x04, 0x69, 0x70, 0x76, 0x34, 0x06,
0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65
};
static const uint8_t kIPv4Frag3[] = {
0x45, 0x00, 0x00, 0x1d, 0xfe, 0x47, 0x00, 0x04, 0x40, 0x11,
0xac, 0x70, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
0x03, 0x63, 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00, 0x01
};
static const uint8_t *kIPv4Fragments[] = { kIPv4Frag1, kIPv4Frag2, kIPv4Frag3 };
static const size_t kIPv4FragLengths[] = { sizeof(kIPv4Frag1), sizeof(kIPv4Frag2),
sizeof(kIPv4Frag3) };
static const uint8_t kIPv6Frag1[] = {
0x60, 0x00, 0x00, 0x00, 0x00, 0x18, 0x2c, 0x40, 0x20, 0x01,
0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08,
0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0xfe, 0x47, 0x14, 0x5d,
0x00, 0x35, 0x00, 0x29, 0xeb, 0x91, 0x50, 0x47, 0x01, 0x00,
0x00, 0x01, 0x00, 0x00
};
static const uint8_t kIPv6Frag2[] = {
0x60, 0x00, 0x00, 0x00, 0x00, 0x18, 0x2c, 0x40, 0x20, 0x01,
0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08,
0x11, 0x00, 0x00, 0x11, 0x00, 0x00, 0xfe, 0x47, 0x00, 0x00,
0x00, 0x00, 0x04, 0x69, 0x70, 0x76, 0x34, 0x06, 0x67, 0x6f,
0x6f, 0x67, 0x6c, 0x65
};
static const uint8_t kIPv6Frag3[] = {
0x60, 0x00, 0x00, 0x00, 0x00, 0x11, 0x2c, 0x40, 0x20, 0x01,
0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08,
0x11, 0x00, 0x00, 0x20, 0x00, 0x00, 0xfe, 0x47, 0x03, 0x63,
0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00, 0x01
};
static const uint8_t *kIPv6Fragments[] = { kIPv6Frag1, kIPv6Frag2, kIPv6Frag3 };
static const size_t kIPv6FragLengths[] = { sizeof(kIPv6Frag1), sizeof(kIPv6Frag2),
sizeof(kIPv6Frag3) };
static const uint8_t kReassembledIPv4[] = {
0x45, 0x00, 0x00, 0x3d, 0xfe, 0x47, 0x00, 0x00, 0x40, 0x11,
0xac, 0x54, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
0x14, 0x5d, 0x00, 0x35, 0x00, 0x29, 0x68, 0xbb, 0x50, 0x47,
0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x04, 0x69, 0x70, 0x76, 0x34, 0x06, 0x67, 0x6f, 0x6f, 0x67,
0x6c, 0x65, 0x03, 0x63, 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00,
0x01
};
// clang-format on
// Expected checksums.
static const uint32_t kUdpPartialChecksum = 0xd5c8;
static const uint32_t kPayloadPartialChecksum = 0x31e9c;
static const uint16_t kUdpV4Checksum = 0xd0c7;
static const uint16_t kUdpV6Checksum = 0xa74a;
uint8_t ip_version(const uint8_t *packet) {
uint8_t version = packet[0] >> 4;
return version;
}
int is_ipv4_fragment(struct iphdr *ip) {
// A packet is a fragment if its fragment offset is nonzero or if the MF flag is set.
return ntohs(ip->frag_off) & (IP_OFFMASK | IP_MF);
}
int is_ipv6_fragment(struct ip6_hdr *ip6, size_t len) {
if (ip6->ip6_nxt != IPPROTO_FRAGMENT) {
return 0;
}
struct ip6_frag *frag = (struct ip6_frag *)(ip6 + 1);
return len >= sizeof(*ip6) + sizeof(*frag) &&
(frag->ip6f_offlg & (IP6F_OFF_MASK | IP6F_MORE_FRAG));
}
int ipv4_fragment_offset(struct iphdr *ip) {
return ntohs(ip->frag_off) & IP_OFFMASK;
}
int ipv6_fragment_offset(struct ip6_frag *frag) {
return ntohs((frag->ip6f_offlg & IP6F_OFF_MASK) >> 3);
}
void check_packet(const uint8_t *packet, size_t len, const char *msg) {
void *payload;
size_t payload_length = 0;
uint32_t pseudo_checksum = 0;
uint8_t protocol = 0;
int version = ip_version(packet);
switch (version) {
case 4: {
struct iphdr *ip = (struct iphdr *)packet;
ASSERT_GE(len, sizeof(*ip)) << msg << ": IPv4 packet shorter than IPv4 header\n";
EXPECT_EQ(5, ip->ihl) << msg << ": Unsupported IP header length\n";
EXPECT_EQ(len, ntohs(ip->tot_len)) << msg << ": Incorrect IPv4 length\n";
EXPECT_EQ(0, ip_checksum(ip, sizeof(*ip))) << msg << ": Incorrect IP checksum\n";
protocol = ip->protocol;
payload = ip + 1;
if (!is_ipv4_fragment(ip)) {
payload_length = len - sizeof(*ip);
pseudo_checksum = ipv4_pseudo_header_checksum(ip, payload_length);
}
ASSERT_TRUE(protocol == IPPROTO_TCP || protocol == IPPROTO_UDP || protocol == IPPROTO_ICMP)
<< msg << ": Unsupported IPv4 protocol " << protocol << "\n";
break;
}
case 6: {
struct ip6_hdr *ip6 = (struct ip6_hdr *)packet;
ASSERT_GE(len, sizeof(*ip6)) << msg << ": IPv6 packet shorter than IPv6 header\n";
EXPECT_EQ(len - sizeof(*ip6), htons(ip6->ip6_plen)) << msg << ": Incorrect IPv6 length\n";
if (ip6->ip6_nxt == IPPROTO_FRAGMENT) {
struct ip6_frag *frag = (struct ip6_frag *)(ip6 + 1);
ASSERT_GE(len, sizeof(*ip6) + sizeof(*frag))
<< msg << ": IPv6 fragment: short fragment header\n";
protocol = frag->ip6f_nxt;
payload = frag + 1;
// Even though the packet has a Fragment header, it might not be a fragment.
if (!is_ipv6_fragment(ip6, len)) {
payload_length = len - sizeof(*ip6) - sizeof(*frag);
}
} else {
// Since there are no extension headers except Fragment, this must be the payload.
protocol = ip6->ip6_nxt;
payload = ip6 + 1;
payload_length = len - sizeof(*ip6);
}
ASSERT_TRUE(protocol == IPPROTO_TCP || protocol == IPPROTO_UDP || protocol == IPPROTO_ICMPV6)
<< msg << ": Unsupported IPv6 next header " << protocol;
if (payload_length) {
pseudo_checksum = ipv6_pseudo_header_checksum(ip6, payload_length, protocol);
}
break;
}
default:
FAIL() << msg << ": Unsupported IP version " << version << "\n";
return;
}
// If we understand the payload, verify the checksum.
if (payload_length) {
uint16_t checksum;
switch (protocol) {
case IPPROTO_UDP:
case IPPROTO_TCP:
case IPPROTO_ICMPV6:
checksum = ip_checksum_finish(ip_checksum_add(pseudo_checksum, payload, payload_length));
break;
case IPPROTO_ICMP:
checksum = ip_checksum(payload, payload_length);
break;
default:
checksum = 0; // Don't check.
break;
}
EXPECT_EQ(0, checksum) << msg << ": Incorrect transport checksum\n";
}
if (protocol == IPPROTO_UDP) {
struct udphdr *udp = (struct udphdr *)payload;
EXPECT_NE(0, udp->check) << msg << ": UDP checksum 0 should be 0xffff";
// If this is not a fragment, check the UDP length field.
if (payload_length) {
EXPECT_EQ(payload_length, ntohs(udp->len)) << msg << ": Incorrect UDP length\n";
}
}
}
void reassemble_packet(const uint8_t **fragments, const size_t lengths[], int numpackets,
uint8_t *reassembled, size_t *reassembled_len, const char *msg) {
struct iphdr *ip = nullptr;
struct ip6_hdr *ip6 = nullptr;
size_t total_length, pos = 0;
uint8_t protocol = 0;
uint8_t version = ip_version(fragments[0]);
for (int i = 0; i < numpackets; i++) {
const uint8_t *packet = fragments[i];
int len = lengths[i];
int headersize, payload_offset;
ASSERT_EQ(ip_version(packet), version) << msg << ": Inconsistent fragment versions\n";
check_packet(packet, len, "Fragment sanity check");
switch (version) {
case 4: {
struct iphdr *ip_orig = (struct iphdr *)packet;
headersize = sizeof(*ip_orig);
ASSERT_TRUE(is_ipv4_fragment(ip_orig))
<< msg << ": IPv4 fragment #" << i + 1 << " not a fragment\n";
ASSERT_EQ(pos, ipv4_fragment_offset(ip_orig) * 8 + ((i != 0) ? sizeof(*ip) : 0))
<< msg << ": IPv4 fragment #" << i + 1 << ": inconsistent offset\n";
headersize = sizeof(*ip_orig);
payload_offset = headersize;
if (pos == 0) {
ip = (struct iphdr *)reassembled;
}
break;
}
case 6: {
struct ip6_hdr *ip6_orig = (struct ip6_hdr *)packet;
struct ip6_frag *frag = (struct ip6_frag *)(ip6_orig + 1);
ASSERT_TRUE(is_ipv6_fragment(ip6_orig, len))
<< msg << ": IPv6 fragment #" << i + 1 << " not a fragment\n";
ASSERT_EQ(pos, ipv6_fragment_offset(frag) * 8 + ((i != 0) ? sizeof(*ip6) : 0))
<< msg << ": IPv6 fragment #" << i + 1 << ": inconsistent offset\n";
headersize = sizeof(*ip6_orig);
payload_offset = sizeof(*ip6_orig) + sizeof(*frag);
if (pos == 0) {
ip6 = (struct ip6_hdr *)reassembled;
protocol = frag->ip6f_nxt;
}
break;
}
default:
FAIL() << msg << ": Invalid IP version << " << version;
}
// If this is the first fragment, copy the header.
if (pos == 0) {
ASSERT_LT(headersize, (int)*reassembled_len) << msg << ": Reassembly buffer too small\n";
memcpy(reassembled, packet, headersize);
total_length = headersize;
pos += headersize;
}
// Copy the payload.
int payload_length = len - payload_offset;
total_length += payload_length;
ASSERT_LT(total_length, *reassembled_len) << msg << ": Reassembly buffer too small\n";
memcpy(reassembled + pos, packet + payload_offset, payload_length);
pos += payload_length;
}
// Fix up the reassembled headers to reflect fragmentation and length (and IPv4 checksum).
ASSERT_EQ(total_length, pos) << msg << ": Reassembled packet length incorrect\n";
if (ip) {
ip->frag_off &= ~htons(IP_MF);
ip->tot_len = htons(total_length);
ip->check = 0;
ip->check = ip_checksum(ip, sizeof(*ip));
ASSERT_FALSE(is_ipv4_fragment(ip)) << msg << ": reassembled IPv4 packet is a fragment!\n";
}
if (ip6) {
ip6->ip6_nxt = protocol;
ip6->ip6_plen = htons(total_length - sizeof(*ip6));
ASSERT_FALSE(is_ipv6_fragment(ip6, ip6->ip6_plen))
<< msg << ": reassembled IPv6 packet is a fragment!\n";
}
*reassembled_len = total_length;
}
void check_data_matches(const void *expected, const void *actual, size_t len, const char *msg) {
if (memcmp(expected, actual, len)) {
// Hex dump, 20 bytes per line, one space between bytes (1 byte = 3 chars), indented by 4.
int hexdump_len = len * 3 + (len / 20 + 1) * 5;
char expected_hexdump[hexdump_len], actual_hexdump[hexdump_len];
unsigned pos = 0;
for (unsigned i = 0; i < len; i++) {
if (i % 20 == 0) {
snprintf(expected_hexdump + pos, hexdump_len - pos, "\n ");
snprintf(actual_hexdump + pos, hexdump_len - pos, "\n ");
pos += 4;
}
snprintf(expected_hexdump + pos, hexdump_len - pos, " %02x", ((uint8_t *)expected)[i]);
snprintf(actual_hexdump + pos, hexdump_len - pos, " %02x", ((uint8_t *)actual)[i]);
pos += 3;
}
FAIL() << msg << ": Data doesn't match"
<< "\n Expected:" << (char *) expected_hexdump
<< "\n Actual:" << (char *) actual_hexdump << "\n";
}
}
void fix_udp_checksum(uint8_t *packet) {
uint32_t pseudo_checksum;
uint8_t version = ip_version(packet);
struct udphdr *udp;
switch (version) {
case 4: {
struct iphdr *ip = (struct iphdr *)packet;
udp = (struct udphdr *)(ip + 1);
pseudo_checksum = ipv4_pseudo_header_checksum(ip, ntohs(udp->len));
break;
}
case 6: {
struct ip6_hdr *ip6 = (struct ip6_hdr *)packet;
udp = (struct udphdr *)(ip6 + 1);
pseudo_checksum = ipv6_pseudo_header_checksum(ip6, ntohs(udp->len), IPPROTO_UDP);
break;
}
default:
FAIL() << "unsupported IP version" << version << "\n";
return;
}
udp->check = 0;
udp->check = ip_checksum_finish(ip_checksum_add(pseudo_checksum, udp, ntohs(udp->len)));
}
// Testing stub for send_rawv6. The real version uses sendmsg() with a
// destination IPv6 address, and attempting to call that on our test socketpair
// fd results in EINVAL.
extern "C" void send_rawv6(int fd, clat_packet out, int iov_len) { writev(fd, out, iov_len); }
void do_translate_packet(const uint8_t *original, size_t original_len, uint8_t *out, size_t *outlen,
const char *msg) {
int fds[2];
if (socketpair(AF_UNIX, SOCK_DGRAM | SOCK_NONBLOCK, 0, fds)) {
abort();
}
char foo[512];
snprintf(foo, sizeof(foo), "%s: Invalid original packet", msg);
check_packet(original, original_len, foo);
int read_fd, write_fd;
uint16_t expected_proto;
int version = ip_version(original);
switch (version) {
case 4:
expected_proto = htons(ETH_P_IPV6);
read_fd = fds[1];
write_fd = fds[0];
break;
case 6:
expected_proto = htons(ETH_P_IP);
read_fd = fds[0];
write_fd = fds[1];
break;
default:
FAIL() << msg << ": Unsupported IP version " << version << "\n";
break;
}
translate_packet(write_fd, (version == 4), original, original_len);
snprintf(foo, sizeof(foo), "%s: Invalid translated packet", msg);
if (version == 6) {
// Translating to IPv4. Expect a tun header.
struct tun_pi new_tun_header;
struct iovec iov[] = {
{ &new_tun_header, sizeof(new_tun_header) },
{ out, *outlen },
};
int len = readv(read_fd, iov, 2);
if (len > (int)sizeof(new_tun_header)) {
ASSERT_LT((size_t)len, *outlen) << msg << ": Translated packet buffer too small\n";
EXPECT_EQ(expected_proto, new_tun_header.proto) << msg << "Unexpected tun proto\n";
*outlen = len - sizeof(new_tun_header);
check_packet(out, *outlen, msg);
} else {
FAIL() << msg << ": Packet was not translated: len=" << len;
*outlen = 0;
}
} else {
// Translating to IPv6. Expect raw packet.
*outlen = read(read_fd, out, *outlen);
check_packet(out, *outlen, msg);
}
}
void check_translated_packet(const uint8_t *original, size_t original_len, const uint8_t *expected,
size_t expected_len, const char *msg) {
uint8_t translated[MAXMTU];
size_t translated_len = sizeof(translated);
do_translate_packet(original, original_len, translated, &translated_len, msg);
EXPECT_EQ(expected_len, translated_len) << msg << ": Translated packet length incorrect\n";
check_data_matches(expected, translated, translated_len, msg);
}
void check_fragment_translation(const uint8_t *original[], const size_t original_lengths[],
const uint8_t *expected[], const size_t expected_lengths[],
int numfragments, const char *msg) {
for (int i = 0; i < numfragments; i++) {
// Check that each of the fragments translates as expected.
char frag_msg[512];
snprintf(frag_msg, sizeof(frag_msg), "%s: fragment #%d", msg, i + 1);
check_translated_packet(original[i], original_lengths[i], expected[i], expected_lengths[i],
frag_msg);
}
// Sanity check that reassembling the original and translated fragments produces valid packets.
uint8_t reassembled[MAXMTU];
size_t reassembled_len = sizeof(reassembled);
reassemble_packet(original, original_lengths, numfragments, reassembled, &reassembled_len, msg);
check_packet(reassembled, reassembled_len, msg);
uint8_t translated[MAXMTU];
size_t translated_len = sizeof(translated);
do_translate_packet(reassembled, reassembled_len, translated, &translated_len, msg);
check_packet(translated, translated_len, msg);
}
int get_transport_checksum(const uint8_t *packet) {
struct iphdr *ip;
struct ip6_hdr *ip6;
uint8_t protocol;
const void *payload;
int version = ip_version(packet);
switch (version) {
case 4:
ip = (struct iphdr *)packet;
if (is_ipv4_fragment(ip)) {
return -1;
}
protocol = ip->protocol;
payload = ip + 1;
break;
case 6:
ip6 = (struct ip6_hdr *)packet;
protocol = ip6->ip6_nxt;
payload = ip6 + 1;
break;
default:
return -1;
}
switch (protocol) {
case IPPROTO_UDP:
return ((struct udphdr *)payload)->check;
case IPPROTO_TCP:
return ((struct tcphdr *)payload)->check;
case IPPROTO_FRAGMENT:
default:
return -1;
}
}
static tun_data makeTunData() {
// Create some fake but realistic-looking sockets so update_clat_ipv6_address doesn't balk.
return {
.write_fd6 = socket(AF_INET6, SOCK_RAW | SOCK_NONBLOCK, IPPROTO_RAW),
.read_fd6 = socket(AF_PACKET, SOCK_DGRAM, htons(ETH_P_IPV6)),
.fd4 = socket(AF_UNIX, SOCK_DGRAM, 0),
};
}
void freeTunData(tun_data *tunnel) {
close(tunnel->write_fd6);
close(tunnel->read_fd6);
close(tunnel->fd4);
}
struct clat_config Global_Clatd_Config;
class ClatdTest : public ::testing::Test {
protected:
static TunInterface sTun;
virtual void SetUp() {
inet_pton(AF_INET, kIPv4LocalAddr, &Global_Clatd_Config.ipv4_local_subnet);
inet_pton(AF_INET6, kIPv6PlatSubnet, &Global_Clatd_Config.plat_subnet);
memset(&Global_Clatd_Config.ipv6_local_subnet, 0, sizeof(in6_addr));
Global_Clatd_Config.ipv6_host_id = in6addr_any;
Global_Clatd_Config.use_dynamic_iid = 1;
Global_Clatd_Config.default_pdp_interface = const_cast<char *>(sTun.name().c_str());
}
// Static because setting up the tun interface takes about 40ms.
static void SetUpTestCase() { ASSERT_EQ(0, sTun.init()); }
// Closing the socket removes the interface and IP addresses.
static void TearDownTestCase() { sTun.destroy(); }
};
TunInterface ClatdTest::sTun;
void expect_ipv6_addr_equal(struct in6_addr *expected, struct in6_addr *actual) {
if (!IN6_ARE_ADDR_EQUAL(expected, actual)) {
char expected_str[INET6_ADDRSTRLEN], actual_str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, expected, expected_str, sizeof(expected_str));
inet_ntop(AF_INET6, actual, actual_str, sizeof(actual_str));
FAIL()
<< "Unexpected IPv6 address:: "
<< "\n Expected: " << expected_str
<< "\n Actual: " << actual_str
<< "\n";
}
}
TEST_F(ClatdTest, TestIPv6PrefixEqual) {
EXPECT_TRUE(ipv6_prefix_equal(&Global_Clatd_Config.plat_subnet,
&Global_Clatd_Config.plat_subnet));
EXPECT_FALSE(ipv6_prefix_equal(&Global_Clatd_Config.plat_subnet,
&Global_Clatd_Config.ipv6_local_subnet));
struct in6_addr subnet2 = Global_Clatd_Config.ipv6_local_subnet;
EXPECT_TRUE(ipv6_prefix_equal(&Global_Clatd_Config.ipv6_local_subnet, &subnet2));
EXPECT_TRUE(ipv6_prefix_equal(&subnet2, &Global_Clatd_Config.ipv6_local_subnet));
subnet2.s6_addr[6] = 0xff;
EXPECT_FALSE(ipv6_prefix_equal(&Global_Clatd_Config.ipv6_local_subnet, &subnet2));
EXPECT_FALSE(ipv6_prefix_equal(&subnet2, &Global_Clatd_Config.ipv6_local_subnet));
}
int count_onebits(const void *data, size_t size) {
int onebits = 0;
for (size_t pos = 0; pos < size; pos++) {
uint8_t *byte = ((uint8_t *)data) + pos;
for (int shift = 0; shift < 8; shift++) {
onebits += (*byte >> shift) & 1;
}
}
return onebits;
}
TEST_F(ClatdTest, TestCountOnebits) {
uint64_t i;
i = 1;
ASSERT_EQ(1, count_onebits(&i, sizeof(i)));
i <<= 61;
ASSERT_EQ(1, count_onebits(&i, sizeof(i)));
i |= ((uint64_t)1 << 33);
ASSERT_EQ(2, count_onebits(&i, sizeof(i)));
i = 0xf1000202020000f0;
ASSERT_EQ(5 + 1 + 1 + 1 + 4, count_onebits(&i, sizeof(i)));
}
TEST_F(ClatdTest, TestGenIIDConfigured) {
struct in6_addr myaddr, expected;
Global_Clatd_Config.use_dynamic_iid = 0;
ASSERT_TRUE(inet_pton(AF_INET6, "::bad:ace:d00d", &Global_Clatd_Config.ipv6_host_id));
ASSERT_TRUE(inet_pton(AF_INET6, "2001:db8:1:2:0:bad:ace:d00d", &expected));
ASSERT_TRUE(inet_pton(AF_INET6, "2001:db8:1:2:f076:ae99:124e:aa54", &myaddr));
config_generate_local_ipv6_subnet(&myaddr);
expect_ipv6_addr_equal(&expected, &myaddr);
Global_Clatd_Config.use_dynamic_iid = 1;
config_generate_local_ipv6_subnet(&myaddr);
EXPECT_FALSE(IN6_ARE_ADDR_EQUAL(&expected, &myaddr));
}
TEST_F(ClatdTest, TestGenIIDRandom) {
struct in6_addr interface_ipv6;
ASSERT_TRUE(inet_pton(AF_INET6, "2001:db8:1:2:f076:ae99:124e:aa54", &interface_ipv6));
Global_Clatd_Config.ipv6_host_id = in6addr_any;
// Generate a boatload of random IIDs.
int onebits = 0;
uint64_t prev_iid = 0;
for (int i = 0; i < 100000; i++) {
struct in6_addr myaddr = interface_ipv6;
config_generate_local_ipv6_subnet(&myaddr);
// Check the generated IP address is in the same prefix as the interface IPv6 address.
EXPECT_TRUE(ipv6_prefix_equal(&interface_ipv6, &myaddr));
// Check that consecutive IIDs are not the same.
uint64_t iid = *(uint64_t *)(&myaddr.s6_addr[8]);
ASSERT_TRUE(iid != prev_iid)
<< "Two consecutive random IIDs are the same: "
<< std::showbase << std::hex
<< iid << "\n";
prev_iid = iid;
// Check that the IID is checksum-neutral with the NAT64 prefix and the
// local prefix.
struct in_addr *ipv4addr = &Global_Clatd_Config.ipv4_local_subnet;
struct in6_addr *plat_subnet = &Global_Clatd_Config.plat_subnet;
uint16_t c1 = ip_checksum_finish(ip_checksum_add(0, ipv4addr, sizeof(*ipv4addr)));
uint16_t c2 = ip_checksum_finish(ip_checksum_add(0, plat_subnet, sizeof(*plat_subnet)) +
ip_checksum_add(0, &myaddr, sizeof(myaddr)));
if (c1 != c2) {
char myaddr_str[INET6_ADDRSTRLEN], plat_str[INET6_ADDRSTRLEN], ipv4_str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &myaddr, myaddr_str, sizeof(myaddr_str));
inet_ntop(AF_INET6, plat_subnet, plat_str, sizeof(plat_str));
inet_ntop(AF_INET, ipv4addr, ipv4_str, sizeof(ipv4_str));
FAIL()
<< "Bad IID: " << myaddr_str
<< " not checksum-neutral with " << ipv4_str << " and " << plat_str
<< std::showbase << std::hex
<< "\n IPv4 checksum: " << c1
<< "\n IPv6 checksum: " << c2
<< "\n";
}
// Check that IIDs are roughly random and use all the bits by counting the
// total number of bits set to 1 in a random sample of 100000 generated IIDs.
onebits += count_onebits(&iid, sizeof(iid));
}
EXPECT_LE(3190000, onebits);
EXPECT_GE(3210000, onebits);
}
extern "C" addr_free_func config_is_ipv4_address_free;
int never_free(in_addr_t /* addr */) { return 0; }
int always_free(in_addr_t /* addr */) { return 1; }
int only2_free(in_addr_t addr) { return (ntohl(addr) & 0xff) == 2; }
int over6_free(in_addr_t addr) { return (ntohl(addr) & 0xff) >= 6; }
int only10_free(in_addr_t addr) { return (ntohl(addr) & 0xff) == 10; }
TEST_F(ClatdTest, SelectIPv4Address) {
struct in_addr addr;
inet_pton(AF_INET, kIPv4LocalAddr, &addr);
addr_free_func orig_config_is_ipv4_address_free = config_is_ipv4_address_free;
// If no addresses are free, return INADDR_NONE.
config_is_ipv4_address_free = never_free;
EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 29));
EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 16));
// If the configured address is free, pick that. But a prefix that's too big is invalid.
config_is_ipv4_address_free = always_free;
EXPECT_EQ(inet_addr(kIPv4LocalAddr), config_select_ipv4_address(&addr, 29));
EXPECT_EQ(inet_addr(kIPv4LocalAddr), config_select_ipv4_address(&addr, 20));
EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 15));
// A prefix length of 32 works, but anything above it is invalid.
EXPECT_EQ(inet_addr(kIPv4LocalAddr), config_select_ipv4_address(&addr, 32));
EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 33));
// If another address is free, pick it.
config_is_ipv4_address_free = over6_free;
EXPECT_EQ(inet_addr("192.0.0.6"), config_select_ipv4_address(&addr, 29));
// Check that we wrap around to addresses that are lower than the first address.
config_is_ipv4_address_free = only2_free;
EXPECT_EQ(inet_addr("192.0.0.2"), config_select_ipv4_address(&addr, 29));
EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 30));
// If a free address exists outside the prefix, we don't pick it.
config_is_ipv4_address_free = only10_free;
EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 29));
EXPECT_EQ(inet_addr("192.0.0.10"), config_select_ipv4_address(&addr, 24));
// Now try using the real function which sees if IP addresses are free using bind().
// Assume that the machine running the test has the address 127.0.0.1, but not 8.8.8.8.
config_is_ipv4_address_free = orig_config_is_ipv4_address_free;
addr.s_addr = inet_addr("8.8.8.8");
EXPECT_EQ(inet_addr("8.8.8.8"), config_select_ipv4_address(&addr, 29));
addr.s_addr = inet_addr("127.0.0.1");
EXPECT_EQ(inet_addr("127.0.0.2"), config_select_ipv4_address(&addr, 29));
}
TEST_F(ClatdTest, ConfigureTunIp) {
addr_free_func orig_config_is_ipv4_address_free = config_is_ipv4_address_free;
config_is_ipv4_address_free = over6_free;
Global_Clatd_Config.ipv4_local_prefixlen = 29;
Global_Clatd_Config.ipv4mtu = 1472;
// Create an interface for configure_tun_ip to configure and bring up.
TunInterface v4Iface;
ASSERT_EQ(0, v4Iface.init());
struct tun_data tunnel = makeTunData();
strlcpy(tunnel.device4, v4Iface.name().c_str(), sizeof(tunnel.device4));
configure_tun_ip(&tunnel, nullptr /* v4_addr */);
EXPECT_EQ(inet_addr("192.0.0.6"), Global_Clatd_Config.ipv4_local_subnet.s_addr);
union anyip *ip = getinterface_ip(v4Iface.name().c_str(), AF_INET);
EXPECT_EQ(inet_addr("192.0.0.6"), ip->ip4.s_addr);
free(ip);
config_is_ipv4_address_free = orig_config_is_ipv4_address_free;
v4Iface.destroy();
}
TEST_F(ClatdTest, ConfigureTunIpManual) {
addr_free_func orig_config_is_ipv4_address_free = config_is_ipv4_address_free;
config_is_ipv4_address_free = over6_free;
Global_Clatd_Config.ipv4_local_prefixlen = 29;
Global_Clatd_Config.ipv4mtu = 1472;
// Create an interface for configure_tun_ip to configure and bring up.
TunInterface v4Iface;
ASSERT_EQ(0, v4Iface.init());
struct tun_data tunnel = makeTunData();
strlcpy(tunnel.device4, v4Iface.name().c_str(), sizeof(tunnel.device4));
configure_tun_ip(&tunnel, "192.0.2.1" /* v4_addr */);
EXPECT_EQ(inet_addr("192.0.2.1"), Global_Clatd_Config.ipv4_local_subnet.s_addr);
union anyip *ip = getinterface_ip(v4Iface.name().c_str(), AF_INET);
ASSERT_NE(nullptr, ip);
EXPECT_EQ(inet_addr("192.0.2.1"), ip->ip4.s_addr);
free(ip);
config_is_ipv4_address_free = orig_config_is_ipv4_address_free;
v4Iface.destroy();
}
TEST_F(ClatdTest, DataSanitycheck) {
// Sanity checks the data.
uint8_t v4_header[] = { IPV4_UDP_HEADER };
ASSERT_EQ(sizeof(struct iphdr), sizeof(v4_header)) << "Test IPv4 header: incorrect length\n";
uint8_t v6_header[] = { IPV6_UDP_HEADER };
ASSERT_EQ(sizeof(struct ip6_hdr), sizeof(v6_header)) << "Test IPv6 header: incorrect length\n";
uint8_t udp_header[] = { UDP_HEADER };
ASSERT_EQ(sizeof(struct udphdr), sizeof(udp_header)) << "Test UDP header: incorrect length\n";
// Sanity checks check_packet.
struct udphdr *udp;
uint8_t v4_udp_packet[] = { IPV4_UDP_HEADER UDP_HEADER PAYLOAD };
udp = (struct udphdr *)(v4_udp_packet + sizeof(struct iphdr));
fix_udp_checksum(v4_udp_packet);
ASSERT_EQ(kUdpV4Checksum, udp->check) << "UDP/IPv4 packet checksum sanity check\n";
check_packet(v4_udp_packet, sizeof(v4_udp_packet), "UDP/IPv4 packet sanity check");
uint8_t v6_udp_packet[] = { IPV6_UDP_HEADER UDP_HEADER PAYLOAD };
udp = (struct udphdr *)(v6_udp_packet + sizeof(struct ip6_hdr));
fix_udp_checksum(v6_udp_packet);
ASSERT_EQ(kUdpV6Checksum, udp->check) << "UDP/IPv6 packet checksum sanity check\n";
check_packet(v6_udp_packet, sizeof(v6_udp_packet), "UDP/IPv6 packet sanity check");
uint8_t ipv4_ping[] = { IPV4_ICMP_HEADER IPV4_PING PAYLOAD };
check_packet(ipv4_ping, sizeof(ipv4_ping), "IPv4 ping sanity check");
uint8_t ipv6_ping[] = { IPV6_ICMPV6_HEADER IPV6_PING PAYLOAD };
check_packet(ipv6_ping, sizeof(ipv6_ping), "IPv6 ping sanity check");
// Sanity checks reassemble_packet.
uint8_t reassembled[MAXMTU];
size_t total_length = sizeof(reassembled);
reassemble_packet(kIPv4Fragments, kIPv4FragLengths, ARRAYSIZE(kIPv4Fragments), reassembled,
&total_length, "Reassembly sanity check");
check_packet(reassembled, total_length, "IPv4 Reassembled packet is valid");
ASSERT_EQ(sizeof(kReassembledIPv4), total_length) << "IPv4 reassembly sanity check: length\n";
ASSERT_TRUE(!is_ipv4_fragment((struct iphdr *)reassembled))
<< "Sanity check: reassembled packet is a fragment!\n";
check_data_matches(kReassembledIPv4, reassembled, total_length, "IPv4 reassembly sanity check");
total_length = sizeof(reassembled);
reassemble_packet(kIPv6Fragments, kIPv6FragLengths, ARRAYSIZE(kIPv6Fragments), reassembled,
&total_length, "IPv6 reassembly sanity check");
ASSERT_TRUE(!is_ipv6_fragment((struct ip6_hdr *)reassembled, total_length))
<< "Sanity check: reassembled packet is a fragment!\n";
check_packet(reassembled, total_length, "IPv6 Reassembled packet is valid");
}
TEST_F(ClatdTest, PseudoChecksum) {
uint32_t pseudo_checksum;
uint8_t v4_header[] = { IPV4_UDP_HEADER };
uint8_t v4_pseudo_header[] = { IPV4_PSEUDOHEADER(v4_header, UDP_LEN) };
pseudo_checksum = ipv4_pseudo_header_checksum((struct iphdr *)v4_header, UDP_LEN);
EXPECT_EQ(ip_checksum_finish(pseudo_checksum),
ip_checksum(v4_pseudo_header, sizeof(v4_pseudo_header)))
<< "ipv4_pseudo_header_checksum incorrect\n";
uint8_t v6_header[] = { IPV6_UDP_HEADER };
uint8_t v6_pseudo_header[] = { IPV6_PSEUDOHEADER(v6_header, IPPROTO_UDP, UDP_LEN) };
pseudo_checksum = ipv6_pseudo_header_checksum((struct ip6_hdr *)v6_header, UDP_LEN, IPPROTO_UDP);
EXPECT_EQ(ip_checksum_finish(pseudo_checksum),
ip_checksum(v6_pseudo_header, sizeof(v6_pseudo_header)))
<< "ipv6_pseudo_header_checksum incorrect\n";
}
TEST_F(ClatdTest, TransportChecksum) {
uint8_t udphdr[] = { UDP_HEADER };
uint8_t payload[] = { PAYLOAD };
EXPECT_EQ(kUdpPartialChecksum, ip_checksum_add(0, udphdr, sizeof(udphdr)))
<< "UDP partial checksum\n";
EXPECT_EQ(kPayloadPartialChecksum, ip_checksum_add(0, payload, sizeof(payload)))
<< "Payload partial checksum\n";
uint8_t ip[] = { IPV4_UDP_HEADER };
uint8_t ip6[] = { IPV6_UDP_HEADER };
uint32_t ipv4_pseudo_sum = ipv4_pseudo_header_checksum((struct iphdr *)ip, UDP_LEN);
uint32_t ipv6_pseudo_sum =
ipv6_pseudo_header_checksum((struct ip6_hdr *)ip6, UDP_LEN, IPPROTO_UDP);
EXPECT_EQ(0x3ad0U, ipv4_pseudo_sum) << "IPv4 pseudo-checksum sanity check\n";
EXPECT_EQ(0x2644bU, ipv6_pseudo_sum) << "IPv6 pseudo-checksum sanity check\n";
EXPECT_EQ(
kUdpV4Checksum,
ip_checksum_finish(ipv4_pseudo_sum + kUdpPartialChecksum + kPayloadPartialChecksum))
<< "Unexpected UDP/IPv4 checksum\n";
EXPECT_EQ(
kUdpV6Checksum,
ip_checksum_finish(ipv6_pseudo_sum + kUdpPartialChecksum + kPayloadPartialChecksum))
<< "Unexpected UDP/IPv6 checksum\n";
EXPECT_EQ(kUdpV6Checksum,
ip_checksum_adjust(kUdpV4Checksum, ipv4_pseudo_sum, ipv6_pseudo_sum))
<< "Adjust IPv4/UDP checksum to IPv6\n";
EXPECT_EQ(kUdpV4Checksum,
ip_checksum_adjust(kUdpV6Checksum, ipv6_pseudo_sum, ipv4_pseudo_sum))
<< "Adjust IPv6/UDP checksum to IPv4\n";
}
TEST_F(ClatdTest, AdjustChecksum) {
struct checksum_data {
uint16_t checksum;
uint32_t old_hdr_sum;
uint32_t new_hdr_sum;
uint16_t result;
} DATA[] = {
{ 0x1423, 0xb8ec, 0x2d757, 0xf5b5 },
{ 0xf5b5, 0x2d757, 0xb8ec, 0x1423 },
{ 0xdd2f, 0x5555, 0x3285, 0x0000 },
{ 0x1215, 0x5560, 0x15560 + 20, 0x1200 },
{ 0xd0c7, 0x3ad0, 0x2644b, 0xa74a },
};
unsigned i = 0;
for (i = 0; i < ARRAYSIZE(DATA); i++) {
struct checksum_data *data = DATA + i;
uint16_t result = ip_checksum_adjust(data->checksum, data->old_hdr_sum, data->new_hdr_sum);
EXPECT_EQ(result, data->result)
<< "Incorrect checksum" << std::showbase << std::hex
<< "\n Expected: " << data->result
<< "\n Actual: " << result
<< "\n checksum=" << data->checksum
<< " old_sum=" << data->old_hdr_sum << " new_sum=" << data->new_hdr_sum << "\n";
}
}
TEST_F(ClatdTest, Translate) {
// This test uses hardcoded packets so the clatd address must be fixed.
inet_pton(AF_INET6, kIPv6LocalAddr, &Global_Clatd_Config.ipv6_local_subnet);
uint8_t udp_ipv4[] = { IPV4_UDP_HEADER UDP_HEADER PAYLOAD };
uint8_t udp_ipv6[] = { IPV6_UDP_HEADER UDP_HEADER PAYLOAD };
fix_udp_checksum(udp_ipv4);
fix_udp_checksum(udp_ipv6);
check_translated_packet(udp_ipv4, sizeof(udp_ipv4), udp_ipv6, sizeof(udp_ipv6),
"UDP/IPv4 -> UDP/IPv6 translation");
check_translated_packet(udp_ipv6, sizeof(udp_ipv6), udp_ipv4, sizeof(udp_ipv4),
"UDP/IPv6 -> UDP/IPv4 translation");
uint8_t ipv4_ping[] = { IPV4_ICMP_HEADER IPV4_PING PAYLOAD };
uint8_t ipv6_ping[] = { IPV6_ICMPV6_HEADER IPV6_PING PAYLOAD };
check_translated_packet(ipv4_ping, sizeof(ipv4_ping), ipv6_ping, sizeof(ipv6_ping),
"ICMP->ICMPv6 translation");
check_translated_packet(ipv6_ping, sizeof(ipv6_ping), ipv4_ping, sizeof(ipv4_ping),
"ICMPv6->ICMP translation");
}
TEST_F(ClatdTest, Fragmentation) {
// This test uses hardcoded packets so the clatd address must be fixed.
inet_pton(AF_INET6, kIPv6LocalAddr, &Global_Clatd_Config.ipv6_local_subnet);
check_fragment_translation(kIPv4Fragments, kIPv4FragLengths, kIPv6Fragments, kIPv6FragLengths,
ARRAYSIZE(kIPv4Fragments), "IPv4->IPv6 fragment translation");
check_fragment_translation(kIPv6Fragments, kIPv6FragLengths, kIPv4Fragments, kIPv4FragLengths,
ARRAYSIZE(kIPv6Fragments), "IPv6->IPv4 fragment translation");
}
void check_translate_checksum_neutral(const uint8_t *original, size_t original_len,
size_t expected_len, const char *msg) {
uint8_t translated[MAXMTU];
size_t translated_len = sizeof(translated);
do_translate_packet(original, original_len, translated, &translated_len, msg);
EXPECT_EQ(expected_len, translated_len) << msg << ": Translated packet length incorrect\n";
// do_translate_packet already checks packets for validity and verifies the checksum.
int original_check = get_transport_checksum(original);
int translated_check = get_transport_checksum(translated);
ASSERT_NE(-1, original_check);
ASSERT_NE(-1, translated_check);
ASSERT_EQ(original_check, translated_check)
<< "Not checksum neutral: original and translated checksums differ\n";
}
TEST_F(ClatdTest, TranslateChecksumNeutral) {
// Generate a random clat IPv6 address and check that translation is checksum-neutral.
Global_Clatd_Config.ipv6_host_id = in6addr_any;
ASSERT_TRUE(inet_pton(AF_INET6, "2001:db8:1:2:f076:ae99:124e:aa54",
&Global_Clatd_Config.ipv6_local_subnet));
config_generate_local_ipv6_subnet(&Global_Clatd_Config.ipv6_local_subnet);
ASSERT_NE(htonl((uint32_t)0x00000464), Global_Clatd_Config.ipv6_local_subnet.s6_addr32[3]);
ASSERT_NE((uint32_t)0, Global_Clatd_Config.ipv6_local_subnet.s6_addr32[3]);
// Check that translating UDP packets is checksum-neutral. First, IPv4.
uint8_t udp_ipv4[] = { IPV4_UDP_HEADER UDP_HEADER PAYLOAD };
fix_udp_checksum(udp_ipv4);
check_translate_checksum_neutral(udp_ipv4, sizeof(udp_ipv4), sizeof(udp_ipv4) + 20,
"UDP/IPv4 -> UDP/IPv6 checksum neutral");
// Now try IPv6.
uint8_t udp_ipv6[] = { IPV6_UDP_HEADER UDP_HEADER PAYLOAD };
// The test packet uses the static IID, not the random IID. Fix up the source address.
struct ip6_hdr *ip6 = (struct ip6_hdr *)udp_ipv6;
memcpy(&ip6->ip6_src, &Global_Clatd_Config.ipv6_local_subnet, sizeof(ip6->ip6_src));
fix_udp_checksum(udp_ipv6);
check_translate_checksum_neutral(udp_ipv4, sizeof(udp_ipv4), sizeof(udp_ipv4) + 20,
"UDP/IPv4 -> UDP/IPv6 checksum neutral");
}
TEST_F(ClatdTest, GetInterfaceIp) {
union anyip *ip = getinterface_ip(sTun.name().c_str(), AF_INET6);
ASSERT_NE(nullptr, ip);
in6_addr expected = sTun.srcAddr();
in6_addr actual = ip->ip6;
expect_ipv6_addr_equal(&expected, &actual);
}
void expectSocketBound(int ifindex, int sock) {
// Check that the packet socket is bound to the interface. We can't check the socket filter
// because there is no way to fetch it from the kernel.
sockaddr_ll sll;
socklen_t len = sizeof(sll);
ASSERT_EQ(0, getsockname(sock, reinterpret_cast<sockaddr *>(&sll), &len));
EXPECT_EQ(htons(ETH_P_IPV6), sll.sll_protocol);
EXPECT_EQ(ifindex, sll.sll_ifindex);
}
TEST_F(ClatdTest, ConfigureIpv6Address) {
struct tun_data tunnel = makeTunData();
// Run configure_clat_ipv6_address.
ASSERT_TRUE(IN6_IS_ADDR_UNSPECIFIED(&Global_Clatd_Config.ipv6_local_subnet));
ASSERT_EQ(1, configure_clat_ipv6_address(&tunnel, sTun.name().c_str(), nullptr /* v6_addr */));
// Check that it generated an IID in the same prefix as the address assigned to the interface,
// and that the IID is not the default IID.
in6_addr addr = sTun.srcAddr();
EXPECT_TRUE(ipv6_prefix_equal(&Global_Clatd_Config.ipv6_local_subnet, &addr));
EXPECT_FALSE(IN6_ARE_ADDR_EQUAL(&Global_Clatd_Config.ipv6_local_subnet, &addr));
EXPECT_NE(htonl((uint32_t)0x00000464), Global_Clatd_Config.ipv6_local_subnet.s6_addr32[3]);
EXPECT_NE((uint32_t)0, Global_Clatd_Config.ipv6_local_subnet.s6_addr32[3]);
expectSocketBound(sTun.ifindex(), tunnel.read_fd6);
freeTunData(&tunnel);
}
TEST_F(ClatdTest, ConfigureIpv6AddressCommandLine) {
struct tun_data tunnel = makeTunData();
ASSERT_TRUE(IN6_IS_ADDR_UNSPECIFIED(&Global_Clatd_Config.ipv6_local_subnet));
const char *addrStr = "2001:db8::f00";
in6_addr addr;
ASSERT_EQ(1, inet_pton(AF_INET6, addrStr, &addr));
ASSERT_EQ(1, configure_clat_ipv6_address(&tunnel, sTun.name().c_str(), addrStr));
EXPECT_EQ(htonl(0x20010db8), Global_Clatd_Config.ipv6_local_subnet.s6_addr32[0]);
EXPECT_EQ(htonl(0x00000000), Global_Clatd_Config.ipv6_local_subnet.s6_addr32[1]);
EXPECT_EQ(htonl(0x00000000), Global_Clatd_Config.ipv6_local_subnet.s6_addr32[2]);
EXPECT_EQ(htonl(0x00000f00), Global_Clatd_Config.ipv6_local_subnet.s6_addr32[3]);
// Check that the packet socket is bound to the interface. We can't check the socket filter
// because there is no way to fetch it from the kernel.
sockaddr_ll sll;
socklen_t len = sizeof(sll);
ASSERT_EQ(0, getsockname(tunnel.read_fd6, reinterpret_cast<sockaddr *>(&sll), &len));
EXPECT_EQ(htons(ETH_P_IPV6), sll.sll_protocol);
EXPECT_EQ(sll.sll_ifindex, sTun.ifindex());
expectSocketBound(sTun.ifindex(), tunnel.read_fd6);
freeTunData(&tunnel);
}
TEST_F(ClatdTest, Ipv6AddressChanged) {
// Configure the clat IPv6 address.
struct tun_data tunnel = {
.write_fd6 = socket(AF_INET6, SOCK_RAW | SOCK_NONBLOCK, IPPROTO_RAW),
.read_fd6 = socket(AF_PACKET, SOCK_DGRAM, htons(ETH_P_IPV6)),
};
const char *ifname = sTun.name().c_str();
ASSERT_EQ(1, configure_clat_ipv6_address(&tunnel, ifname, nullptr));
EXPECT_EQ(0, ipv6_address_changed(ifname));
EXPECT_EQ(0, ipv6_address_changed(ifname));
// Change the IP address on the tun interface to a new prefix.
char srcaddr[INET6_ADDRSTRLEN];
char dstaddr[INET6_ADDRSTRLEN];
ASSERT_NE(nullptr, inet_ntop(AF_INET6, &sTun.srcAddr(), srcaddr, sizeof(srcaddr)));
ASSERT_NE(nullptr, inet_ntop(AF_INET6, &sTun.dstAddr(), dstaddr, sizeof(dstaddr)));
EXPECT_EQ(0, ifc_del_address(ifname, srcaddr, 64));
EXPECT_EQ(0, ifc_del_address(ifname, dstaddr, 64));
// Check that we can tell that the address has changed.
EXPECT_EQ(0, ifc_add_address(ifname, "2001:db8::1:2", 64));
EXPECT_EQ(1, ipv6_address_changed(ifname));
EXPECT_EQ(1, ipv6_address_changed(ifname));
// Restore the tun interface configuration.
sTun.destroy();
ASSERT_EQ(0, sTun.init());
}