blob: 0eee7d99ae6a3ca348fd530236978531e930752a [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% QQQ U U AAA N N TTTTT U U M M %
% Q Q U U A A NN N T U U MM MM %
% Q Q U U AAAAA N N N T U U M M M %
% Q QQ U U A A N NN T U U M M %
% QQQQ UUU A A N N T UUU M M %
% %
% EEEEE X X PPPP OOO RRRR TTTTT %
% E X X P P O O R R T %
% EEE X PPPP O O RRRR T %
% E X X P O O R R T %
% EEEEE X X P OOO R R T %
% %
% MagickCore Methods to Export Quantum Pixels %
% %
% Software Design %
% Cristy %
% October 1998 %
% %
% %
% Copyright 1999-2020 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% https://imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/property.h"
#include "MagickCore/blob.h"
#include "MagickCore/blob-private.h"
#include "MagickCore/color-private.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/cache.h"
#include "MagickCore/constitute.h"
#include "MagickCore/delegate.h"
#include "MagickCore/geometry.h"
#include "MagickCore/list.h"
#include "MagickCore/magick.h"
#include "MagickCore/memory_.h"
#include "MagickCore/monitor.h"
#include "MagickCore/option.h"
#include "MagickCore/pixel.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/quantum.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/resource_.h"
#include "MagickCore/semaphore.h"
#include "MagickCore/statistic.h"
#include "MagickCore/stream.h"
#include "MagickCore/string_.h"
#include "MagickCore/utility.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ E x p o r t Q u a n t u m P i x e l s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ExportQuantumPixels() transfers one or more pixel components from the image
% pixel cache to a user supplied buffer. The pixels are returned in network
% byte order. MagickTrue is returned if the pixels are successfully
% transferred, otherwise MagickFalse.
%
% The format of the ExportQuantumPixels method is:
%
% size_t ExportQuantumPixels(const Image *image,CacheView *image_view,
% QuantumInfo *quantum_info,const QuantumType quantum_type,
% unsigned char *magick_restrict pixels,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o image_view: the image cache view.
%
% o quantum_info: the quantum info.
%
% o quantum_type: Declare which pixel components to transfer (RGB, RGBA,
% etc).
%
% o pixels: The components are transferred to this buffer.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline unsigned char *PopDoublePixel(QuantumInfo *quantum_info,
const double pixel,unsigned char *magick_restrict pixels)
{
double
*p;
unsigned char
quantum[8];
(void) memset(quantum,0,sizeof(quantum));
p=(double *) quantum;
*p=(double) (pixel*quantum_info->state.inverse_scale+quantum_info->minimum);
if (quantum_info->endian == LSBEndian)
{
*pixels++=quantum[0];
*pixels++=quantum[1];
*pixels++=quantum[2];
*pixels++=quantum[3];
*pixels++=quantum[4];
*pixels++=quantum[5];
*pixels++=quantum[6];
*pixels++=quantum[7];
return(pixels);
}
*pixels++=quantum[7];
*pixels++=quantum[6];
*pixels++=quantum[5];
*pixels++=quantum[4];
*pixels++=quantum[3];
*pixels++=quantum[2];
*pixels++=quantum[1];
*pixels++=quantum[0];
return(pixels);
}
static inline unsigned char *PopFloatPixel(QuantumInfo *quantum_info,
const float pixel,unsigned char *magick_restrict pixels)
{
float
*p;
unsigned char
quantum[4];
(void) memset(quantum,0,sizeof(quantum));
p=(float *) quantum;
*p=(float) ((double) pixel*quantum_info->state.inverse_scale+
quantum_info->minimum);
if (quantum_info->endian == LSBEndian)
{
*pixels++=quantum[0];
*pixels++=quantum[1];
*pixels++=quantum[2];
*pixels++=quantum[3];
return(pixels);
}
*pixels++=quantum[3];
*pixels++=quantum[2];
*pixels++=quantum[1];
*pixels++=quantum[0];
return(pixels);
}
static inline unsigned char *PopQuantumPixel(QuantumInfo *quantum_info,
const QuantumAny pixel,unsigned char *magick_restrict pixels)
{
register ssize_t
i;
size_t
quantum_bits;
if (quantum_info->state.bits == 0UL)
quantum_info->state.bits=8U;
for (i=(ssize_t) quantum_info->depth; i > 0L; )
{
quantum_bits=(size_t) i;
if (quantum_bits > quantum_info->state.bits)
quantum_bits=quantum_info->state.bits;
i-=(ssize_t) quantum_bits;
if (i < 0)
i=0;
if (quantum_info->state.bits == 8UL)
*pixels='\0';
quantum_info->state.bits-=quantum_bits;
*pixels|=(((pixel >> i) &~ ((~0UL) << quantum_bits)) <<
quantum_info->state.bits);
if (quantum_info->state.bits == 0UL)
{
pixels++;
quantum_info->state.bits=8UL;
}
}
return(pixels);
}
static inline unsigned char *PopQuantumLongPixel(QuantumInfo *quantum_info,
const size_t pixel,unsigned char *magick_restrict pixels)
{
register ssize_t
i;
size_t
quantum_bits;
if (quantum_info->state.bits == 0U)
quantum_info->state.bits=32UL;
for (i=(ssize_t) quantum_info->depth; i > 0; )
{
quantum_bits=(size_t) i;
if (quantum_bits > quantum_info->state.bits)
quantum_bits=quantum_info->state.bits;
quantum_info->state.pixel|=(((pixel >> (quantum_info->depth-i)) &
quantum_info->state.mask[quantum_bits]) << (32U-
quantum_info->state.bits));
i-=(ssize_t) quantum_bits;
quantum_info->state.bits-=quantum_bits;
if (quantum_info->state.bits == 0U)
{
pixels=PopLongPixel(quantum_info->endian,quantum_info->state.pixel,
pixels);
quantum_info->state.pixel=0U;
quantum_info->state.bits=32U;
}
}
return(pixels);
}
static void ExportAlphaQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
QuantumAny
range;
register ssize_t
x;
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
(void) exception;
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelAlpha(image,p));
q=PopCharPixel(pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelAlpha(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelAlpha(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(quantum_info,(float) GetPixelAlpha(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelAlpha(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(quantum_info,(double) GetPixelAlpha(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelAlpha(image,p),
range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportBGRQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
QuantumAny
range;
register ssize_t
x;
ssize_t
bit;
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
(void) exception;
switch (quantum_info->depth)
{
case 8:
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopCharPixel(ScaleQuantumToChar(GetPixelBlue(image,p)),q);
q=PopCharPixel(ScaleQuantumToChar(GetPixelGreen(image,p)),q);
q=PopCharPixel(ScaleQuantumToChar(GetPixelRed(image,p)),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 10:
{
register unsigned int
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) (
ScaleQuantumToAny(GetPixelRed(image,p),range) << 22 |
ScaleQuantumToAny(GetPixelGreen(image,p),range) << 12 |
ScaleQuantumToAny(GetPixelBlue(image,p),range) << 2);
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 12:
{
register unsigned int
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2)
{
switch (x % 3)
{
default:
case 0:
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
break;
}
case 1:
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
break;
}
case 2:
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
p+=GetPixelChannels(image);
break;
}
}
q=PopShortPixel(quantum_info->endian,(unsigned short) (pixel << 4),
q);
switch ((x+1) % 3)
{
default:
case 0:
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
break;
}
case 1:
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
break;
}
case 2:
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
p+=GetPixelChannels(image);
break;
}
}
q=PopShortPixel(quantum_info->endian,(unsigned short) (pixel << 4),
q);
q+=quantum_info->pad;
}
for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++)
{
switch ((x+bit) % 3)
{
default:
case 0:
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
break;
}
case 1:
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
break;
}
case 2:
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
p+=GetPixelChannels(image);
break;
}
}
q=PopShortPixel(quantum_info->endian,(unsigned short) (pixel << 4),
q);
q+=quantum_info->pad;
}
if (bit != 0)
p+=GetPixelChannels(image);
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p),
range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportBGRAQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
QuantumAny
range;
register ssize_t
x;
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelBlue(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelGreen(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelRed(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelAlpha(image,p));
q=PopCharPixel(pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 10:
{
register unsigned int
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
register ssize_t
i;
size_t
quantum;
ssize_t
n;
n=0;
quantum=0;
pixel=0;
for (x=0; x < (ssize_t) number_pixels; x++)
{
for (i=0; i < 4; i++)
{
switch (i)
{
case 0: quantum=GetPixelRed(image,p); break;
case 1: quantum=GetPixelGreen(image,p); break;
case 2: quantum=GetPixelBlue(image,p); break;
case 3: quantum=GetPixelAlpha(image,p); break;
}
switch (n % 3)
{
case 0:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 22);
break;
}
case 1:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 12);
break;
}
case 2:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 2);
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=0;
break;
}
}
n++;
}
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p),
range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelAlpha(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelAlpha(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
float_pixel;
q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q);
float_pixel=(float) GetPixelAlpha(image,p);
q=PopFloatPixel(quantum_info,float_pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelAlpha(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q);
pixel=(double) GetPixelAlpha(image,p);
q=PopDoublePixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelAlpha(image,p),
range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportBGROQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
QuantumAny
range;
register ssize_t
x;
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelBlue(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelGreen(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelRed(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelOpacity(image,p));
q=PopCharPixel(pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 10:
{
register unsigned int
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
register ssize_t
i;
size_t
quantum;
ssize_t
n;
n=0;
quantum=0;
pixel=0;
for (x=0; x < (ssize_t) number_pixels; x++)
{
for (i=0; i < 4; i++)
{
switch (i)
{
case 0: quantum=GetPixelRed(image,p); break;
case 1: quantum=GetPixelGreen(image,p); break;
case 2: quantum=GetPixelBlue(image,p); break;
case 3: quantum=GetPixelOpacity(image,p); break;
}
switch (n % 3)
{
case 0:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 22);
break;
}
case 1:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 12);
break;
}
case 2:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 2);
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=0;
break;
}
}
n++;
}
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelOpacity(image,p),
range);
q=PopQuantumLongPixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelOpacity(image,p),range);
q=PopQuantumPixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelOpacity(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelOpacity(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
float_pixel;
q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q);
float_pixel=(float) GetPixelOpacity(image,p);
q=PopFloatPixel(quantum_info,float_pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelOpacity(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q);
pixel=(double) GetPixelOpacity(image,p);
q=PopDoublePixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelOpacity(image,p),
range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportBlackQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
QuantumAny
range;
register ssize_t
x;
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return;
}
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelBlack(image,p));
q=PopCharPixel(pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlack(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelBlack(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(quantum_info,(float) GetPixelBlack(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelBlack(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(quantum_info,(double) GetPixelBlack(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlack(image,p),
range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportBlueQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
QuantumAny
range;
register ssize_t
x;
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelBlue(image,p));
q=PopCharPixel(pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p),
range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportCbYCrYQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
Quantum
cbcr[4];
register ssize_t
i,
x;
register unsigned int
pixel;
size_t
quantum;
ssize_t
n;
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
n=0;
quantum=0;
switch (quantum_info->depth)
{
case 10:
{
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) number_pixels; x+=2)
{
for (i=0; i < 4; i++)
{
switch (n % 3)
{
case 0:
{
quantum=GetPixelRed(image,p);
break;
}
case 1:
{
quantum=GetPixelGreen(image,p);
break;
}
case 2:
{
quantum=GetPixelBlue(image,p);
break;
}
}
cbcr[i]=(Quantum) quantum;
n++;
}
pixel=(unsigned int) ((size_t) (cbcr[1]) << 22 | (size_t)
(cbcr[0]) << 12 | (size_t) (cbcr[2]) << 2);
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
pixel=(unsigned int) ((size_t) (cbcr[3]) << 22 | (size_t)
(cbcr[0]) << 12 | (size_t) (cbcr[2]) << 2);
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
break;
}
default:
{
QuantumAny
range;
for (x=0; x < (ssize_t) number_pixels; x+=2)
{
for (i=0; i < 4; i++)
{
switch (n % 3)
{
case 0:
{
quantum=GetPixelRed(image,p);
break;
}
case 1:
{
quantum=GetPixelGreen(image,p);
break;
}
case 2:
{
quantum=GetPixelBlue(image,p);
break;
}
}
cbcr[i]=(Quantum) quantum;
n++;
}
range=GetQuantumRange(quantum_info->depth);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[1],range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[0],range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[2],range),q);
p+=GetPixelChannels(image);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[3],range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[0],range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[2],range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportCMYKQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
register ssize_t
x;
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return;
}
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelRed(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelGreen(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelBlue(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelBlack(image,p));
q=PopCharPixel(pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlack(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlack(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelBlack(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlack(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelBlack(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
QuantumAny
range;
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlack(image,p),
range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportCMYKAQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
register ssize_t
x;
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return;
}
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelRed(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelGreen(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelBlue(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelBlack(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelAlpha(image,p));
q=PopCharPixel(pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlack(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelAlpha(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlack(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelAlpha(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
float_pixel;
q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelBlack(image,p),q);
float_pixel=(float) (GetPixelAlpha(image,p));
q=PopFloatPixel(quantum_info,float_pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlack(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelAlpha(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelBlack(image,p),q);
pixel=(double) (GetPixelAlpha(image,p));
q=PopDoublePixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
QuantumAny
range;
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlack(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelAlpha(image,p),
range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportCMYKOQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
register ssize_t
x;
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return;
}
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelRed(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelGreen(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelBlue(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelBlack(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelOpacity(image,p));
q=PopCharPixel(pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlack(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelOpacity(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlack(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelOpacity(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
float_pixel;
q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q);
q=PopFloatPixel(quantum_info,(float) GetPixelBlack(image,p),q);
float_pixel=(float) (GetPixelOpacity(image,p));
q=PopFloatPixel(quantum_info,float_pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlack(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelOpacity(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q);
q=PopDoublePixel(quantum_info,(double) GetPixelBlack(image,p),q);
pixel=(double) (GetPixelOpacity(image,p));
q=PopDoublePixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
QuantumAny
range;
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlack(image,p),
range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelOpacity(image,p),
range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportGrayQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
QuantumAny
range;
register ssize_t
x;
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
switch (quantum_info->depth)
{
case 1:
{
register double
threshold;
register unsigned char
black,
white;
ssize_t
bit;
black=0x00;
white=0x01;
if (quantum_info->min_is_white != MagickFalse)
{
black=0x01;
white=0x00;
}
threshold=QuantumRange/2.0;
for (x=((ssize_t) number_pixels-7); x > 0; x-=8)
{
*q='\0';
*q|=(GetPixelLuma(image,p) < threshold ? black : white) << 7;
p+=GetPixelChannels(image);
*q|=(GetPixelLuma(image,p) < threshold ? black : white) << 6;
p+=GetPixelChannels(image);
*q|=(GetPixelLuma(image,p) < threshold ? black : white) << 5;
p+=GetPixelChannels(image);
*q|=(GetPixelLuma(image,p) < threshold ? black : white) << 4;
p+=GetPixelChannels(image);
*q|=(GetPixelLuma(image,p) < threshold ? black : white) << 3;
p+=GetPixelChannels(image);
*q|=(GetPixelLuma(image,p) < threshold ? black : white) << 2;
p+=GetPixelChannels(image);
*q|=(GetPixelLuma(image,p) < threshold ? black : white) << 1;
p+=GetPixelChannels(image);
*q|=(GetPixelLuma(image,p) < threshold ? black : white) << 0;
p+=GetPixelChannels(image);
q++;
}
if ((number_pixels % 8) != 0)
{
*q='\0';
for (bit=7; bit >= (ssize_t) (8-(number_pixels % 8)); bit--)
{
*q|=(GetPixelLuma(image,p) < threshold ? black : white) << bit;
p+=GetPixelChannels(image);
}
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) (number_pixels-1) ; x+=2)
{
pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p)));
*q=(((pixel >> 4) & 0xf) << 4);
p+=GetPixelChannels(image);
pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p)));
*q|=pixel >> 4;
p+=GetPixelChannels(image);
q++;
}
if ((number_pixels % 2) != 0)
{
pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p)));
*q=(((pixel >> 4) & 0xf) << 4);
p+=GetPixelChannels(image);
q++;
}
break;
}
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p)));
q=PopCharPixel(pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 10:
{
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
register unsigned int
pixel;
for (x=0; x < (ssize_t) (number_pixels-2); x+=3)
{
pixel=(unsigned int) (ScaleQuantumToAny(ClampToQuantum(
GetPixelLuma(image,p+2*GetPixelChannels(image))),range) << 22 |
ScaleQuantumToAny(ClampToQuantum(GetPixelLuma(image,p+
GetPixelChannels(image))),range) << 12 | ScaleQuantumToAny(
ClampToQuantum(GetPixelLuma(image,p)),range) << 2);
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=3*GetPixelChannels(image);
q+=quantum_info->pad;
}
if (x < (ssize_t) number_pixels)
{
pixel=0U;
if (x++ < (ssize_t) (number_pixels-1))
pixel|=ScaleQuantumToAny(ClampToQuantum(GetPixelLuma(image,p+
GetPixelChannels(image))),range) << 12;
if (x++ < (ssize_t) number_pixels)
pixel|=ScaleQuantumToAny(ClampToQuantum(GetPixelLuma(image,p)),
range) << 2;
q=PopLongPixel(quantum_info->endian,pixel,q);
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(ClampToQuantum(
GetPixelLuma(image,p)),range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 12:
{
register unsigned short
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(ClampToQuantum(GetPixelLuma(image,p)));
q=PopShortPixel(quantum_info->endian,(unsigned short) (pixel >> 4),
q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(ClampToQuantum(
GetPixelLuma(image,p)),range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelLuma(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(ClampToQuantum(GetPixelLuma(image,p)));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
float_pixel;
float_pixel=(float) GetPixelLuma(image,p);
q=PopFloatPixel(quantum_info,float_pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(ClampToQuantum(GetPixelLuma(image,p)));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
double
pixel;
pixel=GetPixelLuma(image,p);
q=PopDoublePixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(ClampToQuantum(
GetPixelLuma(image,p)),range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportGrayAlphaQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
QuantumAny
range;
register ssize_t
x;
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
switch (quantum_info->depth)
{
case 1:
{
register double
threshold;
register unsigned char
black,
pixel,
white;
ssize_t
bit;
black=0x00;
white=0x01;
if (quantum_info->min_is_white != MagickFalse)
{
black=0x01;
white=0x00;
}
threshold=QuantumRange/2.0;
for (x=((ssize_t) number_pixels-3); x > 0; x-=4)
{
*q='\0';
*q|=(GetPixelLuma(image,p) > threshold ? black : white) << 7;
pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ?
0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 6);
p+=GetPixelChannels(image);
*q|=(GetPixelLuma(image,p) > threshold ? black : white) << 5;
pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ?
0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 4);
p+=GetPixelChannels(image);
*q|=(GetPixelLuma(image,p) > threshold ? black : white) << 3;
pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ?
0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 2);
p+=GetPixelChannels(image);
*q|=(GetPixelLuma(image,p) > threshold ? black : white) << 1;
pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ?
0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 0);
p+=GetPixelChannels(image);
q++;
}
if ((number_pixels % 4) != 0)
{
*q='\0';
for (bit=0; bit <= (ssize_t) (number_pixels % 4); bit+=2)
{
*q|=(GetPixelLuma(image,p) > threshold ? black : white) <<
(7-bit);
pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ?
0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << (unsigned char)
(7-bit-1));
p+=GetPixelChannels(image);
}
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels ; x++)
{
pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p)));
*q=(((pixel >> 4) & 0xf) << 4);
pixel=(unsigned char) (16*QuantumScale*GetPixelAlpha(image,p)+0.5);
*q|=pixel & 0xf;
p+=GetPixelChannels(image);
q++;
}
break;
}
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p)));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelAlpha(image,p));
q=PopCharPixel(pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelLuma(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelAlpha(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(ClampToQuantum(GetPixelLuma(image,p)));
q=PopShortPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelAlpha(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
float_pixel;
float_pixel=(float) GetPixelLuma(image,p);
q=PopFloatPixel(quantum_info,float_pixel,q);
float_pixel=(float) (GetPixelAlpha(image,p));
q=PopFloatPixel(quantum_info,float_pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(ClampToQuantum(GetPixelLuma(image,p)));
q=PopLongPixel(quantum_info->endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelAlpha(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
double
pixel;
pixel=GetPixelLuma(image,p);
q=PopDoublePixel(quantum_info,pixel,q);
pixel=(double) (GetPixelAlpha(image,p));
q=PopDoublePixel(quantum_info,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(ClampToQuantum(
GetPixelLuma(image,p)),range),q);
q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelAlpha(image,p),
range),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
}
static void ExportGreenQuantum(const Image *image,QuantumInfo *quantum_info,
const MagickSizeType number_pixels,const Quantum *magick_restrict p,
unsigned char *magick_restrict q,ExceptionInfo *exception)
{
QuantumAny
range;
register ssize_t
x;
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelGreen(image,p));
q=PopCharPixel(pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(quantum_info->endian,pixel,q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q);
p+=GetPixelChannels(image);
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x &