blob: b9640d9507b5f9903e8d0cec91d8c8faf6c5267a [file] [log] [blame]
/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:
You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.
You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */
/******************************** MPEG Audio Encoder **************************
Initial author: M. Lohwasser
contents/description: pns.c
******************************************************************************/
#include "aacenc_pns.h"
#include "psy_data.h"
#include "pnsparam.h"
#include "noisedet.h"
#include "bit_cnt.h"
#include "interface.h"
/* minCorrelationEnergy = (1.0e-10f)^2 ~ 2^-67 = 2^-47 * 2^-20 */
static const FIXP_DBL minCorrelationEnergy = FL2FXCONST_DBL(0.0); /* FL2FXCONST_DBL((float)FDKpow(2.0,-47)); */
/* noiseCorrelationThresh = 0.6^2 */
static const FIXP_DBL noiseCorrelationThresh = FL2FXCONST_DBL(0.36);
static void FDKaacEnc_FDKaacEnc_noiseDetection( PNS_CONFIG *pnsConf,
PNS_DATA *pnsData,
const INT sfbActive,
const INT *sfbOffset,
INT tnsOrder,
INT tnsPredictionGain,
INT tnsActive,
FIXP_DBL *mdctSpectrum,
INT *sfbMaxScaleSpec,
FIXP_SGL *sfbtonality );
static void FDKaacEnc_CalcNoiseNrgs( const INT sfbActive,
INT *pnsFlag,
FIXP_DBL *sfbEnergyLdData,
INT *noiseNrg );
/*****************************************************************************
functionname: initPnsConfiguration
description: fill pnsConf with pns parameters
returns: error status
input: PNS Config struct (modified)
bitrate, samplerate, usePns,
number of sfb's, pointer to sfb offset
output: error code
*****************************************************************************/
AAC_ENCODER_ERROR FDKaacEnc_InitPnsConfiguration(PNS_CONFIG *pnsConf,
INT bitRate,
INT sampleRate,
INT usePns,
INT sfbCnt,
const INT *sfbOffset,
const INT numChan,
const INT isLC)
{
AAC_ENCODER_ERROR ErrorStatus;
/* init noise detection */
ErrorStatus = FDKaacEnc_GetPnsParam(&pnsConf->np,
bitRate,
sampleRate,
sfbCnt,
sfbOffset,
&usePns,
numChan,
isLC);
if (ErrorStatus != AAC_ENC_OK)
return ErrorStatus;
pnsConf->minCorrelationEnergy = minCorrelationEnergy;
pnsConf->noiseCorrelationThresh = noiseCorrelationThresh;
pnsConf->usePns = usePns;
return AAC_ENC_OK;
}
/*****************************************************************************
functionname: FDKaacEnc_PnsDetect
description: do decision, if PNS shall used or not
returns:
input: pns config structure
pns data structure (modified),
lastWindowSequence (long or short blocks)
sfbActive
pointer to Sfb Energy, Threshold, Offset
pointer to mdct Spectrum
length of each group
pointer to tonality calculated in chaosmeasure
tns order and prediction gain
calculated noiseNrg at active PNS
output: pnsFlag in pns data structure
*****************************************************************************/
void FDKaacEnc_PnsDetect(PNS_CONFIG *pnsConf,
PNS_DATA *pnsData,
const INT lastWindowSequence,
const INT sfbActive,
const INT maxSfbPerGroup,
FIXP_DBL *sfbThresholdLdData,
const INT *sfbOffset,
FIXP_DBL *mdctSpectrum,
INT *sfbMaxScaleSpec,
FIXP_SGL *sfbtonality,
INT tnsOrder,
INT tnsPredictionGain,
INT tnsActive,
FIXP_DBL *sfbEnergyLdData,
INT *noiseNrg )
{
int sfb;
int startNoiseSfb;
if (pnsConf->np.detectionAlgorithmFlags & IS_LOW_COMLEXITY) {
if ( (!pnsConf->usePns) || /* pns enabled? */
(lastWindowSequence == SHORT_WINDOW) ) /* currently only long blocks */
{
FDKmemclear(pnsData->pnsFlag, MAX_GROUPED_SFB*sizeof(INT)); /* clear all pnsFlags */
for (sfb=0; sfb<MAX_GROUPED_SFB; sfb++) {
noiseNrg[sfb] = NO_NOISE_PNS; /* clear nrg's of previous frame */
}
return;
}
}
else {
if(!pnsConf->usePns)
return;
/* PNS only for long Windows */
if (pnsConf->np.detectionAlgorithmFlags & JUST_LONG_WINDOW) {
if(lastWindowSequence != LONG_WINDOW) {
for (sfb = 0; sfb < sfbActive; sfb++) {
pnsData->pnsFlag[sfb] = 0; /* clear all pnsFlags */
}
return;
}
}
}
/*
call noise detection
*/
FDKaacEnc_FDKaacEnc_noiseDetection( pnsConf,
pnsData,
sfbActive,
sfbOffset,
tnsOrder,
tnsPredictionGain,
tnsActive,
mdctSpectrum,
sfbMaxScaleSpec,
sfbtonality );
/* set startNoiseSfb (long) */
startNoiseSfb = pnsConf->np.startSfb;
/* Set noise substitution status */
for(sfb = 0; sfb < sfbActive; sfb++) {
/* No PNS below startNoiseSfb */
if(sfb < startNoiseSfb){
pnsData->pnsFlag[sfb] = 0;
continue;
}
/*
do noise substitution if
fuzzy measure is high enough
sfb freq > minimum sfb freq
signal in coder band is not masked
*/
if((pnsData->noiseFuzzyMeasure[sfb] > FL2FXCONST_SGL(0.5)) &&
( (sfbThresholdLdData[sfb] + FL2FXCONST_DBL(0.5849625f/64.0f)) /* thr * 1.5 = thrLd +ld(1.5)/64 */
< sfbEnergyLdData[sfb] ) )
{
/*
mark in psyout flag array that we will code
this band with PNS
*/
pnsData->pnsFlag[sfb] = 1; /* PNS_ON */
}
else{
pnsData->pnsFlag[sfb] = 0; /* PNS_OFF */
}
/* no PNS if LTP is active */
}
/* avoid PNS holes */
if((pnsData->noiseFuzzyMeasure[0]>FL2FXCONST_SGL(0.5f)) && (pnsData->pnsFlag[1])) {
pnsData->pnsFlag[0] = 1;
}
for(sfb=1; sfb<maxSfbPerGroup-1; sfb++) {
if((pnsData->noiseFuzzyMeasure[sfb]>pnsConf->np.gapFillThr) &&
(pnsData->pnsFlag[sfb-1]) && (pnsData->pnsFlag[sfb+1])) {
pnsData->pnsFlag[sfb] = 1;
}
}
if(maxSfbPerGroup>0) {
/* avoid PNS hole */
if((pnsData->noiseFuzzyMeasure[maxSfbPerGroup-1]>pnsConf->np.gapFillThr) && (pnsData->pnsFlag[maxSfbPerGroup-2])) {
pnsData->pnsFlag[maxSfbPerGroup-1] = 1;
}
/* avoid single PNS band */
if(pnsData->pnsFlag[maxSfbPerGroup-2]==0) {
pnsData->pnsFlag[maxSfbPerGroup-1] = 0;
}
}
/* avoid single PNS bands */
if(pnsData->pnsFlag[1]==0) {
pnsData->pnsFlag[0] = 0;
}
for(sfb=1; sfb<maxSfbPerGroup-1; sfb++) {
if((pnsData->pnsFlag[sfb-1]==0)&&(pnsData->pnsFlag[sfb+1]==0)) {
pnsData->pnsFlag[sfb] = 0;
}
}
/*
calculate noiseNrg's
*/
FDKaacEnc_CalcNoiseNrgs( sfbActive,
pnsData->pnsFlag,
sfbEnergyLdData,
noiseNrg );
}
/*****************************************************************************
functionname:FDKaacEnc_FDKaacEnc_noiseDetection
description: wrapper for noisedet.c
returns:
input: pns config structure
pns data structure (modified),
sfbActive
tns order and prediction gain
pointer to mdct Spectrumand Sfb Energy
pointer to Sfb tonality
output: noiseFuzzyMeasure in structure pnsData
flags tonal / nontonal
*****************************************************************************/
static void FDKaacEnc_FDKaacEnc_noiseDetection( PNS_CONFIG *pnsConf,
PNS_DATA *pnsData,
const INT sfbActive,
const INT *sfbOffset,
int tnsOrder,
INT tnsPredictionGain,
INT tnsActive,
FIXP_DBL *mdctSpectrum,
INT *sfbMaxScaleSpec,
FIXP_SGL *sfbtonality )
{
INT condition = TRUE;
if ( !(pnsConf->np.detectionAlgorithmFlags & IS_LOW_COMLEXITY) ) {
condition = (tnsOrder > 3);
}
/*
no PNS if heavy TNS activity
clear pnsData->noiseFuzzyMeasure
*/
if((pnsConf->np.detectionAlgorithmFlags & USE_TNS_GAIN_THR) &&
(tnsPredictionGain >= pnsConf->np.tnsGainThreshold) && condition &&
!((pnsConf->np.detectionAlgorithmFlags & USE_TNS_PNS) && (tnsPredictionGain >= pnsConf->np.tnsPNSGainThreshold) && (tnsActive)) )
{
/* clear all noiseFuzzyMeasure */
FDKmemclear(pnsData->noiseFuzzyMeasure, sfbActive*sizeof(FIXP_SGL));
}
else
{
/*
call noise detection, output in pnsData->noiseFuzzyMeasure,
use real mdct spectral data
*/
FDKaacEnc_noiseDetect( mdctSpectrum,
sfbMaxScaleSpec,
sfbActive,
sfbOffset,
pnsData->noiseFuzzyMeasure,
&pnsConf->np,
sfbtonality);
}
}
/*****************************************************************************
functionname:FDKaacEnc_CalcNoiseNrgs
description: Calculate the NoiseNrg's
returns:
input: sfbActive
if pnsFlag calculate NoiseNrg
pointer to sfbEnergy and groupLen
pointer to noiseNrg (modified)
output: noiseNrg's in pnsFlaged sfb's
*****************************************************************************/
static void FDKaacEnc_CalcNoiseNrgs( const INT sfbActive,
INT *RESTRICT pnsFlag,
FIXP_DBL *RESTRICT sfbEnergyLdData,
INT *RESTRICT noiseNrg )
{
int sfb;
INT tmp = (-LOG_NORM_PCM)<<2;
for(sfb = 0; sfb < sfbActive; sfb++) {
if(pnsFlag[sfb]) {
INT nrg = (-sfbEnergyLdData[sfb]+FL2FXCONST_DBL(0.5f/64.0f))>>(DFRACT_BITS-1-7);
noiseNrg[sfb] = tmp - nrg;
}
}
}
/*****************************************************************************
functionname:FDKaacEnc_CodePnsChannel
description: Execute pns decission
returns:
input: sfbActive
pns config structure
use PNS if pnsFlag
pointer to Sfb Energy, noiseNrg, Threshold
output: set sfbThreshold high to code pe with 0,
noiseNrg marks flag for pns coding
*****************************************************************************/
void FDKaacEnc_CodePnsChannel(const INT sfbActive,
PNS_CONFIG *pnsConf,
INT *RESTRICT pnsFlag,
FIXP_DBL *RESTRICT sfbEnergyLdData,
INT *RESTRICT noiseNrg,
FIXP_DBL *RESTRICT sfbThresholdLdData)
{
INT sfb;
INT lastiNoiseEnergy = 0;
INT firstPNSband = 1; /* TRUE for first PNS-coded band */
/* no PNS */
if(!pnsConf->usePns) {
for(sfb = 0; sfb < sfbActive; sfb++) {
/* no PNS coding */
noiseNrg[sfb] = NO_NOISE_PNS;
}
return;
}
/* code PNS */
for(sfb = 0; sfb < sfbActive; sfb++) {
if(pnsFlag[sfb]) {
/* high sfbThreshold causes pe = 0 */
if(noiseNrg[sfb] != NO_NOISE_PNS)
sfbThresholdLdData[sfb] = sfbEnergyLdData[sfb] + FL2FXCONST_DBL(1.0f/LD_DATA_SCALING);
/* set noiseNrg in valid region */
if(!firstPNSband) {
INT deltaiNoiseEnergy = noiseNrg[sfb] - lastiNoiseEnergy;
if(deltaiNoiseEnergy > CODE_BOOK_PNS_LAV)
noiseNrg[sfb] -= deltaiNoiseEnergy - CODE_BOOK_PNS_LAV;
else if(deltaiNoiseEnergy < -CODE_BOOK_PNS_LAV)
noiseNrg[sfb] -= deltaiNoiseEnergy + CODE_BOOK_PNS_LAV;
}
else {
firstPNSband = 0;
}
lastiNoiseEnergy = noiseNrg[sfb];
}
else {
/* no PNS coding */
noiseNrg[sfb] = NO_NOISE_PNS;
}
}
}
/*****************************************************************************
functionname:FDKaacEnc_PreProcessPnsChannelPair
description: Calculate the correlation of noise in a channel pair
returns:
input: sfbActive
pointer to sfb energies left, right and mid channel
pns config structure
pns data structure left and right (modified)
output: noiseEnergyCorrelation in pns data structure
*****************************************************************************/
void FDKaacEnc_PreProcessPnsChannelPair(const INT sfbActive,
FIXP_DBL *RESTRICT sfbEnergyLeft,
FIXP_DBL *RESTRICT sfbEnergyRight,
FIXP_DBL *RESTRICT sfbEnergyLeftLD,
FIXP_DBL *RESTRICT sfbEnergyRightLD,
FIXP_DBL *RESTRICT sfbEnergyMid,
PNS_CONFIG *RESTRICT pnsConf,
PNS_DATA *pnsDataLeft,
PNS_DATA *pnsDataRight)
{
INT sfb;
FIXP_DBL ccf;
if(!pnsConf->usePns)
return;
FIXP_DBL *RESTRICT pNoiseEnergyCorrelationL = pnsDataLeft->noiseEnergyCorrelation;
FIXP_DBL *RESTRICT pNoiseEnergyCorrelationR = pnsDataRight->noiseEnergyCorrelation;
for(sfb=0;sfb< sfbActive;sfb++) {
FIXP_DBL quot = (sfbEnergyLeftLD[sfb]>>1) + (sfbEnergyRightLD[sfb]>>1);
if(quot < FL2FXCONST_DBL(-32.0f/(float)LD_DATA_SCALING))
ccf = FL2FXCONST_DBL(0.0f);
else {
FIXP_DBL accu = sfbEnergyMid[sfb]- (((sfbEnergyLeft[sfb]>>1)+(sfbEnergyRight[sfb]>>1))>>1);
INT sign = (accu < FL2FXCONST_DBL(0.0f)) ? 1 : 0 ;
accu = fixp_abs(accu);
ccf = CalcLdData(accu) + FL2FXCONST_DBL((float)1.0f/(float)LD_DATA_SCALING) - quot; /* ld(accu*2) = ld(accu) + 1 */
ccf = (ccf>=FL2FXCONST_DBL(0.0)) ? ((FIXP_DBL)MAXVAL_DBL) : (sign) ? -CalcInvLdData(ccf) : CalcInvLdData(ccf);
}
pNoiseEnergyCorrelationL[sfb] = ccf;
pNoiseEnergyCorrelationR[sfb] = ccf;
}
}
/*****************************************************************************
functionname:FDKaacEnc_PostProcessPnsChannelPair
description: if PNS used at left and right channel,
use msMask to flag correlation
returns:
input: sfbActive
pns config structure
pns data structure left and right (modified)
pointer to msMask, flags correlation by pns coding (modified)
Digest of MS coding
output: pnsFlag in pns data structure,
msFlag in msMask (flags correlation)
*****************************************************************************/
void FDKaacEnc_PostProcessPnsChannelPair(const INT sfbActive,
PNS_CONFIG *pnsConf,
PNS_DATA *pnsDataLeft,
PNS_DATA *pnsDataRight,
INT *RESTRICT msMask,
INT *msDigest )
{
INT sfb;
if(!pnsConf->usePns)
return;
for(sfb=0;sfb<sfbActive;sfb++) {
/*
MS post processing
*/
if( msMask[sfb] ) {
if( (pnsDataLeft->pnsFlag[sfb]) &&
(pnsDataRight->pnsFlag[sfb]) ) {
/* AAC only: Standard */
/* do this to avoid ms flags in layers that should not have it */
if(pnsDataLeft->noiseEnergyCorrelation[sfb] <= pnsConf->noiseCorrelationThresh){
msMask[sfb] = 0;
*msDigest = MS_SOME;
}
}
else {
/*
No PNS coding
*/
pnsDataLeft->pnsFlag[sfb] = 0;
pnsDataRight->pnsFlag[sfb] = 0;
}
}
/*
Use MS flag to signal noise correlation if
pns is active in both channels
*/
if( (pnsDataLeft->pnsFlag[sfb]) && (pnsDataRight->pnsFlag[sfb]) ) {
if(pnsDataLeft->noiseEnergyCorrelation[sfb] > pnsConf->noiseCorrelationThresh) {
msMask[sfb] = 1;
*msDigest = MS_SOME;
}
}
}
}