blob: 24b2b38d5543059c752d7f6424279f6c9958c48f [file] [log] [blame]
// Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <gtest/gtest.h>
#include <stdio.h>
extern "C" {
#include "audio_thread_log.h"
#include "cras_audio_area.h"
#include "cras_iodev.h"
#include "cras_main_thread_log.h"
#include "cras_ramp.h"
#include "cras_rstream.h"
#include "dev_stream.h"
#include "input_data.h"
#include "utlist.h"
// Mock software volume scalers.
float softvol_scalers[101];
// For audio_thread_log.h use.
int atlog_rw_shm_fd;
int atlog_ro_shm_fd;
}
#define BUFFER_SIZE 8192
static const float RAMP_UNMUTE_DURATION_SECS = 0.5;
static const float RAMP_NEW_STREAM_DURATION_SECS = 0.01;
static const float RAMP_MUTE_DURATION_SECS = 0.1;
static const float RAMP_VOLUME_CHANGE_DURATION_SECS = 0.1;
static int cras_iodev_list_disable_dev_called;
static int select_node_called;
static enum CRAS_STREAM_DIRECTION select_node_direction;
static cras_node_id_t select_node_id;
static struct cras_ionode* node_selected;
static size_t notify_nodes_changed_called;
static size_t notify_active_node_changed_called;
static int dsp_context_new_sample_rate;
static const char* dsp_context_new_purpose;
static int dsp_context_free_called;
static int update_channel_layout_called;
static int update_channel_layout_return_val;
static int cras_audio_format_set_channel_layout_called;
static unsigned int cras_system_get_volume_return;
static int cras_dsp_get_pipeline_called;
static int cras_dsp_get_pipeline_ret;
static int cras_dsp_put_pipeline_called;
static int cras_dsp_pipeline_get_source_buffer_called;
static int cras_dsp_pipeline_get_sink_buffer_called;
static float cras_dsp_pipeline_source_buffer[2][DSP_BUFFER_SIZE];
static float cras_dsp_pipeline_sink_buffer[2][DSP_BUFFER_SIZE];
static int cras_dsp_pipeline_get_delay_called;
static int cras_dsp_pipeline_apply_called;
static int cras_dsp_pipeline_set_sink_ext_module_called;
static int cras_dsp_pipeline_apply_sample_count;
static unsigned int cras_mix_mute_count;
static unsigned int cras_dsp_num_input_channels_return;
static unsigned int cras_dsp_num_output_channels_return;
struct cras_dsp_context* cras_dsp_context_new_return;
static unsigned int cras_dsp_load_mock_pipeline_called;
static unsigned int rate_estimator_add_frames_num_frames;
static unsigned int rate_estimator_add_frames_called;
static int cras_system_get_mute_return;
static snd_pcm_format_t cras_scale_buffer_fmt;
static float cras_scale_buffer_scaler;
static int cras_scale_buffer_called;
static unsigned int pre_dsp_hook_called;
static const uint8_t* pre_dsp_hook_frames;
static void* pre_dsp_hook_cb_data;
static unsigned int post_dsp_hook_called;
static const uint8_t* post_dsp_hook_frames;
static void* post_dsp_hook_cb_data;
static int iodev_buffer_size;
static uint8_t audio_buffer[BUFFER_SIZE];
static struct cras_audio_area* audio_area;
static unsigned int put_buffer_nframes;
static int is_free_running_ret;
static int no_stream_called;
static int no_stream_enable;
// This will be used extensively in cras_iodev.
struct audio_thread_event_log* atlog;
static unsigned int simple_no_stream_called;
static int simple_no_stream_enable;
static int dev_stream_playback_frames_ret;
static int device_monitor_reset_device_called;
static int output_underrun_called;
static int set_mute_called;
static int cras_ramp_start_mute_ramp;
static float cras_ramp_start_from;
static float cras_ramp_start_to;
static int cras_ramp_start_duration_frames;
static int cras_ramp_start_is_called;
static int cras_ramp_reset_is_called;
static struct cras_ramp_action cras_ramp_get_current_action_ret;
static int cras_ramp_update_ramped_frames_num_frames;
static cras_ramp_cb cras_ramp_start_cb;
static void* cras_ramp_start_cb_data;
static int cras_device_monitor_set_device_mute_state_called;
unsigned int cras_device_monitor_set_device_mute_state_dev_idx;
static snd_pcm_format_t cras_scale_buffer_increment_fmt;
static uint8_t* cras_scale_buffer_increment_buff;
static unsigned int cras_scale_buffer_increment_frame;
static float cras_scale_buffer_increment_scaler;
static float cras_scale_buffer_increment_increment;
static float cras_scale_buffer_increment_target;
static int cras_scale_buffer_increment_channel;
static struct cras_audio_format audio_fmt;
static int buffer_share_add_id_called;
static int buffer_share_get_new_write_point_ret;
static int ext_mod_configure_called;
static struct input_data* input_data_create_ret;
static double rate_estimator_get_rate_ret;
static int cras_audio_thread_event_dev_overrun_called;
static char* atlog_name;
// Iodev callback
int update_channel_layout(struct cras_iodev* iodev) {
update_channel_layout_called = 1;
return update_channel_layout_return_val;
}
void ResetStubData() {
cras_iodev_list_disable_dev_called = 0;
select_node_called = 0;
notify_nodes_changed_called = 0;
notify_active_node_changed_called = 0;
dsp_context_new_sample_rate = 0;
dsp_context_new_purpose = NULL;
dsp_context_free_called = 0;
cras_audio_format_set_channel_layout_called = 0;
cras_dsp_get_pipeline_called = 0;
cras_dsp_get_pipeline_ret = 0;
cras_dsp_put_pipeline_called = 0;
cras_dsp_pipeline_get_source_buffer_called = 0;
cras_dsp_pipeline_get_sink_buffer_called = 0;
memset(&cras_dsp_pipeline_source_buffer, 0,
sizeof(cras_dsp_pipeline_source_buffer));
memset(&cras_dsp_pipeline_sink_buffer, 0,
sizeof(cras_dsp_pipeline_sink_buffer));
cras_dsp_pipeline_get_delay_called = 0;
cras_dsp_pipeline_apply_called = 0;
cras_dsp_pipeline_set_sink_ext_module_called = 0;
cras_dsp_pipeline_apply_sample_count = 0;
cras_dsp_num_input_channels_return = 2;
cras_dsp_num_output_channels_return = 2;
cras_dsp_context_new_return = NULL;
cras_dsp_load_mock_pipeline_called = 0;
rate_estimator_add_frames_num_frames = 0;
rate_estimator_add_frames_called = 0;
cras_system_get_mute_return = 0;
cras_system_get_volume_return = 100;
cras_mix_mute_count = 0;
pre_dsp_hook_called = 0;
pre_dsp_hook_frames = NULL;
post_dsp_hook_called = 0;
post_dsp_hook_frames = NULL;
iodev_buffer_size = 0;
// Assume there is some data in audio buffer.
memset(audio_buffer, 0xff, sizeof(audio_buffer));
if (audio_area) {
free(audio_area);
audio_area = NULL;
}
put_buffer_nframes = 0;
is_free_running_ret = 0;
no_stream_called = 0;
no_stream_enable = 0;
simple_no_stream_called = 0;
simple_no_stream_enable = 0;
dev_stream_playback_frames_ret = 0;
if (!atlog) {
if (asprintf(&atlog_name, "/ATlog-%d", getpid()) < 0) {
exit(-1);
}
/* To avoid un-used variable warning. */
atlog_rw_shm_fd = atlog_ro_shm_fd = -1;
atlog = audio_thread_event_log_init(atlog_name);
}
device_monitor_reset_device_called = 0;
output_underrun_called = 0;
set_mute_called = 0;
cras_ramp_start_mute_ramp = 0;
cras_ramp_start_from = 0.0;
cras_ramp_start_to = 0.0;
cras_ramp_start_duration_frames = 0;
cras_ramp_start_cb = NULL;
cras_ramp_start_cb_data = NULL;
cras_ramp_start_is_called = 0;
cras_ramp_reset_is_called = 0;
cras_ramp_get_current_action_ret.type = CRAS_RAMP_ACTION_NONE;
cras_ramp_update_ramped_frames_num_frames = 0;
cras_device_monitor_set_device_mute_state_called = 0;
cras_device_monitor_set_device_mute_state_dev_idx = 0;
cras_scale_buffer_called = 0;
cras_scale_buffer_increment_fmt = SND_PCM_FORMAT_UNKNOWN;
cras_scale_buffer_increment_buff = NULL;
cras_scale_buffer_increment_frame = 0;
cras_scale_buffer_increment_scaler = 0;
cras_scale_buffer_increment_increment = 0;
cras_scale_buffer_increment_target = 0.0;
cras_scale_buffer_increment_channel = 0;
audio_fmt.format = SND_PCM_FORMAT_S16_LE;
audio_fmt.frame_rate = 48000;
audio_fmt.num_channels = 2;
buffer_share_add_id_called = 0;
ext_mod_configure_called = 0;
rate_estimator_get_rate_ret = 0;
cras_audio_thread_event_dev_overrun_called = 0;
}
namespace {
// Test fill_time_from_frames
TEST(IoDevTestSuite, FillTimeFromFramesNormal) {
struct timespec ts;
cras_iodev_fill_time_from_frames(12000, 48000, &ts);
EXPECT_EQ(0, ts.tv_sec);
EXPECT_GE(ts.tv_nsec, 249900000);
EXPECT_LE(ts.tv_nsec, 250100000);
}
TEST(IoDevTestSuite, FillTimeFromFramesLong) {
struct timespec ts;
cras_iodev_fill_time_from_frames(120000 - 12000, 48000, &ts);
EXPECT_EQ(2, ts.tv_sec);
EXPECT_GE(ts.tv_nsec, 249900000);
EXPECT_LE(ts.tv_nsec, 250100000);
}
TEST(IoDevTestSuite, FillTimeFromFramesShort) {
struct timespec ts;
cras_iodev_fill_time_from_frames(12000 - 12000, 48000, &ts);
EXPECT_EQ(0, ts.tv_sec);
EXPECT_EQ(0, ts.tv_nsec);
}
class IoDevSetFormatTestSuite : public testing::Test {
protected:
virtual void SetUp() {
ResetStubData();
sample_rates_[0] = 44100;
sample_rates_[1] = 48000;
sample_rates_[2] = 0;
channel_counts_[0] = 2;
channel_counts_[1] = 0;
channel_counts_[2] = 0;
pcm_formats_[0] = SND_PCM_FORMAT_S16_LE;
pcm_formats_[1] = SND_PCM_FORMAT_S32_LE;
pcm_formats_[2] = static_cast<snd_pcm_format_t>(0);
update_channel_layout_called = 0;
update_channel_layout_return_val = 0;
memset(&iodev_, 0, sizeof(iodev_));
iodev_.update_channel_layout = update_channel_layout;
iodev_.supported_rates = sample_rates_;
iodev_.supported_channel_counts = channel_counts_;
iodev_.supported_formats = pcm_formats_;
iodev_.dsp_context = NULL;
cras_audio_format_set_channel_layout_called = 0;
main_log = main_thread_event_log_init();
}
virtual void TearDown() {
cras_iodev_free_format(&iodev_);
main_thread_event_log_deinit(main_log);
}
struct cras_iodev iodev_;
size_t sample_rates_[3];
size_t channel_counts_[3];
snd_pcm_format_t pcm_formats_[3];
};
TEST_F(IoDevSetFormatTestSuite, SupportedFormatSecondary) {
struct cras_audio_format fmt;
int rc;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev_.direction = CRAS_STREAM_OUTPUT;
ResetStubData();
rc = cras_iodev_set_format(&iodev_, &fmt);
EXPECT_EQ(0, rc);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, iodev_.format->format);
EXPECT_EQ(48000, iodev_.format->frame_rate);
EXPECT_EQ(2, iodev_.format->num_channels);
EXPECT_EQ(dsp_context_new_sample_rate, 48000);
EXPECT_STREQ(dsp_context_new_purpose, "playback");
}
TEST_F(IoDevSetFormatTestSuite, SupportedFormat32bit) {
struct cras_audio_format fmt;
int rc;
fmt.format = SND_PCM_FORMAT_S32_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev_.direction = CRAS_STREAM_OUTPUT;
ResetStubData();
rc = cras_iodev_set_format(&iodev_, &fmt);
EXPECT_EQ(0, rc);
EXPECT_EQ(SND_PCM_FORMAT_S32_LE, iodev_.format->format);
EXPECT_EQ(48000, iodev_.format->frame_rate);
EXPECT_EQ(2, iodev_.format->num_channels);
EXPECT_EQ(dsp_context_new_sample_rate, 48000);
EXPECT_STREQ(dsp_context_new_purpose, "playback");
}
TEST_F(IoDevSetFormatTestSuite, SupportedFormatPrimary) {
struct cras_audio_format fmt;
int rc;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 44100;
fmt.num_channels = 2;
iodev_.direction = CRAS_STREAM_INPUT;
ResetStubData();
rc = cras_iodev_set_format(&iodev_, &fmt);
EXPECT_EQ(0, rc);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, iodev_.format->format);
EXPECT_EQ(44100, iodev_.format->frame_rate);
EXPECT_EQ(2, iodev_.format->num_channels);
EXPECT_EQ(dsp_context_new_sample_rate, 44100);
EXPECT_STREQ(dsp_context_new_purpose, "capture");
}
TEST_F(IoDevSetFormatTestSuite, SupportedFormatDivisor) {
struct cras_audio_format fmt;
int rc;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 96000;
fmt.num_channels = 2;
rc = cras_iodev_set_format(&iodev_, &fmt);
EXPECT_EQ(0, rc);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, iodev_.format->format);
EXPECT_EQ(48000, iodev_.format->frame_rate);
EXPECT_EQ(2, iodev_.format->num_channels);
}
TEST_F(IoDevSetFormatTestSuite, Supported96k) {
struct cras_audio_format fmt;
int rc;
sample_rates_[0] = 48000;
sample_rates_[1] = 96000;
sample_rates_[2] = 0;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 96000;
fmt.num_channels = 2;
rc = cras_iodev_set_format(&iodev_, &fmt);
EXPECT_EQ(0, rc);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, iodev_.format->format);
EXPECT_EQ(96000, iodev_.format->frame_rate);
EXPECT_EQ(2, iodev_.format->num_channels);
}
TEST_F(IoDevSetFormatTestSuite, LimitLowRate) {
struct cras_audio_format fmt;
int rc;
sample_rates_[0] = 48000;
sample_rates_[1] = 8000;
sample_rates_[2] = 0;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 8000;
fmt.num_channels = 2;
rc = cras_iodev_set_format(&iodev_, &fmt);
EXPECT_EQ(0, rc);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, iodev_.format->format);
EXPECT_EQ(48000, iodev_.format->frame_rate);
EXPECT_EQ(2, iodev_.format->num_channels);
}
TEST_F(IoDevSetFormatTestSuite, UnsupportedChannelCount) {
struct cras_audio_format fmt;
int rc;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 96000;
fmt.num_channels = 1;
rc = cras_iodev_set_format(&iodev_, &fmt);
EXPECT_EQ(0, rc);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, iodev_.format->format);
EXPECT_EQ(48000, iodev_.format->frame_rate);
EXPECT_EQ(2, iodev_.format->num_channels);
}
TEST_F(IoDevSetFormatTestSuite, SupportedFormatFallbackDefault) {
struct cras_audio_format fmt;
int rc;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 96008;
fmt.num_channels = 2;
rc = cras_iodev_set_format(&iodev_, &fmt);
EXPECT_EQ(0, rc);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, iodev_.format->format);
EXPECT_EQ(44100, iodev_.format->frame_rate);
EXPECT_EQ(2, iodev_.format->num_channels);
}
TEST_F(IoDevSetFormatTestSuite, UpdateChannelLayoutSuccess) {
struct cras_audio_format fmt;
int rc;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 6;
iodev_.supported_channel_counts[0] = 6;
iodev_.supported_channel_counts[1] = 2;
rc = cras_iodev_set_format(&iodev_, &fmt);
EXPECT_EQ(0, rc);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, iodev_.format->format);
EXPECT_EQ(48000, iodev_.format->frame_rate);
EXPECT_EQ(6, iodev_.format->num_channels);
}
TEST_F(IoDevSetFormatTestSuite, UpdateChannelLayoutFail) {
static const int8_t stereo_layout[] = {0, 1, -1, -1, -1, -1,
-1, -1, -1, -1, -1};
struct cras_audio_format fmt;
int rc, i;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
cras_dsp_context_new_return = reinterpret_cast<cras_dsp_context*>(0xf0f);
update_channel_layout_return_val = -1;
iodev_.supported_channel_counts[0] = 6;
iodev_.supported_channel_counts[1] = 2;
rc = cras_iodev_set_format(&iodev_, &fmt);
EXPECT_EQ(0, rc);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, iodev_.format->format);
EXPECT_EQ(48000, iodev_.format->frame_rate);
EXPECT_EQ(2, iodev_.format->num_channels);
EXPECT_EQ(0, dsp_context_free_called);
for (i = 0; i < CRAS_CH_MAX; i++)
EXPECT_EQ(iodev_.format->channel_layout[i], stereo_layout[i]);
}
TEST_F(IoDevSetFormatTestSuite, UpdateChannelLayoutFail6ch) {
static const int8_t default_6ch_layout[] = {0, 1, 2, 3, 4, 5,
-1, -1, -1, -1, -1};
struct cras_audio_format fmt;
int rc, i;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 6;
cras_dsp_context_new_return = reinterpret_cast<cras_dsp_context*>(0xf0f);
update_channel_layout_return_val = -1;
iodev_.supported_channel_counts[0] = 6;
iodev_.supported_channel_counts[1] = 2;
rc = cras_iodev_set_format(&iodev_, &fmt);
EXPECT_EQ(0, rc);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, iodev_.format->format);
EXPECT_EQ(48000, iodev_.format->frame_rate);
EXPECT_EQ(6, iodev_.format->num_channels);
EXPECT_EQ(0, dsp_context_free_called);
for (i = 0; i < CRAS_CH_MAX; i++)
EXPECT_EQ(iodev_.format->channel_layout[i], default_6ch_layout[i]);
}
// Put buffer tests
static int get_buffer(cras_iodev* iodev,
struct cras_audio_area** area,
unsigned int* num) {
size_t sz = sizeof(*audio_area) + sizeof(struct cras_channel_area) * 2;
audio_area = (cras_audio_area*)calloc(1, sz);
audio_area->frames = *num;
audio_area->num_channels = 2;
audio_area->channels[0].buf = audio_buffer;
channel_area_set_channel(&audio_area->channels[0], CRAS_CH_FL);
audio_area->channels[0].step_bytes = 4;
audio_area->channels[1].buf = audio_buffer + 2;
channel_area_set_channel(&audio_area->channels[1], CRAS_CH_FR);
audio_area->channels[1].step_bytes = 4;
*area = audio_area;
return 0;
}
static int put_buffer(struct cras_iodev* iodev, unsigned int nframes) {
put_buffer_nframes = nframes;
if (audio_area) {
free(audio_area);
audio_area = NULL;
}
return 0;
}
static int no_stream(struct cras_iodev* odev, int enable) {
no_stream_called++;
no_stream_enable = enable;
// Use default no stream playback to test default behavior.
return cras_iodev_default_no_stream_playback(odev, enable);
}
static int is_free_running(const struct cras_iodev* odev) {
return is_free_running_ret;
}
static int pre_dsp_hook(const uint8_t* frames,
unsigned int nframes,
const struct cras_audio_format* fmt,
void* cb_data) {
pre_dsp_hook_called++;
pre_dsp_hook_frames = frames;
pre_dsp_hook_cb_data = cb_data;
return 0;
}
static int post_dsp_hook(const uint8_t* frames,
unsigned int nframes,
const struct cras_audio_format* fmt,
void* cb_data) {
post_dsp_hook_called++;
post_dsp_hook_frames = frames;
post_dsp_hook_cb_data = cb_data;
return 0;
}
static int loopback_hook_control(bool start, void* cb_data) {
return 0;
}
TEST(IoDevPutOutputBuffer, SystemMuted) {
struct cras_audio_format fmt;
struct cras_iodev iodev;
uint8_t* frames = reinterpret_cast<uint8_t*>(0x44);
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
cras_system_get_mute_return = 1;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.put_buffer = put_buffer;
iodev.rate_est = reinterpret_cast<struct rate_estimator*>(0xdeadbeef);
rc = cras_iodev_put_output_buffer(&iodev, frames, 20, NULL, nullptr);
EXPECT_EQ(0, rc);
EXPECT_EQ(20, cras_mix_mute_count);
EXPECT_EQ(20, put_buffer_nframes);
EXPECT_EQ(20, rate_estimator_add_frames_num_frames);
}
TEST(IoDevPutOutputBuffer, MuteForVolume) {
struct cras_iodev iodev;
struct cras_ionode ionode;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
memset(&ionode, 0, sizeof(ionode));
iodev.nodes = &ionode;
iodev.active_node = &ionode;
iodev.active_node->dev = &iodev;
// Case: System volume 100; Node volume 0. => Mute
cras_system_get_volume_return = 100;
iodev.active_node->volume = 0;
EXPECT_EQ(1, cras_iodev_is_zero_volume(&iodev));
// Case: System volume 100; Node volume 50. => Not mute
cras_system_get_volume_return = 100;
iodev.active_node->volume = 50;
EXPECT_EQ(0, cras_iodev_is_zero_volume(&iodev));
// Case: System volume 0; Node volume 50. => Mute
cras_system_get_volume_return = 0;
iodev.active_node->volume = 50;
EXPECT_EQ(1, cras_iodev_is_zero_volume(&iodev));
// Case: System volume 50; Node volume 50. => Mute
cras_system_get_volume_return = 50;
iodev.active_node->volume = 50;
EXPECT_EQ(1, cras_iodev_is_zero_volume(&iodev));
}
TEST(IoDevPutOutputBuffer, NodeVolumeZeroShouldMute) {
struct cras_audio_format fmt;
struct cras_iodev iodev;
struct cras_ionode ionode;
uint8_t* frames = reinterpret_cast<uint8_t*>(0x44);
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
memset(&ionode, 0, sizeof(ionode));
iodev.nodes = &ionode;
iodev.active_node = &ionode;
iodev.active_node->dev = &iodev;
iodev.active_node->volume = 0;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.put_buffer = put_buffer;
iodev.rate_est = reinterpret_cast<struct rate_estimator*>(0xdeadbeef);
rc = cras_iodev_put_output_buffer(&iodev, frames, 20, NULL, nullptr);
EXPECT_EQ(0, rc);
EXPECT_EQ(20, cras_mix_mute_count);
EXPECT_EQ(20, put_buffer_nframes);
EXPECT_EQ(20, rate_estimator_add_frames_num_frames);
}
TEST(IoDevPutOutputBuffer, SystemMutedWithRamp) {
struct cras_audio_format fmt;
struct cras_iodev iodev;
uint8_t* frames = reinterpret_cast<uint8_t*>(0x44);
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
cras_system_get_mute_return = 1;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.put_buffer = put_buffer;
// Assume device has ramp member.
iodev.ramp = reinterpret_cast<struct cras_ramp*>(0x1);
iodev.rate_est = reinterpret_cast<struct rate_estimator*>(0xdeadbeef);
// Assume ramping is done.
cras_ramp_get_current_action_ret.type = CRAS_RAMP_ACTION_NONE;
rc = cras_iodev_put_output_buffer(&iodev, frames, 20, NULL, nullptr);
// Output should be muted.
EXPECT_EQ(0, rc);
EXPECT_EQ(20, cras_mix_mute_count);
EXPECT_EQ(20, put_buffer_nframes);
EXPECT_EQ(20, rate_estimator_add_frames_num_frames);
// Test for the case where ramping is not done yet.
ResetStubData();
cras_ramp_get_current_action_ret.type = CRAS_RAMP_ACTION_PARTIAL;
rc = cras_iodev_put_output_buffer(&iodev, frames, 20, NULL, nullptr);
// Output should not be muted.
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_mix_mute_count);
// Ramped frames should be increased by 20.
EXPECT_EQ(20, cras_ramp_update_ramped_frames_num_frames);
EXPECT_EQ(20, put_buffer_nframes);
EXPECT_EQ(20, rate_estimator_add_frames_num_frames);
}
TEST(IoDevPutOutputBuffer, NodeVolumeZeroShouldMuteWithRamp) {
struct cras_audio_format fmt;
struct cras_iodev iodev;
struct cras_ionode ionode;
uint8_t* frames = reinterpret_cast<uint8_t*>(0x44);
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
memset(&ionode, 0, sizeof(ionode));
iodev.nodes = &ionode;
iodev.active_node = &ionode;
iodev.active_node->dev = &iodev;
iodev.active_node->volume = 0;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.put_buffer = put_buffer;
iodev.rate_est = reinterpret_cast<struct rate_estimator*>(0xdeadbeef);
// Assume device has ramp member.
iodev.ramp = reinterpret_cast<struct cras_ramp*>(0x1);
// Assume ramping is done.
cras_ramp_get_current_action_ret.type = CRAS_RAMP_ACTION_NONE;
rc = cras_iodev_put_output_buffer(&iodev, frames, 20, NULL, nullptr);
EXPECT_EQ(0, rc);
EXPECT_EQ(20, cras_mix_mute_count);
EXPECT_EQ(20, put_buffer_nframes);
EXPECT_EQ(20, rate_estimator_add_frames_num_frames);
// Test for the case where ramping is not done yet.
ResetStubData();
cras_ramp_get_current_action_ret.type = CRAS_RAMP_ACTION_PARTIAL;
rc = cras_iodev_put_output_buffer(&iodev, frames, 20, NULL, nullptr);
// Output should not be muted.
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_mix_mute_count);
// Ramped frames should be increased by 20.
EXPECT_EQ(20, cras_ramp_update_ramped_frames_num_frames);
EXPECT_EQ(20, put_buffer_nframes);
EXPECT_EQ(20, rate_estimator_add_frames_num_frames);
}
TEST(IoDevPutOutputBuffer, NoDSP) {
struct cras_audio_format fmt;
struct cras_iodev iodev;
struct cras_ionode ionode;
uint8_t* frames = reinterpret_cast<uint8_t*>(0x44);
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
memset(&ionode, 0, sizeof(ionode));
iodev.nodes = &ionode;
iodev.active_node = &ionode;
iodev.active_node->dev = &iodev;
iodev.active_node->volume = 100;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.put_buffer = put_buffer;
iodev.rate_est = reinterpret_cast<struct rate_estimator*>(0xdeadbeef);
rc = cras_iodev_put_output_buffer(&iodev, frames, 22, NULL, nullptr);
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_mix_mute_count);
EXPECT_EQ(22, put_buffer_nframes);
EXPECT_EQ(22, rate_estimator_add_frames_num_frames);
}
TEST(IoDevPutOutputBuffer, DSP) {
struct cras_audio_format fmt;
struct cras_iodev iodev;
uint8_t* frames = reinterpret_cast<uint8_t*>(0x44);
int rc;
struct cras_loopback pre_dsp;
struct cras_loopback post_dsp;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
iodev.dsp_context = reinterpret_cast<cras_dsp_context*>(0x15);
cras_dsp_get_pipeline_ret = 0x25;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.put_buffer = put_buffer;
iodev.rate_est = reinterpret_cast<struct rate_estimator*>(0xdeadbeef);
pre_dsp.type = LOOPBACK_POST_MIX_PRE_DSP;
pre_dsp.hook_data = pre_dsp_hook;
pre_dsp.hook_control = loopback_hook_control;
pre_dsp.cb_data = (void*)0x1234;
DL_APPEND(iodev.loopbacks, &pre_dsp);
post_dsp.type = LOOPBACK_POST_DSP;
post_dsp.hook_data = post_dsp_hook;
post_dsp.hook_control = loopback_hook_control;
post_dsp.cb_data = (void*)0x5678;
DL_APPEND(iodev.loopbacks, &post_dsp);
rc = cras_iodev_put_output_buffer(&iodev, frames, 32, NULL, nullptr);
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_mix_mute_count);
EXPECT_EQ(1, pre_dsp_hook_called);
EXPECT_EQ(frames, pre_dsp_hook_frames);
EXPECT_EQ((void*)0x1234, pre_dsp_hook_cb_data);
EXPECT_EQ(1, post_dsp_hook_called);
EXPECT_EQ((void*)0x5678, post_dsp_hook_cb_data);
EXPECT_EQ(32, put_buffer_nframes);
EXPECT_EQ(32, rate_estimator_add_frames_num_frames);
EXPECT_EQ(32, cras_dsp_pipeline_apply_sample_count);
EXPECT_EQ(cras_dsp_get_pipeline_called, cras_dsp_put_pipeline_called);
}
TEST(IoDevPutOutputBuffer, SoftVol) {
struct cras_audio_format fmt;
struct cras_iodev iodev;
uint8_t* frames = reinterpret_cast<uint8_t*>(0x44);
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
iodev.software_volume_needed = 1;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.put_buffer = put_buffer;
iodev.rate_est = reinterpret_cast<struct rate_estimator*>(0xdeadbeef);
cras_system_get_volume_return = 13;
softvol_scalers[13] = 0.435;
rc = cras_iodev_put_output_buffer(&iodev, frames, 53, NULL, nullptr);
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_mix_mute_count);
EXPECT_EQ(53, put_buffer_nframes);
EXPECT_EQ(53, rate_estimator_add_frames_num_frames);
EXPECT_EQ(softvol_scalers[13], cras_scale_buffer_scaler);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, cras_scale_buffer_fmt);
}
TEST(IoDevPutOutputBuffer, SoftVolWithRamp) {
struct cras_audio_format fmt;
struct cras_iodev iodev;
uint8_t* frames = reinterpret_cast<uint8_t*>(0x44);
int rc;
int n_frames = 53;
float ramp_scaler = 0.2;
float increment = 0.001;
float target = 1.0;
int volume = 13;
float volume_scaler = 0.435;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
iodev.software_volume_needed = 1;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.put_buffer = put_buffer;
// Assume device has ramp member.
iodev.ramp = reinterpret_cast<struct cras_ramp*>(0x1);
iodev.rate_est = reinterpret_cast<struct rate_estimator*>(0xdeadbeef);
// Assume ramping is done.
cras_ramp_get_current_action_ret.type = CRAS_RAMP_ACTION_NONE;
cras_system_get_volume_return = volume;
softvol_scalers[volume] = volume_scaler;
rc = cras_iodev_put_output_buffer(&iodev, frames, n_frames, NULL, nullptr);
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_mix_mute_count);
EXPECT_EQ(n_frames, put_buffer_nframes);
EXPECT_EQ(n_frames, rate_estimator_add_frames_num_frames);
EXPECT_EQ(softvol_scalers[volume], cras_scale_buffer_scaler);
EXPECT_EQ(SND_PCM_FORMAT_S16_LE, cras_scale_buffer_fmt);
ResetStubData();
// Assume ramping is not done.
cras_ramp_get_current_action_ret.type = CRAS_RAMP_ACTION_PARTIAL;
cras_ramp_get_current_action_ret.scaler = ramp_scaler;
cras_ramp_get_current_action_ret.increment = increment;
cras_ramp_get_current_action_ret.target = target;
cras_system_get_volume_return = volume;
softvol_scalers[volume] = volume_scaler;
rc = cras_iodev_put_output_buffer(&iodev, frames, n_frames, NULL, nullptr);
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_mix_mute_count);
// cras_scale_buffer is not called.
EXPECT_EQ(0, cras_scale_buffer_called);
// Verify the arguments passed to cras_scale_buffer_increment.
EXPECT_EQ(fmt.format, cras_scale_buffer_increment_fmt);
EXPECT_EQ(frames, cras_scale_buffer_increment_buff);
EXPECT_EQ(n_frames, cras_scale_buffer_increment_frame);
// Initial scaler will be product of software volume scaler and
// ramp scaler.
EXPECT_FLOAT_EQ(softvol_scalers[volume] * ramp_scaler,
cras_scale_buffer_increment_scaler);
// Increment scaler will be product of software volume scaler and
// ramp increment.
EXPECT_FLOAT_EQ(softvol_scalers[volume] * increment,
cras_scale_buffer_increment_increment);
EXPECT_FLOAT_EQ(softvol_scalers[volume] * target,
cras_scale_buffer_increment_target);
EXPECT_EQ(fmt.num_channels, cras_scale_buffer_increment_channel);
EXPECT_EQ(n_frames, put_buffer_nframes);
EXPECT_EQ(n_frames, rate_estimator_add_frames_num_frames);
}
TEST(IoDevPutOutputBuffer, NoSoftVolWithRamp) {
struct cras_audio_format fmt;
struct cras_iodev iodev;
uint8_t* frames = reinterpret_cast<uint8_t*>(0x44);
int rc;
int n_frames = 53;
float ramp_scaler = 0.2;
float increment = 0.001;
float target = 1.0;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
iodev.software_volume_needed = 0;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.put_buffer = put_buffer;
// Assume device has ramp member.
iodev.ramp = reinterpret_cast<struct cras_ramp*>(0x1);
iodev.rate_est = reinterpret_cast<struct rate_estimator*>(0xdeadbeef);
// Assume ramping is done.
cras_ramp_get_current_action_ret.type = CRAS_RAMP_ACTION_NONE;
rc = cras_iodev_put_output_buffer(&iodev, frames, n_frames, NULL, nullptr);
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_mix_mute_count);
// cras_scale_buffer is not called.
EXPECT_EQ(0, cras_scale_buffer_called);
EXPECT_EQ(n_frames, put_buffer_nframes);
EXPECT_EQ(n_frames, rate_estimator_add_frames_num_frames);
ResetStubData();
// Assume ramping is not done.
cras_ramp_get_current_action_ret.type = CRAS_RAMP_ACTION_PARTIAL;
cras_ramp_get_current_action_ret.scaler = ramp_scaler;
cras_ramp_get_current_action_ret.increment = increment;
cras_ramp_get_current_action_ret.target = target;
rc = cras_iodev_put_output_buffer(&iodev, frames, n_frames, NULL, nullptr);
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_mix_mute_count);
// cras_scale_buffer is not called.
EXPECT_EQ(0, cras_scale_buffer_called);
// Verify the arguments passed to cras_scale_buffer_increment.
EXPECT_EQ(fmt.format, cras_scale_buffer_increment_fmt);
EXPECT_EQ(frames, cras_scale_buffer_increment_buff);
EXPECT_EQ(n_frames, cras_scale_buffer_increment_frame);
EXPECT_FLOAT_EQ(ramp_scaler, cras_scale_buffer_increment_scaler);
EXPECT_FLOAT_EQ(increment, cras_scale_buffer_increment_increment);
EXPECT_FLOAT_EQ(1.0, cras_scale_buffer_increment_target);
EXPECT_EQ(fmt.num_channels, cras_scale_buffer_increment_channel);
EXPECT_EQ(n_frames, put_buffer_nframes);
EXPECT_EQ(n_frames, rate_estimator_add_frames_num_frames);
}
TEST(IoDevPutOutputBuffer, Scale32Bit) {
struct cras_audio_format fmt;
struct cras_iodev iodev;
uint8_t* frames = reinterpret_cast<uint8_t*>(0x44);
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
iodev.software_volume_needed = 1;
cras_system_get_volume_return = 13;
softvol_scalers[13] = 0.435;
fmt.format = SND_PCM_FORMAT_S32_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.put_buffer = put_buffer;
iodev.rate_est = reinterpret_cast<struct rate_estimator*>(0xdeadbeef);
rc = cras_iodev_put_output_buffer(&iodev, frames, 53, NULL, nullptr);
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_mix_mute_count);
EXPECT_EQ(53, put_buffer_nframes);
EXPECT_EQ(53, rate_estimator_add_frames_num_frames);
EXPECT_EQ(SND_PCM_FORMAT_S32_LE, cras_scale_buffer_fmt);
}
// frames queued/avail tests
static unsigned fr_queued = 0;
static int frames_queued(const struct cras_iodev* iodev,
struct timespec* tstamp) {
clock_gettime(CLOCK_MONOTONIC_RAW, tstamp);
return fr_queued;
}
TEST(IoDevQueuedBuffer, ZeroMinBufferLevel) {
struct cras_iodev iodev;
struct timespec tstamp;
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
iodev.direction = CRAS_STREAM_OUTPUT;
iodev.frames_queued = frames_queued;
iodev.min_buffer_level = 0;
iodev.buffer_size = 200;
fr_queued = 50;
rc = cras_iodev_frames_queued(&iodev, &tstamp);
EXPECT_EQ(50, rc);
rc = cras_iodev_buffer_avail(&iodev, rc);
EXPECT_EQ(150, rc);
}
TEST(IoDevQueuedBuffer, NonZeroMinBufferLevel) {
struct cras_iodev iodev;
struct timespec hw_tstamp;
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
iodev.direction = CRAS_STREAM_OUTPUT;
iodev.frames_queued = frames_queued;
iodev.min_buffer_level = 100;
iodev.buffer_size = 200;
fr_queued = 180;
rc = cras_iodev_frames_queued(&iodev, &hw_tstamp);
EXPECT_EQ(80, rc);
rc = cras_iodev_buffer_avail(&iodev, rc);
EXPECT_EQ(20, rc);
/* When fr_queued < min_buffer_level*/
fr_queued = 80;
rc = cras_iodev_frames_queued(&iodev, &hw_tstamp);
EXPECT_EQ(0, rc);
rc = cras_iodev_buffer_avail(&iodev, rc);
EXPECT_EQ(100, rc);
}
static void update_active_node(struct cras_iodev* iodev,
unsigned node_idx,
unsigned dev_enabled) {}
static void dev_set_mute(struct cras_iodev* iodev) {
set_mute_called++;
}
TEST(IoNodePlug, PlugUnplugNode) {
struct cras_iodev iodev;
struct cras_ionode ionode, ionode2;
main_log = main_thread_event_log_init();
memset(&iodev, 0, sizeof(iodev));
memset(&ionode, 0, sizeof(ionode));
memset(&ionode2, 0, sizeof(ionode2));
iodev.direction = CRAS_STREAM_INPUT;
iodev.update_active_node = update_active_node;
ionode.dev = &iodev;
cras_iodev_add_node(&iodev, &ionode);
ionode2.dev = &iodev;
cras_iodev_add_node(&iodev, &ionode2);
cras_iodev_set_active_node(&iodev, &ionode);
ResetStubData();
cras_iodev_set_node_plugged(&ionode, 1);
EXPECT_EQ(0, cras_iodev_list_disable_dev_called);
cras_iodev_set_node_plugged(&ionode, 0);
EXPECT_EQ(1, cras_iodev_list_disable_dev_called);
/* Unplug non-active node shouldn't disable iodev. */
cras_iodev_set_node_plugged(&ionode2, 1);
EXPECT_EQ(1, cras_iodev_list_disable_dev_called);
cras_iodev_set_node_plugged(&ionode2, 0);
EXPECT_EQ(1, cras_iodev_list_disable_dev_called);
main_thread_event_log_deinit(main_log);
}
TEST(IoDev, AddRemoveNode) {
struct cras_iodev iodev;
struct cras_ionode ionode;
memset(&iodev, 0, sizeof(iodev));
memset(&ionode, 0, sizeof(ionode));
ResetStubData();
EXPECT_EQ(0, notify_nodes_changed_called);
cras_iodev_add_node(&iodev, &ionode);
EXPECT_EQ(1, notify_nodes_changed_called);
cras_iodev_rm_node(&iodev, &ionode);
EXPECT_EQ(2, notify_nodes_changed_called);
}
TEST(IoDev, SetActiveNode) {
struct cras_iodev iodev;
struct cras_ionode ionode;
memset(&iodev, 0, sizeof(iodev));
memset(&ionode, 0, sizeof(ionode));
ResetStubData();
EXPECT_EQ(0, notify_active_node_changed_called);
cras_iodev_set_active_node(&iodev, &ionode);
EXPECT_EQ(1, notify_active_node_changed_called);
}
TEST(IoDev, SetMute) {
struct cras_iodev iodev;
int rc;
memset(&iodev, 0, sizeof(iodev));
iodev.set_mute = dev_set_mute;
iodev.state = CRAS_IODEV_STATE_CLOSE;
ResetStubData();
rc = cras_iodev_set_mute(&iodev);
EXPECT_EQ(0, rc);
EXPECT_EQ(0, set_mute_called);
iodev.state = CRAS_IODEV_STATE_OPEN;
rc = cras_iodev_set_mute(&iodev);
EXPECT_EQ(0, rc);
EXPECT_EQ(1, set_mute_called);
}
// Test software volume changes for default output.
TEST(IoDev, SoftwareVolume) {
struct cras_iodev iodev;
struct cras_ionode ionode;
memset(&iodev, 0, sizeof(iodev));
memset(&ionode, 0, sizeof(ionode));
ResetStubData();
iodev.nodes = &ionode;
iodev.active_node = &ionode;
iodev.active_node->dev = &iodev;
iodev.active_node->volume = 100;
iodev.software_volume_needed = 0;
softvol_scalers[80] = 0.5;
softvol_scalers[70] = 0.3;
// Check that system volume changes software volume if needed.
cras_system_get_volume_return = 80;
// system_volume - 100 + node_volume = 80 - 100 + 100 = 80
EXPECT_FLOAT_EQ(0.5, cras_iodev_get_software_volume_scaler(&iodev));
// Check that node volume changes software volume if needed.
iodev.active_node->volume = 90;
// system_volume - 100 + node_volume = 80 - 100 + 90 = 70
EXPECT_FLOAT_EQ(0.3, cras_iodev_get_software_volume_scaler(&iodev));
}
// Test software gain scaler.
TEST(IoDev, SoftwareGain) {
struct cras_iodev iodev;
struct cras_ionode ionode;
memset(&iodev, 0, sizeof(iodev));
memset(&ionode, 0, sizeof(ionode));
ResetStubData();
iodev.nodes = &ionode;
iodev.active_node = &ionode;
iodev.active_node->dev = &iodev;
ionode.capture_gain = 2400;
ionode.software_volume_needed = 1;
// 2400 * 0.01 dB is 15.848931
EXPECT_FLOAT_EQ(15.848931, cras_iodev_get_software_gain_scaler(&iodev));
// Software gain scaler should be 1.0 if software gain is not needed.
ionode.software_volume_needed = 0;
EXPECT_FLOAT_EQ(1.0, cras_iodev_get_software_gain_scaler(&iodev));
}
// This get_buffer implementation set returned frames larger than requested
// frames.
static int bad_get_buffer(struct cras_iodev* iodev,
struct cras_audio_area** area,
unsigned* frames) {
*frames = *frames + 1;
return 0;
}
// Check that if get_buffer implementation returns invalid frames,
// cras_iodev_get_output_buffer and cras_iodev_get_input_buffer can return
// error.
TEST(IoDev, GetBufferInvalidFrames) {
struct cras_iodev iodev;
struct cras_audio_area** area = NULL;
unsigned int frames = 512;
struct cras_audio_format fmt;
// Format is used in cras_iodev_get_input_buffer;
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
memset(&iodev, 0, sizeof(iodev));
ResetStubData();
iodev.format = &fmt;
iodev.get_buffer = bad_get_buffer;
EXPECT_EQ(-EINVAL, cras_iodev_get_output_buffer(&iodev, area, &frames));
EXPECT_EQ(-EINVAL, cras_iodev_get_input_buffer(&iodev, &frames));
}
static int configure_dev(struct cras_iodev* iodev) {
iodev->buffer_size = iodev_buffer_size;
return 0;
}
TEST(IoDev, OpenOutputDeviceNoStart) {
struct cras_iodev iodev;
memset(&iodev, 0, sizeof(iodev));
iodev.configure_dev = configure_dev;
iodev.direction = CRAS_STREAM_OUTPUT;
iodev.format = &audio_fmt;
iodev.get_buffer = get_buffer;
iodev.put_buffer = put_buffer;
ResetStubData();
iodev.state = CRAS_IODEV_STATE_CLOSE;
iodev_buffer_size = 1024;
cras_iodev_open(&iodev, 240, &audio_fmt);
EXPECT_EQ(0, iodev.max_cb_level);
EXPECT_EQ(240, iodev.min_cb_level);
// Test that state is no stream run when there is no start ops.
EXPECT_EQ(CRAS_IODEV_STATE_NO_STREAM_RUN, iodev.state);
}
TEST(IoDev, OpenOutputDeviceWithLowRateFmt) {
struct cras_iodev iodev;
memset(&iodev, 0, sizeof(iodev));
iodev.configure_dev = configure_dev;
iodev.direction = CRAS_STREAM_OUTPUT;
iodev.format = &audio_fmt;
iodev.get_buffer = get_buffer;
iodev.put_buffer = put_buffer;
ResetStubData();
cras_audio_format low_rate_fmt = audio_fmt;
low_rate_fmt.frame_rate = 8000;
iodev.state = CRAS_IODEV_STATE_CLOSE;
iodev_buffer_size = 1024;
cras_iodev_open(&iodev, 40, &low_rate_fmt);
EXPECT_EQ(0, iodev.max_cb_level);
// Test that iodev min_cb_level should be set to
// 40 * 48000 / 8000 = 240
EXPECT_EQ(240, iodev.min_cb_level);
}
int fake_start(const struct cras_iodev* iodev) {
return 0;
}
TEST(IoDev, OpenOutputDeviceWithStart) {
struct cras_iodev iodev;
memset(&iodev, 0, sizeof(iodev));
iodev.configure_dev = configure_dev;
iodev.direction = CRAS_STREAM_OUTPUT;
iodev.format = &audio_fmt;
ResetStubData();
iodev.state = CRAS_IODEV_STATE_CLOSE;
iodev.start = fake_start;
iodev_buffer_size = 1024;
cras_iodev_open(&iodev, 240, &audio_fmt);
EXPECT_EQ(0, iodev.max_cb_level);
EXPECT_EQ(240, iodev.min_cb_level);
// Test that state is no stream run when there is start ops.
EXPECT_EQ(CRAS_IODEV_STATE_OPEN, iodev.state);
}
TEST(IoDev, OpenInputDeviceNoStart) {
struct cras_iodev iodev;
memset(&iodev, 0, sizeof(iodev));
iodev.configure_dev = configure_dev;
iodev.direction = CRAS_STREAM_INPUT;
iodev.format = &audio_fmt;
ResetStubData();
iodev.state = CRAS_IODEV_STATE_CLOSE;
iodev_buffer_size = 1024;
cras_iodev_open(&iodev, 240, &audio_fmt);
EXPECT_EQ(0, iodev.max_cb_level);
EXPECT_EQ(240, iodev.min_cb_level);
// Test that state is normal run when there is start ops.
EXPECT_EQ(CRAS_IODEV_STATE_NORMAL_RUN, iodev.state);
}
TEST(IoDev, OpenInputDeviceWithStart) {
struct cras_iodev iodev;
memset(&iodev, 0, sizeof(iodev));
iodev.configure_dev = configure_dev;
iodev.direction = CRAS_STREAM_INPUT;
iodev.format = &audio_fmt;
ResetStubData();
iodev.state = CRAS_IODEV_STATE_CLOSE;
iodev.start = fake_start;
iodev_buffer_size = 1024;
cras_iodev_open(&iodev, 240, &audio_fmt);
EXPECT_EQ(0, iodev.max_cb_level);
EXPECT_EQ(240, iodev.min_cb_level);
// Test that state is normal run even if there is start ops.
EXPECT_EQ(CRAS_IODEV_STATE_NORMAL_RUN, iodev.state);
}
TEST(IoDev, OpenInputDeviceWithLowRateFmt) {
struct cras_iodev iodev;
memset(&iodev, 0, sizeof(iodev));
iodev.configure_dev = configure_dev;
iodev.direction = CRAS_STREAM_INPUT;
iodev.format = &audio_fmt;
ResetStubData();
cras_audio_format low_rate_fmt = audio_fmt;
low_rate_fmt.frame_rate = 8000;
iodev.state = CRAS_IODEV_STATE_CLOSE;
iodev_buffer_size = 1024;
cras_iodev_open(&iodev, 40, &low_rate_fmt);
EXPECT_EQ(0, iodev.max_cb_level);
// Test that iodev min_cb_level should be set to
// 40 * 48000 / 8000 = 240
EXPECT_EQ(240, iodev.min_cb_level);
}
static int simple_no_stream(struct cras_iodev* dev, int enable) {
simple_no_stream_enable = enable;
simple_no_stream_called++;
return 0;
}
TEST(IoDev, AddRmStream) {
struct cras_iodev iodev;
struct cras_rstream rstream1, rstream2;
struct dev_stream stream1, stream2;
memset(&iodev, 0, sizeof(iodev));
memset(&rstream1, 0, sizeof(rstream1));
memset(&rstream2, 0, sizeof(rstream2));
iodev.configure_dev = configure_dev;
iodev.no_stream = simple_no_stream;
iodev.format = &audio_fmt;
iodev.state = CRAS_IODEV_STATE_NORMAL_RUN;
iodev.get_buffer = get_buffer;
iodev.put_buffer = put_buffer;
rstream1.cb_threshold = 800;
stream1.stream = &rstream1;
stream1.is_running = 0;
rstream2.cb_threshold = 400;
stream2.stream = &rstream2;
stream2.is_running = 0;
ResetStubData();
iodev_buffer_size = 1024;
cras_iodev_open(&iodev, rstream1.cb_threshold, &audio_fmt);
EXPECT_EQ(0, iodev.max_cb_level);
EXPECT_EQ(512, iodev.min_cb_level);
/* min_cb_level should not exceed half the buffer size. */
cras_iodev_add_stream(&iodev, &stream1);
cras_iodev_start_stream(&iodev, &stream1);
EXPECT_EQ(800, iodev.max_cb_level);
EXPECT_EQ(512, iodev.min_cb_level);
EXPECT_EQ(1, buffer_share_add_id_called);
cras_iodev_add_stream(&iodev, &stream2);
cras_iodev_start_stream(&iodev, &stream2);
EXPECT_EQ(800, iodev.max_cb_level);
EXPECT_EQ(400, iodev.min_cb_level);
EXPECT_EQ(2, buffer_share_add_id_called);
cras_iodev_rm_stream(&iodev, &rstream1);
EXPECT_EQ(400, iodev.max_cb_level);
EXPECT_EQ(400, iodev.min_cb_level);
EXPECT_EQ(0, simple_no_stream_called);
/* When all streams are removed, keep the last min_cb_level for draining. */
cras_iodev_rm_stream(&iodev, &rstream2);
EXPECT_EQ(0, iodev.max_cb_level);
EXPECT_EQ(512, iodev.min_cb_level);
}
TEST(IoDev, RmStreamUpdateFetchTime) {
struct cras_iodev iodev;
struct cras_rstream rstream1, rstream2, rstream3;
struct dev_stream stream1, stream2, stream3;
memset(&iodev, 0, sizeof(iodev));
memset(&rstream1, 0, sizeof(rstream1));
memset(&rstream2, 0, sizeof(rstream2));
memset(&rstream3, 0, sizeof(rstream2));
memset(&stream1, 0, sizeof(stream2));
memset(&stream2, 0, sizeof(stream2));
memset(&stream3, 0, sizeof(stream2));
iodev.configure_dev = configure_dev;
iodev.no_stream = simple_no_stream;
iodev.format = &audio_fmt;
iodev.state = CRAS_IODEV_STATE_NORMAL_RUN;
iodev.get_buffer = get_buffer;
iodev.put_buffer = put_buffer;
rstream1.direction = CRAS_STREAM_OUTPUT;
rstream2.direction = CRAS_STREAM_OUTPUT;
rstream3.direction = CRAS_STREAM_OUTPUT;
stream1.stream = &rstream1;
stream2.stream = &rstream2;
stream3.stream = &rstream3;
ResetStubData();
cras_iodev_open(&iodev, 1024, &audio_fmt);
cras_iodev_add_stream(&iodev, &stream1);
cras_iodev_start_stream(&iodev, &stream1);
cras_iodev_add_stream(&iodev, &stream2);
cras_iodev_start_stream(&iodev, &stream2);
cras_iodev_add_stream(&iodev, &stream3);
rstream1.next_cb_ts.tv_sec = 2;
rstream1.next_cb_ts.tv_nsec = 0;
rstream2.next_cb_ts.tv_sec = 1;
rstream2.next_cb_ts.tv_nsec = 0;
rstream3.next_cb_ts.tv_sec = 1;
rstream3.next_cb_ts.tv_nsec = 0;
/*
* Because rstream3 has not started yet, the next_cb_ts will be change to the
* earliest fetch time of remaining streams, which is rstream1.
*/
cras_iodev_rm_stream(&iodev, &rstream2);
EXPECT_EQ(rstream3.next_cb_ts.tv_sec, rstream1.next_cb_ts.tv_sec);
EXPECT_EQ(rstream3.next_cb_ts.tv_nsec, rstream1.next_cb_ts.tv_nsec);
}
TEST(IoDev, StartStreams) {
struct cras_iodev iodev1, iodev2;
struct cras_rstream rstream1, rstream2;
struct dev_stream stream1, stream2;
memset(&iodev1, 0, sizeof(iodev1));
memset(&iodev2, 0, sizeof(iodev2));
memset(&rstream1, 0, sizeof(rstream1));
memset(&rstream2, 0, sizeof(rstream2));
memset(&stream1, 0, sizeof(stream1));
memset(&stream2, 0, sizeof(stream2));
iodev1.configure_dev = configure_dev;
iodev1.format = &audio_fmt;
iodev1.state = CRAS_IODEV_STATE_NORMAL_RUN;
iodev1.get_buffer = get_buffer;
iodev1.put_buffer = put_buffer;
iodev2.configure_dev = configure_dev;
iodev2.format = &audio_fmt;
iodev2.state = CRAS_IODEV_STATE_NORMAL_RUN;
rstream1.direction = CRAS_STREAM_INPUT;
rstream2.direction = CRAS_STREAM_OUTPUT;
stream1.stream = &rstream1;
stream2.stream = &rstream2;
/* An input stream starts running immediately. */
ResetStubData();
iodev1.direction = CRAS_STREAM_INPUT;
cras_iodev_open(&iodev1, 1024, &audio_fmt);
cras_iodev_add_stream(&iodev1, &stream1);
EXPECT_EQ(1, dev_stream_is_running(&stream1));
EXPECT_EQ(1, buffer_share_add_id_called);
/* An output stream starts running after its first fetch. */
ResetStubData();
iodev2.direction = CRAS_STREAM_OUTPUT;
cras_iodev_open(&iodev2, 1024, &audio_fmt);
cras_iodev_add_stream(&iodev2, &stream2);
EXPECT_EQ(0, dev_stream_is_running(&stream2));
EXPECT_EQ(0, buffer_share_add_id_called);
}
TEST(IoDev, TriggerOnlyStreamNoBufferShare) {
struct cras_iodev iodev;
struct cras_rstream rstream;
struct dev_stream stream;
memset(&iodev, 0, sizeof(iodev));
memset(&rstream, 0, sizeof(rstream));
iodev.configure_dev = configure_dev;
iodev.format = &audio_fmt;
iodev.state = CRAS_IODEV_STATE_NORMAL_RUN;
rstream.cb_threshold = 800;
rstream.flags = TRIGGER_ONLY;
stream.stream = &rstream;
ResetStubData();
cras_iodev_open(&iodev, rstream.cb_threshold, &audio_fmt);
/* TRIGGER_ONLY streams shall not be added to buffer_share. */
cras_iodev_add_stream(&iodev, &stream);
EXPECT_EQ(0, buffer_share_add_id_called);
}
TEST(IoDev, FillZeros) {
struct cras_iodev iodev;
struct cras_audio_format fmt;
unsigned int frames = 50;
int16_t* zeros;
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.get_buffer = get_buffer;
iodev.put_buffer = put_buffer;
iodev.direction = CRAS_STREAM_INPUT;
rc = cras_iodev_fill_odev_zeros(&iodev, frames);
EXPECT_EQ(-EINVAL, rc);
iodev.direction = CRAS_STREAM_OUTPUT;
rc = cras_iodev_fill_odev_zeros(&iodev, frames);
EXPECT_EQ(0, rc);
EXPECT_EQ(frames, put_buffer_nframes);
zeros = (int16_t*)calloc(frames * 2, sizeof(*zeros));
rc = memcmp(audio_buffer, zeros, frames * 2 * 2);
free(zeros);
EXPECT_EQ(0, rc);
}
TEST(IoDev, DefaultNoStreamPlaybackRunning) {
struct cras_iodev iodev;
struct cras_audio_format fmt;
unsigned int hw_level = 50;
unsigned int min_cb_level = 240;
unsigned int zeros_to_fill;
int16_t* zeros;
int rc;
memset(&iodev, 0, sizeof(iodev));
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.min_cb_level = min_cb_level;
iodev.get_buffer = get_buffer;
iodev.put_buffer = put_buffer;
iodev.frames_queued = frames_queued;
iodev.min_buffer_level = 0;
iodev.direction = CRAS_STREAM_OUTPUT;
iodev.buffer_size = BUFFER_SIZE;
iodev.no_stream = no_stream;
ResetStubData();
// Device is running. hw_level is less than target.
// Need to fill to callback level * 2;
iodev.state = CRAS_IODEV_STATE_NO_STREAM_RUN;
fr_queued = hw_level;
zeros_to_fill = min_cb_level * 2 - hw_level;
rc = cras_iodev_default_no_stream_playback(&iodev, 1);
EXPECT_EQ(0, rc);
EXPECT_EQ(CRAS_IODEV_STATE_NO_STREAM_RUN, iodev.state);
EXPECT_EQ(zeros_to_fill, put_buffer_nframes);
zeros = (int16_t*)calloc(zeros_to_fill * 2, sizeof(*zeros));
EXPECT_EQ(0, memcmp(audio_buffer, zeros, zeros_to_fill * 2 * 2));
free(zeros);
ResetStubData();
// Device is running. hw_level is not less than target.
// No need to fill zeros.
iodev.state = CRAS_IODEV_STATE_NO_STREAM_RUN;
hw_level = min_cb_level * 2;
fr_queued = hw_level;
zeros_to_fill = 0;
rc = cras_iodev_default_no_stream_playback(&iodev, 1);
EXPECT_EQ(0, rc);
EXPECT_EQ(CRAS_IODEV_STATE_NO_STREAM_RUN, iodev.state);
EXPECT_EQ(zeros_to_fill, put_buffer_nframes);
}
TEST(IoDev, PrepareOutputBeforeWriteSamples) {
struct cras_iodev iodev;
struct cras_audio_format fmt;
unsigned int min_cb_level = 240;
int rc;
struct cras_rstream rstream1;
struct dev_stream stream1;
struct cras_iodev_info info;
memset(&info, 0, sizeof(info));
ResetStubData();
rstream1.cb_threshold = min_cb_level;
stream1.stream = &rstream1;
stream1.is_running = 1;
memset(&iodev, 0, sizeof(iodev));
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.format = &fmt;
iodev.min_cb_level = min_cb_level;
iodev.get_buffer = get_buffer;
iodev.put_buffer = put_buffer;
iodev.frames_queued = frames_queued;
iodev.min_buffer_level = 0;
iodev.direction = CRAS_STREAM_OUTPUT;
iodev.buffer_size = BUFFER_SIZE;
iodev.no_stream = no_stream;
iodev.configure_dev = configure_dev;
iodev.start = fake_start;
iodev.info = info;
iodev_buffer_size = BUFFER_SIZE;
// Open device.
cras_iodev_open(&iodev, rstream1.cb_threshold, &fmt);
// Add one stream to device.
cras_iodev_add_stream(&iodev, &stream1);
// Case 1: Assume device is not started yet.
iodev.state = CRAS_IODEV_STATE_OPEN;
// Assume sample is not ready yet.
dev_stream_playback_frames_ret = 0;
rc = cras_iodev_prepare_output_before_write_samples(&iodev);
EXPECT_EQ(0, rc);
// Device should remain in open state.
EXPECT_EQ(CRAS_IODEV_STATE_OPEN, iodev.state);
EXPECT_EQ(0, no_stream_called);
// Assume now sample is ready.
dev_stream_playback_frames_ret = 100;
rc = cras_iodev_prepare_output_before_write_samples(&iodev);
EXPECT_EQ(0, rc);
// Device should enter normal run state.
EXPECT_EQ(CRAS_IODEV_STATE_NORMAL_RUN, iodev.state);
EXPECT_EQ(0, no_stream_called);
// Need to fill 1 callback level of zeros;
EXPECT_EQ(min_cb_level, put_buffer_nframes);
ResetStubData();
// Case 2: Assume device is started and is in no stream state.
iodev.state = CRAS_IODEV_STATE_NO_STREAM_RUN;
// Sample is not ready yet.
dev_stream_playback_frames_ret = 0;
rc = cras_iodev_prepare_output_before_write_samples(&iodev);
EXPECT_EQ(0, rc);
// Device should remain in no_stream state.
EXPECT_EQ(CRAS_IODEV_STATE_NO_STREAM_RUN, iodev.state);
// Device in no_stream state should call no_stream ops once.
EXPECT_EQ(1, no_stream_called);
EXPECT_EQ(1, no_stream_enable);
// Assume now sample is ready.
dev_stream_playback_frames_ret = 100;
rc = cras_iodev_prepare_output_before_write_samples(&iodev);
EXPECT_EQ(0, rc);
// Device should enter normal run state.
EXPECT_EQ(CRAS_IODEV_STATE_NORMAL_RUN, iodev.state);
// Device should call no_stream ops with enable=0 to leave no stream state.
EXPECT_EQ(2, no_stream_called);
EXPECT_EQ(0, no_stream_enable);
ResetStubData();
// Case 3: Assume device is started and is in normal run state.
iodev.state = CRAS_IODEV_STATE_NORMAL_RUN;
rc = cras_iodev_prepare_output_before_write_samples(&iodev);
EXPECT_EQ(0, rc);
// Device should remain in normal run state.
EXPECT_EQ(CRAS_IODEV_STATE_NORMAL_RUN, iodev.state);
// Device in no_stream state should call no_stream ops once.
EXPECT_EQ(0, no_stream_called);
ResetStubData();
// Test for device with ramp. Device should start ramping
// when sample is ready.
// Assume device has ramp member.
iodev.ramp = reinterpret_cast<struct cras_ramp*>(0x1);
iodev.initial_ramp_request = CRAS_IODEV_RAMP_REQUEST_UP_START_PLAYBACK;
// Case 4.1: Assume device with ramp is started and is in no stream state.
iodev.state = CRAS_IODEV_STATE_NO_STREAM_RUN;
// Assume sample is ready.
dev_stream_playback_frames_ret = 100;
rc = cras_iodev_prepare_output_before_write_samples(&iodev);
// Device should start ramping up without setting mute callback.
EXPECT_EQ(0, rc);
EXPECT_EQ(1, cras_ramp_start_is_called);
EXPECT_EQ(1, cras_ramp_start_mute_ramp);
EXPECT_FLOAT_EQ(0.0, cras_ramp_start_from);
EXPECT_FLOAT_EQ(1.0, cras_ramp_start_to);
EXPECT_EQ(fmt.frame_rate * RAMP_NEW_STREAM_DURATION_SECS,
cras_ramp_start_duration_frames);
EXPECT_EQ(NULL, cras_ramp_start_cb);
EXPECT_EQ(NULL, cras_ramp_start_cb_data);
ResetStubData();
// Case 4.2: Assume device with ramp is started and is in no stream state.
// But system is muted.
iodev.state = CRAS_IODEV_STATE_NO_STREAM_RUN;
// Assume system is muted.
cras_system_get_mute_return = 1;
// Assume sample is ready.
dev_stream_playback_frames_ret = 100;
rc = cras_iodev_prepare_output_before_write_samples(&iodev);
// Device should not start ramping up because system is muted.
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_ramp_start_is_called);
ResetStubData();
// Case 5.1: Assume device with ramp is in open state.
iodev.state = CRAS_IODEV_STATE_OPEN;
// Assume sample is ready.
dev_stream_playback_frames_ret = 100;
rc = cras_iodev_prepare_output_before_write_samples(&iodev);
// Device should start ramping up without setting mute callback.
EXPECT_EQ(0, rc);
EXPECT_EQ(1, cras_ramp_start_is_called);
EXPECT_EQ(1, cras_ramp_start_mute_ramp);
EXPECT_FLOAT_EQ(0.0, cras_ramp_start_from);
EXPECT_FLOAT_EQ(1.0, cras_ramp_start_to);
EXPECT_EQ(fmt.frame_rate * RAMP_NEW_STREAM_DURATION_SECS,
cras_ramp_start_duration_frames);
EXPECT_EQ(NULL, cras_ramp_start_cb);
EXPECT_EQ(NULL, cras_ramp_start_cb_data);
ResetStubData();
// Case 5.2: Assume device with ramp is in open state. But system is muted.
iodev.state = CRAS_IODEV_STATE_OPEN;
// Assume system is muted.
cras_system_get_mute_return = 1;
// Assume sample is ready.
dev_stream_playback_frames_ret = 100;
rc = cras_iodev_prepare_output_before_write_samples(&iodev);
// Device should not start ramping up because system is muted.
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_ramp_start_is_called);
}
TEST(IoDev, StartRampUp) {
struct cras_iodev iodev;
int rc;
struct cras_audio_format fmt;
enum CRAS_IODEV_RAMP_REQUEST req;
memset(&iodev, 0, sizeof(iodev));
// Format will be used in cras_iodev_start_ramp to determine ramp duration.
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
// Assume device has ramp member.
iodev.ramp = reinterpret_cast<struct cras_ramp*>(0x1);
// Case 1: Device is not opened yet.
ResetStubData();
iodev.state = CRAS_IODEV_STATE_CLOSE;
req = CRAS_IODEV_RAMP_REQUEST_UP_UNMUTE;
rc = cras_iodev_start_ramp(&iodev, req);
// Ramp request is ignored.
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_ramp_start_is_called);
// Case 2: Ramp up without mute.
ResetStubData();
iodev.state = CRAS_IODEV_STATE_OPEN;
req = CRAS_IODEV_RAMP_REQUEST_UP_START_PLAYBACK;
rc = cras_iodev_start_ramp(&iodev, req);
// Device should start ramping up without setting mute callback.
EXPECT_EQ(0, rc);
EXPECT_EQ(1, cras_ramp_start_is_called);
EXPECT_EQ(1, cras_ramp_start_mute_ramp);
EXPECT_FLOAT_EQ(0.0, cras_ramp_start_from);
EXPECT_FLOAT_EQ(1.0, cras_ramp_start_to);
EXPECT_EQ(fmt.frame_rate * RAMP_NEW_STREAM_DURATION_SECS,
cras_ramp_start_duration_frames);
EXPECT_EQ(NULL, cras_ramp_start_cb);
EXPECT_EQ(NULL, cras_ramp_start_cb_data);
// Case 3: Ramp up for unmute.
ResetStubData();
iodev.state = CRAS_IODEV_STATE_OPEN;
req = CRAS_IODEV_RAMP_REQUEST_UP_UNMUTE;
rc = cras_iodev_start_ramp(&iodev, req);
// Device should start ramping up.
EXPECT_EQ(0, rc);
EXPECT_EQ(1, cras_ramp_start_is_called);
EXPECT_EQ(1, cras_ramp_start_mute_ramp);
EXPECT_FLOAT_EQ(0.0, cras_ramp_start_from);
EXPECT_FLOAT_EQ(1.0, cras_ramp_start_to);
EXPECT_EQ(fmt.frame_rate * RAMP_UNMUTE_DURATION_SECS,
cras_ramp_start_duration_frames);
// Callback for unmute is not used.
EXPECT_EQ(NULL, cras_ramp_start_cb);
// Device mute state is set after ramping starts.
EXPECT_EQ(1, cras_device_monitor_set_device_mute_state_called);
EXPECT_EQ(iodev.info.idx, cras_device_monitor_set_device_mute_state_dev_idx);
}
TEST(IoDev, StartRampDown) {
struct cras_iodev iodev;
int rc;
struct cras_audio_format fmt;
enum CRAS_IODEV_RAMP_REQUEST req;
memset(&iodev, 0, sizeof(iodev));
// Format will be used in cras_iodev_start_ramp to determine ramp duration.
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
// Assume device has ramp member.
iodev.ramp = reinterpret_cast<struct cras_ramp*>(0x1);
// Case 1: Device is not opened yet.
ResetStubData();
iodev.state = CRAS_IODEV_STATE_CLOSE;
req = CRAS_IODEV_RAMP_REQUEST_DOWN_MUTE;
rc = cras_iodev_start_ramp(&iodev, req);
// Ramp request is ignored.
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_ramp_start_is_called);
// Case 2: Ramp down for mute.
ResetStubData();
iodev.state = CRAS_IODEV_STATE_OPEN;
req = CRAS_IODEV_RAMP_REQUEST_DOWN_MUTE;
rc = cras_iodev_start_ramp(&iodev, req);
// Device should start ramping down with mute callback.
EXPECT_EQ(0, rc);
EXPECT_EQ(1, cras_ramp_start_is_called);
EXPECT_EQ(1, cras_ramp_start_mute_ramp);
EXPECT_FLOAT_EQ(1.0, cras_ramp_start_from);
EXPECT_FLOAT_EQ(0.0, cras_ramp_start_to);
EXPECT_EQ(fmt.frame_rate * RAMP_MUTE_DURATION_SECS,
cras_ramp_start_duration_frames);
// Device mute state is not set yet. It should wait for ramp to finish.
EXPECT_EQ(0, cras_device_monitor_set_device_mute_state_called);
// Assume the callback is set, and it is later called after ramp is done.
// It should trigger cras_device_monitor_set_device_mute_state.
cras_ramp_start_cb(cras_ramp_start_cb_data);
EXPECT_EQ(1, cras_device_monitor_set_device_mute_state_called);
EXPECT_EQ(iodev.info.idx, cras_device_monitor_set_device_mute_state_dev_idx);
}
TEST(IoDev, StartVolumeRamp) {
struct cras_ionode ionode;
struct cras_iodev iodev;
int rc;
struct cras_audio_format fmt;
int expected_frames;
float ionode_softvol_scalers[101];
memset(&iodev, 0, sizeof(iodev));
// Format will be used in cras_iodev_start_ramp to determine ramp duration.
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
expected_frames = fmt.frame_rate * RAMP_VOLUME_CHANGE_DURATION_SECS;
// Assume device has ramp member.
iodev.ramp = reinterpret_cast<struct cras_ramp*>(0x1);
// Case 1: Device is not opened yet.
ResetStubData();
iodev.state = CRAS_IODEV_STATE_CLOSE;
rc = cras_iodev_start_volume_ramp(&iodev, 30, 94);
// Ramp request is ignored.
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_ramp_start_is_called);
// Case 2: Volumes are equal.
ResetStubData();
iodev.state = CRAS_IODEV_STATE_OPEN;
rc = cras_iodev_start_volume_ramp(&iodev, 70, 70);
// Ramp request is ignored.
EXPECT_EQ(0, rc);
EXPECT_EQ(0, cras_ramp_start_is_called);
// Case 3: Ramp up, global scalers
ResetStubData();
iodev.state = CRAS_IODEV_STATE_OPEN;
softvol_scalers[40] = 0.2;
softvol_scalers[60] = 0.8;
rc = cras_iodev_start_volume_ramp(&iodev, 40, 60);
EXPECT_EQ(0, rc);
EXPECT_EQ(1, cras_ramp_start_is_called);
EXPECT_EQ(0, cras_ramp_start_mute_ramp);
EXPECT_FLOAT_EQ(0.25, cras_ramp_start_from);
EXPECT_FLOAT_EQ(1.0, cras_ramp_start_to);
EXPECT_EQ(expected_frames, cras_ramp_start_duration_frames);
EXPECT_EQ(NULL, cras_ramp_start_cb);
EXPECT_EQ(NULL, cras_ramp_start_cb_data);
// Case 4: Ramp down, device saclers
ResetStubData();
iodev.state = CRAS_IODEV_STATE_OPEN;
ionode_softvol_scalers[40] = 0.4;
ionode_softvol_scalers[60] = 0.5;
ionode.softvol_scalers = ionode_softvol_scalers;
iodev.active_node = &ionode;
rc = cras_iodev_start_volume_ramp(&iodev, 60, 40);
EXPECT_EQ(0, rc);
EXPECT_EQ(1, cras_ramp_start_is_called);
EXPECT_EQ(0, cras_ramp_start_mute_ramp);
EXPECT_FLOAT_EQ(1.25, cras_ramp_start_from);
EXPECT_FLOAT_EQ(1.0, cras_ramp_start_to);
EXPECT_EQ(expected_frames, cras_ramp_start_duration_frames);
EXPECT_EQ(NULL, cras_ramp_start_cb);
EXPECT_EQ(NULL, cras_ramp_start_cb_data);
}
TEST(IoDev, OutputDeviceShouldWake) {
struct cras_iodev iodev;
int rc;
memset(&iodev, 0, sizeof(iodev));
ResetStubData();
// Device is not running. No need to wake for this device.
iodev.state = CRAS_IODEV_STATE_OPEN;
rc = cras_iodev_odev_should_wake(&iodev);
EXPECT_EQ(0, rc);
// Device is running. Need to wake for this device.
iodev.state = CRAS_IODEV_STATE_NORMAL_RUN;
rc = cras_iodev_odev_should_wake(&iodev);
EXPECT_EQ(1, rc);
// Device is running. Device has is_free_running ops.
iodev.is_free_running = is_free_running;
is_free_running_ret = 1;
rc = cras_iodev_odev_should_wake(&iodev);
EXPECT_EQ(0, rc);
// Device is running. Device has is_free_running ops.
is_free_running_ret = 0;
rc = cras_iodev_odev_should_wake(&iodev);
EXPECT_EQ(1, rc);
// Ignore input device.
iodev.direction = CRAS_STREAM_INPUT;
rc = cras_iodev_odev_should_wake(&iodev);
EXPECT_EQ(0, rc);
}
TEST(IoDev, FramesToPlayInSleep) {
struct cras_iodev iodev;
struct cras_audio_format fmt;
unsigned int min_cb_level = 512, hw_level;
unsigned int got_hw_level, got_frames;
struct timespec hw_tstamp;
struct cras_rstream rstream;
struct dev_stream stream;
memset(&iodev, 0, sizeof(iodev));
memset(&fmt, 0, sizeof(fmt));
iodev.frames_queued = frames_queued;
iodev.min_buffer_level = 0;
iodev.direction = CRAS_STREAM_OUTPUT;
iodev.buffer_size = BUFFER_SIZE;
iodev.min_cb_level = min_cb_level;
iodev.state = CRAS_IODEV_STATE_NORMAL_RUN;
iodev.format = &fmt;
fmt.frame_rate = 48000;
rstream.cb_threshold = min_cb_level;
stream.stream = &rstream;
ResetStubData();
cras_iodev_add_stream(&iodev, &stream);
cras_iodev_start_stream(&iodev, &stream);
// Device is running. There is at least one stream for this device
// and there are frames waiting to be played. hw_level is greater
// than min_cb_level.
dev_stream_playback_frames_ret = 100;
hw_level = min_cb_level + 50;
fr_queued = hw_level;
got_frames =
cras_iodev_frames_to_play_in_sleep(&iodev, &got_hw_level, &hw_tstamp);
EXPECT_EQ(got_hw_level, hw_level);
EXPECT_EQ(got_frames, 50);
dev_stream_playback_frames_ret = 0;
// Device is running. There is at least one stream for this device.
// hw_level is greater than min_cb_level.
hw_level = min_cb_level + 50;
fr_queued = hw_level;
got_frames =
cras_iodev_frames_to_play_in_sleep(&iodev, &got_hw_level, &hw_tstamp);
EXPECT_EQ(got_hw_level, hw_level);
EXPECT_EQ(got_frames, 514);
// Device is running. There is at least one stream for this device.
// hw_level is 2x greater than min_cb_level.
hw_level = 2 * min_cb_level + 50;
fr_queued = hw_level;
got_frames =
cras_iodev_frames_to_play_in_sleep(&iodev, &got_hw_level, &hw_tstamp);
EXPECT_EQ(got_hw_level, hw_level);
EXPECT_EQ(got_frames, 1026);
// Device is running. There is at least one stream for this device.
// hw_level is less than min_cb_level.
hw_level = min_cb_level / 2;
fr_queued = hw_level;
got_frames =
cras_iodev_frames_to_play_in_sleep(&iodev, &got_hw_level, &hw_tstamp);
EXPECT_EQ(got_hw_level, hw_level);
EXPECT_EQ(got_frames, 208);
// Device is running. There is no stream for this device. The audio thread
// will wake up until hw_level drops to DEV_NO_STREAM_WAKE_UP_LATEST_TIME,
// which is defined as 5 milliseconds in cras_iodev.c.
iodev.streams = NULL;
hw_level = min_cb_level;
fr_queued = hw_level;
got_frames =
cras_iodev_frames_to_play_in_sleep(&iodev, &got_hw_level, &hw_tstamp);
EXPECT_EQ(got_hw_level, hw_level);
EXPECT_EQ(got_frames, hw_level - fmt.frame_rate / 1000 * 5);
}
TEST(IoDev, GetNumUnderruns) {
struct cras_iodev iodev;
memset(&iodev, 0, sizeof(iodev));
EXPECT_EQ(0, cras_iodev_get_num_underruns(&iodev));
iodev.num_underruns = 10;
EXPECT_EQ(10, cras_iodev_get_num_underruns(&iodev));
}
TEST(IoDev, RequestReset) {
struct cras_iodev iodev;
memset(&iodev, 0, sizeof(iodev));
ResetStubData();
iodev.configure_dev = configure_dev;
iodev.direction = CRAS_STREAM_OUTPUT;
iodev.format = &audio_fmt;
iodev.get_buffer = get_buffer;
iodev.put_buffer = put_buffer;
iodev.state = CRAS_IODEV_STATE_CLOSE;
iodev_buffer_size = 1024;
// Open device.
cras_iodev_open(&iodev, 240, &audio_fmt);
// The first reset request works.
EXPECT_EQ(0, cras_iodev_reset_request(&iodev));
EXPECT_EQ(1, device_monitor_reset_device_called);
// The second reset request will do nothing.
EXPECT_EQ(0, cras_iodev_reset_request(&iodev));
EXPECT_EQ(1, device_monitor_reset_device_called);
// Assume device is opened again.
cras_iodev_open(&iodev, 240, &audio_fmt);
// The reset request works.
EXPECT_EQ(0, cras_iodev_reset_request(&iodev));
EXPECT_EQ(2, device_monitor_reset_device_called);
}
static int output_underrun(struct cras_iodev* iodev) {
output_underrun_called++;
return 0;
}
TEST(IoDev, HandleOutputUnderrun) {
struct cras_iodev iodev;
struct cras_audio_format fmt;
unsigned int frames = 240;
int16_t* zeros;
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.format = &fmt;
iodev.get_buffer = get_buffer;
iodev.put_buffer = put_buffer;
iodev.direction = CRAS_STREAM_OUTPUT;
iodev.min_cb_level = frames;
// Default case, fill one block of zeros.
EXPECT_EQ(0, cras_iodev_output_underrun(&iodev, 0, 0));
EXPECT_EQ(frames, put_buffer_nframes);
zeros = (int16_t*)calloc(frames * 2, sizeof(*zeros));
rc = memcmp(audio_buffer, zeros, frames * 2 * 2);
free(zeros);
EXPECT_EQ(0, rc);
// Test iodev has output_underrun ops.
iodev.output_underrun = output_underrun;
EXPECT_EQ(0, cras_iodev_output_underrun(&iodev, 0, 0));
EXPECT_EQ(1, output_underrun_called);
}
static void ext_mod_configure(struct ext_dsp_module* ext,
unsigned int buffer_size,
unsigned int num_channels,
unsigned int rate) {
ext_mod_configure_called++;
}
TEST(IoDev, SetExtDspMod) {
struct cras_iodev iodev;
struct cras_audio_format fmt;
struct ext_dsp_module ext;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.configure_dev = configure_dev;
iodev.format = &fmt;
iodev.format = &fmt;
iodev.state = CRAS_IODEV_STATE_CLOSE;
ext.configure = ext_mod_configure;
iodev.dsp_context = reinterpret_cast<cras_dsp_context*>(0xf0f);
cras_dsp_get_pipeline_ret = 0x25;
cras_iodev_set_ext_dsp_module(&iodev, &ext);
EXPECT_EQ(0, ext_mod_configure_called);
cras_iodev_open(&iodev, 240, &fmt);
EXPECT_EQ(1, ext_mod_configure_called);
EXPECT_EQ(1, cras_dsp_get_pipeline_called);
EXPECT_EQ(1, cras_dsp_pipeline_set_sink_ext_module_called);
cras_iodev_set_ext_dsp_module(&iodev, NULL);
EXPECT_EQ(1, ext_mod_configure_called);
EXPECT_EQ(2, cras_dsp_get_pipeline_called);
EXPECT_EQ(2, cras_dsp_pipeline_set_sink_ext_module_called);
cras_iodev_set_ext_dsp_module(&iodev, &ext);
EXPECT_EQ(2, ext_mod_configure_called);
EXPECT_EQ(3, cras_dsp_get_pipeline_called);
EXPECT_EQ(3, cras_dsp_pipeline_set_sink_ext_module_called);
/* If pipeline doesn't exist, mock pipeline should be loaded. */
cras_dsp_get_pipeline_ret = 0x0;
cras_iodev_set_ext_dsp_module(&iodev, &ext);
EXPECT_EQ(3, ext_mod_configure_called);
EXPECT_EQ(5, cras_dsp_get_pipeline_called);
EXPECT_EQ(1, cras_dsp_load_mock_pipeline_called);
EXPECT_EQ(4, cras_dsp_pipeline_set_sink_ext_module_called);
}
TEST(IoDev, InputDspOffset) {
struct cras_iodev iodev;
struct cras_audio_format fmt;
struct cras_rstream rstream1;
struct dev_stream stream1;
struct input_data data;
unsigned int frames = 240;
int rc;
ResetStubData();
rstream1.cb_threshold = 240;
rstream1.stream_id = 123;
stream1.stream = &rstream1;
memset(&iodev, 0, sizeof(iodev));
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.configure_dev = configure_dev;
iodev.format = &fmt;
iodev.format = &fmt;
iodev.state = CRAS_IODEV_STATE_CLOSE;
iodev.get_buffer = get_buffer;
iodev.put_buffer = put_buffer;
iodev.direction = CRAS_STREAM_INPUT;
iodev.buffer_size = 480;
iodev.dsp_context = reinterpret_cast<cras_dsp_context*>(0xf0f);
cras_dsp_get_pipeline_ret = 0x25;
input_data_create_ret = &data;
cras_iodev_open(&iodev, 240, &fmt);
cras_iodev_add_stream(&iodev, &stream1);
cras_iodev_get_input_buffer(&iodev, &frames);
buffer_share_get_new_write_point_ret = 100;
rc = cras_iodev_put_input_buffer(&iodev);
EXPECT_EQ(140, iodev.input_dsp_offset);
EXPECT_EQ(100, rc);
frames = 130;
cras_iodev_get_input_buffer(&iodev, &frames);
EXPECT_EQ(130, iodev.input_frames_read);
buffer_share_get_new_write_point_ret = 80;
rc = cras_iodev_put_input_buffer(&iodev);
EXPECT_EQ(60, iodev.input_dsp_offset);
EXPECT_EQ(80, rc);
}
TEST(IoDev, DropDeviceFramesByTime) {
struct cras_iodev iodev;
struct cras_audio_format fmt;
struct input_data data;
struct timespec ts;
int rc;
ResetStubData();
memset(&iodev, 0, sizeof(iodev));
fmt.format = SND_PCM_FORMAT_S16_LE;
fmt.frame_rate = 48000;
fmt.num_channels = 2;
iodev.configure_dev = configure_dev;
iodev.format = &fmt;
iodev.state = CRAS_IODEV_STATE_CLOSE;
iodev.get_buffer = get_buffer;
iodev.put_buffer = put_buffer;
iodev.frames_queued = frames_queued;
iodev.direction = CRAS_STREAM_INPUT;
iodev.buffer_size = 480;
input_data_create_ret = &data;
cras_iodev_open(&iodev, 240, &fmt);
rate_estimator_get_rate_ret = 48000.0;
/* hw_level: 240, drop: 48(1ms). */
fr_queued = 240;
ts.tv_sec = 0;
ts.tv_nsec = 1000000;
rc = cras_iodev_drop_frames_by_time(&iodev, ts);
EXPECT_EQ(48, rc);
EXPECT_EQ(48, put_buffer_nframes);
EXPECT_EQ(1, rate_estimator_add_frames_called);
EXPECT_EQ(-48, rate_estimator_add_frames_num_frames);
/* hw_level: 360, drop: 240(5ms). */
fr_queued = 360;
ts.tv_sec = 0;
ts.tv_nsec = 5000000;
rc = cras_iodev_drop_frames_by_time(&iodev, ts);
EXPECT_EQ(240, rc);
EXPECT_EQ(240, put_buffer_nframes);
EXPECT_EQ(2, rate_estimator_add_frames_called);
EXPECT_EQ(-240, rate_estimator_add_frames_num_frames);
/* hw_level: 360, drop: 480(10ms). Only drop 360 because of lower hw_level. */
fr_queued = 360;
ts.tv_sec = 0;
ts.tv_nsec = 10000000;
rc = cras_iodev_drop_frames_by_time(&iodev, ts);
EXPECT_EQ(360, rc);
EXPECT_EQ(360, put_buffer_nframes);
EXPECT_EQ(3, rate_estimator_add_frames_called);
EXPECT_EQ(-360, rate_estimator_add_frames_num_frames);
}
TEST(IoDev, AecUseCaseCheck) {
struct cras_ionode node;
/* test output types */
node.type = CRAS_NODE_TYPE_INTERNAL_SPEAKER;
EXPECT_EQ(1, cras_iodev_is_aec_use_case(&node));
node.type = CRAS_NODE_TYPE_HEADPHONE;
EXPECT_EQ(0, cras_iodev_is_aec_use_case(&node));
node.type = CRAS_NODE_TYPE_HDMI;
EXPECT_EQ(0, cras_iodev_is_aec_use_case(&node));
node.type = CRAS_NODE_TYPE_USB;
EXPECT_EQ(0, cras_iodev_is_aec_use_case(&node));
node.type = CRAS_NODE_TYPE_BLUETOOTH;
EXPECT_EQ(0, cras_iodev_is_aec_use_case(&node));
/* test mic positions */
node.type = CRAS_NODE_TYPE_MIC;
node.position = NODE_POSITION_INTERNAL;
EXPECT_EQ(1, cras_iodev_is_aec_use_case(&node));
node.position = NODE_POSITION_FRONT;
EXPECT_EQ(1, cras_iodev_is_aec_use_case(&node));
node.position = NODE_POSITION_EXTERNAL;
EXPECT_EQ(0, cras_iodev_is_aec_use_case(&node));
node.position = NODE_POSITION_REAR;
EXPECT_EQ(0, cras_iodev_is_aec_use_case(&node));
}
TEST(IoDev, DeviceOverrun) {
struct cras_iodev iodev;
iodev.buffer_size = 4096;
iodev.largest_cb_level = 2048;
cras_iodev_update_highest_hw_level(&iodev, 4096);
EXPECT_EQ(0, cras_audio_thread_event_dev_overrun_called);
iodev.largest_cb_level = 1024;
iodev.highest_hw_level = 1024;
cras_iodev_update_highest_hw_level(&iodev, 2048);
EXPECT_EQ(0, cras_audio_thread_event_dev_overrun_called);
cras_iodev_update_highest_hw_level(&iodev, 4096);
EXPECT_EQ(1, cras_audio_thread_event_dev_overrun_called);
cras_iodev_update_highest_hw_level(&iodev, 4096);
EXPECT_EQ(1, cras_audio_thread_event_dev_overrun_called);
}
TEST(IoDev, OnInternalCard) {
static struct cras_ionode node;
node.type = CRAS_NODE_TYPE_INTERNAL_SPEAKER;
EXPECT_EQ(1, cras_iodev_is_on_internal_card(&node));
node.type = CRAS_NODE_TYPE_HEADPHONE;
EXPECT_EQ(1, cras_iodev_is_on_internal_card(&node));
node.type = CRAS_NODE_TYPE_MIC;
EXPECT_EQ(1, cras_iodev_is_on_internal_card(&node));
node.type = CRAS_NODE_TYPE_USB;
EXPECT_EQ(0, cras_iodev_is_on_internal_card(&node));
node.type = CRAS_NODE_TYPE_BLUETOOTH;
EXPECT_EQ(0, cras_iodev_is_on_internal_card(&node));
}
extern "C" {
struct main_thread_event_log* main_log;
// From libpthread.
int pthread_create(pthread_t* thread,
const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg) {
return 0;
}
int pthread_join(pthread_t thread, void** value_ptr) {
return 0;
}
// Fromt fmt_conv
void cras_channel_remix_convert(struct cras_fmt_conv* conv,
uint8_t* in_buf,
size_t frames) {}
size_t cras_fmt_conv_in_frames_to_out(struct cras_fmt_conv* conv,
size_t in_frames) {
return in_frames;
}
// From buffer_share
struct buffer_share* buffer_share_create(unsigned int buf_sz) {
return NULL;
}
void buffer_share_destroy(struct buffer_share* mix) {}
int buffer_share_offset_update(struct buffer_share* mix,
unsigned int id,
unsigned int frames) {
return 0;
}
unsigned int buffer_share_get_new_write_point(struct buffer_share* mix) {
return buffer_share_get_new_write_point_ret;
}
int buffer_share_add_id(struct buffer_share* mix, unsigned int id, void* data) {
buffer_share_add_id_called++;
return 0;
}
int buffer_share_rm_id(struct buffer_share* mix, unsigned int id) {
return 0;
}
unsigned int buffer_share_id_offset(const struct buffer_share* mix,
unsigned int id) {
return 0;
}
// From cras_system_state.
void cras_system_state_stream_added(enum CRAS_STREAM_DIRECTION direction,
enum CRAS_CLIENT_TYPE client_type) {}
void cras_system_state_stream_removed(enum CRAS_STREAM_DIRECTION direction,
enum CRAS_CLIENT_TYPE client_type) {}
// From cras_dsp
struct cras_dsp_context* cras_dsp_context_new(int sample_rate,
const char* purpose) {
dsp_context_new_sample_rate = sample_rate;
dsp_context_new_purpose = purpose;
return cras_dsp_context_new_return;
}
void cras_dsp_context_free(struct cras_dsp_context* ctx) {
dsp_context_free_called++;
}
void cras_dsp_load_pipeline(struct cras_dsp_context* ctx) {}
void cras_dsp_load_mock_pipeline(struct cras_dsp_context* ctx,
unsigned int num_channels) {
cras_dsp_load_mock_pipeline_called++;
}
void cras_dsp_set_variable_string(struct cras_dsp_context* ctx,
const char* key,
const char* value) {}
void cras_dsp_set_variable_boolean(struct cras_dsp_context* ctx,
const char* key,
char value) {}
struct pipeline* cras_dsp_get_pipeline(struct cras_dsp_context* ctx) {
cras_dsp_get_pipeline_called++;
return reinterpret_cast<struct pipeline*>(cras_dsp_get_pipeline_ret);
}
void cras_dsp_put_pipeline(struct cras_dsp_context* ctx) {
cras_dsp_put_pipeline_called++;
}
float* cras_dsp_pipeline_get_source_buffer(struct pipeline* pipeline,
int index) {
cras_dsp_pipeline_get_source_buffer_called++;
return cras_dsp_pipeline_source_buffer[index];
}
float* cras_dsp_pipeline_get_sink_buffer(struct pipeline* pipeline, int index) {
cras_dsp_pipeline_get_sink_buffer_called++;
return cras_dsp_pipeline_sink_buffer[index];
}
int cras_dsp_pipeline_get_delay(struct pipeline* pipeline) {
cras_dsp_pipeline_get_delay_called++;
return 0;
}
int cras_dsp_pipeline_apply(struct pipeline* pipeline,
uint8_t* buf,
snd_pcm_format_t format,
unsigned int frames) {
cras_dsp_pipeline_apply_called++;
cras_dsp_pipeline_apply_sample_count = frames;
return 0;
}
void cras_dsp_pipeline_add_statistic(struct pipeline* pipeline,
const struct timespec* time_delta,
int samples) {}
void cras_dsp_pipeline_set_sink_ext_module(struct pipeline* pipeline,
struct ext_dsp_module* ext_module) {
cras_dsp_pipeline_set_sink_ext_module_called++;
}
unsigned int cras_dsp_num_output_channels(const struct cras_dsp_context* ctx) {
return cras_dsp_num_output_channels_return;
}
unsigned int cras_dsp_num_input_channels(const struct cras_dsp_context* ctx) {
return cras_dsp_num_input_channels_return;
}
// From audio thread
int audio_thread_post_message(struct audio_thread* thread,
struct audio_thread_msg* msg) {
return 0;
}
void cras_iodev_list_select_node(enum CRAS_STREAM_DIRECTION direction,
cras_node_id_t node_id) {
select_node_called++;
select_node_direction = direction;
select_node_id = node_id;
}
int cras_iodev_list_node_selected(struct cras_ionode* node) {
return node == node_selected;
}
void cras_iodev_list_disable_dev(struct cras_iodev* dev) {
cras_iodev_list_disable_dev_called++;
}
void cras_iodev_list_notify_nodes_changed() {
notify_nodes_changed_called++;
}
void cras_iodev_list_notify_active_node_changed(
enum CRAS_STREAM_DIRECTION direction) {
notify_active_node_changed_called++;
}
struct cras_audio_area* cras_audio_area_create(int num_channels) {
return NULL;
}
void cras_audio_area_destroy(struct cras_audio_area* area) {}
void cras_audio_area_config_channels(struct cras_audio_area* area,
const struct cras_audio_format* fmt) {}
int cras_audio_format_set_channel_layout(struct cras_audio_format* format,
const int8_t layout[CRAS_CH_MAX]) {
int i;
cras_audio_format_set_channel_layout_called++;
for (i = 0; i < CRAS_CH_MAX; i++)
format->channel_layout[i] = layout[i];
return 0;
}
float softvol_get_scaler(unsigned int volume_index) {
return softvol_scalers[volume_index];
}
size_t cras_system_get_volume() {
return cras_system_get_volume_return;
}
int cras_system_get_mute() {
return cras_system_get_mute_return;
}
int cras_system_get_capture_mute() {
return 0;
}
void cras_scale_buffer(snd_pcm_format_t fmt,
uint8_t* buffer,
unsigned int count,
float scaler) {
cras_scale_buffer_called++;
cras_scale_buffer_fmt = fmt;
cras_scale_buffer_scaler = scaler;
}
void cras_scale_buffer_increment(snd_pcm_format_t fmt,
uint8_t* buff,
unsigned int frame,
float scaler,
float increment,
float target,
int channel) {
cras_scale_buffer_increment_fmt = fmt;
cras_scale_buffer_increment_buff = buff;
cras_scale_buffer_increment_frame = frame;
cras_scale_buffer_increment_scaler = scaler;
cras_scale_buffer_increment_increment = increment;
cras_scale_buffer_increment_target = target;
cras_scale_buffer_increment_channel = channel;
}
size_t cras_mix_mute_buffer(uint8_t* dst, size_t frame_bytes, size_t count) {
cras_mix_mute_count = count;
return count;
}
struct rate_estimator* rate_estimator_create(unsigned int rate,
const struct timespec* window_size,
double smooth_factor) {
return NULL;
}
void rate_estimator_destroy(struct rate_estimator* re) {}
void rate_estimator_add_frames(struct rate_estimator* re, int fr) {
rate_estimator_add_frames_called++;
rate_estimator_add_frames_num_frames = fr;
}
int rate_estimator_check(struct rate_estimator* re,
int level,
struct timespec* now) {
return 0;
}
void rate_estimator_reset_rate(struct rate_estimator* re, unsigned int rate) {}
double rate_estimator_get_rate(struct rate_estimator* re) {
return rate_estimator_get_rate_ret;
}
unsigned int dev_stream_cb_threshold(const struct dev_stream* dev_stream) {
if (dev_stream->stream)
return dev_stream->stream->cb_threshold;
return 0;
}
int dev_stream_attached_devs(const struct dev_stream* dev_stream) {
return 1;
}
void dev_stream_update_frames(const struct dev_stream* dev_stream) {}
int dev_stream_playback_frames(const struct dev_stream* dev_stream) {
return dev_stream_playback_frames_ret;
}
int cras_device_monitor_reset_device(struct cras_iodev* iodev) {
device_monitor_reset_device_called++;
return 0;
}
void cras_ramp_destroy(struct cras_ramp* ramp) {
return;
}
int cras_ramp_start(struct cras_ramp* ramp,
int mute_ramp,
float from,
float to,
int duration_frames,
cras_ramp_cb cb,
void* cb_data) {
cras_ramp_start_is_called++;
cras_ramp_start_mute_ramp = mute_ramp;
cras_ramp_start_from = from;
cras_ramp_start_to = to;
cras_ramp_start_duration_frames = duration_frames;
cras_ramp_start_cb = cb;
cras_ramp_start_cb_data = cb_data;
return 0;
}
int cras_ramp_reset(struct cras_ramp* ramp) {
cras_ramp_reset_is_called++;
return 0;
}
struct cras_ramp_action cras_ramp_get_current_action(
const struct cras_ramp* ramp) {
return cras_ramp_get_current_action_ret;
}
int cras_ramp_update_ramped_frames(struct cras_ramp* ramp, int num_frames) {
cras_ramp_update_ramped_frames_num_frames = num_frames;
return 0;
}
int cras_device_monitor_set_device_mute_state(unsigned int dev_idx) {
cras_device_monitor_set_device_mute_state_called++;
cras_device_monitor_set_device_mute_state_dev_idx = dev_idx;
return 0;
}
static void mod_run(struct ext_dsp_module* ext, unsigned int nframes) {}
static void mod_configure(struct ext_dsp_module* ext,
unsigned int buffer_size,
unsigned int num_channels,
unsigned int rate) {}
struct input_data* input_data_create(void* dev_ptr) {
if (input_data_create_ret) {
input_data_create_ret->ext.run = mod_run;
input_data_create_ret->ext.configure = mod_configure;
}
return input_data_create_ret;
}
void input_data_destroy(struct input_data** data) {}
void input_data_set_all_streams_read(struct input_data* data,
unsigned int nframes) {}
int cras_audio_thread_event_underrun() {
return 0;
}
int cras_audio_thread_event_dev_overrun() {
cras_audio_thread_event_dev_overrun_called++;
return 0;
}
int cras_server_metrics_device_runtime(struct cras_iodev* iodev) {
return 0;
}
int cras_server_metrics_device_volume(struct cras_iodev* iodev) {
return 0;
}
void ewma_power_init(struct ewma_power* ewma, unsigned int rate){};
void ewma_power_calculate(struct ewma_power* ewma,
const int16_t* buf,
unsigned int channels,
unsigned int size){};
void ewma_power_calculate_area(struct ewma_power* ewma,
const int16_t* buf,
struct cras_audio_area* area,
unsigned int size){};
} // extern "C"
} // namespace
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
int rc = RUN_ALL_TESTS();
audio_thread_event_log_deinit(atlog, atlog_name);
free(atlog_name);
return rc;
}