blob: e85d46943d8c497f090786c88229d9bf6c089a1f [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% V V IIIII SSSSS IIIII OOO N N %
% V V I SS I O O NN N %
% V V I SSS I O O N N N %
% V V I SS I O O N NN %
% V IIIII SSSSS IIIII OOO N N %
% %
% %
% MagickCore Computer Vision Methods %
% %
% Software Design %
% Cristy %
% September 2014 %
% %
% %
% Copyright 1999-2020 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% https://imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
#include "MagickCore/studio.h"
#include "MagickCore/artifact.h"
#include "MagickCore/blob.h"
#include "MagickCore/cache-view.h"
#include "MagickCore/color.h"
#include "MagickCore/color-private.h"
#include "MagickCore/colormap.h"
#include "MagickCore/colorspace.h"
#include "MagickCore/constitute.h"
#include "MagickCore/decorate.h"
#include "MagickCore/distort.h"
#include "MagickCore/draw.h"
#include "MagickCore/enhance.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/effect.h"
#include "MagickCore/gem.h"
#include "MagickCore/geometry.h"
#include "MagickCore/image-private.h"
#include "MagickCore/list.h"
#include "MagickCore/log.h"
#include "MagickCore/matrix.h"
#include "MagickCore/memory_.h"
#include "MagickCore/memory-private.h"
#include "MagickCore/monitor.h"
#include "MagickCore/monitor-private.h"
#include "MagickCore/montage.h"
#include "MagickCore/morphology.h"
#include "MagickCore/morphology-private.h"
#include "MagickCore/opencl-private.h"
#include "MagickCore/paint.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/pixel-private.h"
#include "MagickCore/property.h"
#include "MagickCore/quantum.h"
#include "MagickCore/resource_.h"
#include "MagickCore/signature-private.h"
#include "MagickCore/string_.h"
#include "MagickCore/string-private.h"
#include "MagickCore/thread-private.h"
#include "MagickCore/token.h"
#include "MagickCore/vision.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C o n n e c t e d C o m p o n e n t s I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ConnectedComponentsImage() returns the connected-components of the image
% uniquely labeled. The returned connected components image colors member
% defines the number of unique objects. Choose from 4 or 8-way connectivity.
%
% You are responsible for freeing the connected components objects resources
% with this statement;
%
% objects = (CCObjectInfo *) RelinquishMagickMemory(objects);
%
% The format of the ConnectedComponentsImage method is:
%
% Image *ConnectedComponentsImage(const Image *image,
% const size_t connectivity,CCObjectInfo **objects,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o connectivity: how many neighbors to visit, choose from 4 or 8.
%
% o objects: return the attributes of each unique object.
%
% o exception: return any errors or warnings in this structure.
%
*/
static int CCObjectInfoCompare(const void *x,const void *y)
{
CCObjectInfo
*p,
*q;
p=(CCObjectInfo *) x;
q=(CCObjectInfo *) y;
return((int) (q->area-(ssize_t) p->area));
}
MagickExport Image *ConnectedComponentsImage(const Image *image,
const size_t connectivity,CCObjectInfo **objects,ExceptionInfo *exception)
{
#define ConnectedComponentsImageTag "ConnectedComponents/Image"
CacheView
*component_view,
*image_view,
*object_view;
CCObjectInfo
*object;
char
*c;
const char
*artifact,
*metrics[CCMaxMetrics];
double
max_threshold,
min_threshold;
Image
*component_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MatrixInfo
*equivalences;
RectangleInfo
bounding_box;
register ssize_t
i;
size_t
size;
ssize_t
background_id,
connect4[2][2] = { { -1, 0 }, { 0, -1 } },
connect8[4][2] = { { -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, -1 } },
dx,
dy,
first,
last,
n,
step,
y;
/*
Initialize connected components image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
if (objects != (CCObjectInfo **) NULL)
*objects=(CCObjectInfo *) NULL;
component_image=CloneImage(image,0,0,MagickTrue,exception);
if (component_image == (Image *) NULL)
return((Image *) NULL);
component_image->depth=MAGICKCORE_QUANTUM_DEPTH;
if (AcquireImageColormap(component_image,MaxColormapSize,exception) == MagickFalse)
{
component_image=DestroyImage(component_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
/*
Initialize connected components equivalences.
*/
size=image->columns*image->rows;
if (image->columns != (size/image->rows))
{
component_image=DestroyImage(component_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
equivalences=AcquireMatrixInfo(size,1,sizeof(ssize_t),exception);
if (equivalences == (MatrixInfo *) NULL)
{
component_image=DestroyImage(component_image);
return((Image *) NULL);
}
for (n=0; n < (ssize_t) (image->columns*image->rows); n++)
(void) SetMatrixElement(equivalences,n,0,&n);
object=(CCObjectInfo *) AcquireQuantumMemory(MaxColormapSize,sizeof(*object));
if (object == (CCObjectInfo *) NULL)
{
equivalences=DestroyMatrixInfo(equivalences);
component_image=DestroyImage(component_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
(void) memset(object,0,MaxColormapSize*sizeof(*object));
for (i=0; i < (ssize_t) MaxColormapSize; i++)
{
object[i].id=i;
object[i].bounding_box.x=(ssize_t) image->columns;
object[i].bounding_box.y=(ssize_t) image->rows;
GetPixelInfo(image,&object[i].color);
}
/*
Find connected components.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
for (n=0; n < (ssize_t) (connectivity > 4 ? 4 : 2); n++)
{
if (status == MagickFalse)
continue;
dx=connectivity > 4 ? connect8[n][1] : connect4[n][1];
dy=connectivity > 4 ? connect8[n][0] : connect4[n][0];
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y-1,image->columns,3,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
p+=GetPixelChannels(image)*image->columns;
for (x=0; x < (ssize_t) image->columns; x++)
{
PixelInfo
pixel,
target;
ssize_t
neighbor_offset,
obj,
offset,
ox,
oy,
root;
/*
Is neighbor an authentic pixel and a different color than the pixel?
*/
GetPixelInfoPixel(image,p,&pixel);
if (((x+dx) < 0) || ((x+dx) >= (ssize_t) image->columns) ||
((y+dy) < 0) || ((y+dy) >= (ssize_t) image->rows))
{
p+=GetPixelChannels(image);
continue;
}
neighbor_offset=dy*(GetPixelChannels(image)*image->columns)+dx*
GetPixelChannels(image);
GetPixelInfoPixel(image,p+neighbor_offset,&target);
if (IsFuzzyEquivalencePixelInfo(&pixel,&target) == MagickFalse)
{
p+=GetPixelChannels(image);
continue;
}
/*
Resolve this equivalence.
*/
offset=y*image->columns+x;
neighbor_offset=dy*image->columns+dx;
ox=offset;
status=GetMatrixElement(equivalences,ox,0,&obj);
while (obj != ox)
{
ox=obj;
status=GetMatrixElement(equivalences,ox,0,&obj);
}
oy=offset+neighbor_offset;
status=GetMatrixElement(equivalences,oy,0,&obj);
while (obj != oy)
{
oy=obj;
status=GetMatrixElement(equivalences,oy,0,&obj);
}
if (ox < oy)
{
status=SetMatrixElement(equivalences,oy,0,&ox);
root=ox;
}
else
{
status=SetMatrixElement(equivalences,ox,0,&oy);
root=oy;
}
ox=offset;
status=GetMatrixElement(equivalences,ox,0,&obj);
while (obj != root)
{
status=GetMatrixElement(equivalences,ox,0,&obj);
status=SetMatrixElement(equivalences,ox,0,&root);
}
oy=offset+neighbor_offset;
status=GetMatrixElement(equivalences,oy,0,&obj);
while (obj != root)
{
status=GetMatrixElement(equivalences,oy,0,&obj);
status=SetMatrixElement(equivalences,oy,0,&root);
}
status=SetMatrixElement(equivalences,y*image->columns+x,0,&root);
p+=GetPixelChannels(image);
}
}
}
/*
Label connected components.
*/
n=0;
component_view=AcquireAuthenticCacheView(component_image,exception);
for (y=0; y < (ssize_t) component_image->rows; y++)
{
register const Quantum
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(component_view,0,y,component_image->columns,
1,exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) component_image->columns; x++)
{
ssize_t
id,
offset;
offset=y*image->columns+x;
status=GetMatrixElement(equivalences,offset,0,&id);
if (id != offset)
status=GetMatrixElement(equivalences,id,0,&id);
else
{
id=n++;
if (id >= (ssize_t) MaxColormapSize)
break;
}
status=SetMatrixElement(equivalences,offset,0,&id);
if (x < object[id].bounding_box.x)
object[id].bounding_box.x=x;
if (x >= (ssize_t) object[id].bounding_box.width)
object[id].bounding_box.width=(size_t) x;
if (y < object[id].bounding_box.y)
object[id].bounding_box.y=y;
if (y >= (ssize_t) object[id].bounding_box.height)
object[id].bounding_box.height=(size_t) y;
object[id].color.red+=QuantumScale*GetPixelRed(image,p);
object[id].color.green+=QuantumScale*GetPixelGreen(image,p);
object[id].color.blue+=QuantumScale*GetPixelBlue(image,p);
if (image->alpha_trait != UndefinedPixelTrait)
object[id].color.alpha+=QuantumScale*GetPixelAlpha(image,p);
if (image->colorspace == CMYKColorspace)
object[id].color.black+=QuantumScale*GetPixelBlack(image,p);
object[id].centroid.x+=x;
object[id].centroid.y+=y;
object[id].area++;
SetPixelIndex(component_image,(Quantum) id,q);
p+=GetPixelChannels(image);
q+=GetPixelChannels(component_image);
}
if (n > (ssize_t) MaxColormapSize)
break;
if (SyncCacheViewAuthenticPixels(component_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
progress++;
proceed=SetImageProgress(image,ConnectedComponentsImageTag,progress,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
component_view=DestroyCacheView(component_view);
image_view=DestroyCacheView(image_view);
equivalences=DestroyMatrixInfo(equivalences);
if (n > (ssize_t) MaxColormapSize)
{
object=(CCObjectInfo *) RelinquishMagickMemory(object);
component_image=DestroyImage(component_image);
ThrowImageException(ResourceLimitError,"TooManyObjects");
}
background_id=0;
min_threshold=0.0;
max_threshold=HUGE_VAL;
component_image->colors=(size_t) n;
for (i=0; i < (ssize_t) component_image->colors; i++)
{
object[i].bounding_box.width-=(object[i].bounding_box.x-1);
object[i].bounding_box.height-=(object[i].bounding_box.y-1);
object[i].color.red/=(object[i].area/QuantumRange);
object[i].color.green/=(object[i].area/QuantumRange);
object[i].color.blue/=(object[i].area/QuantumRange);
if (image->alpha_trait != UndefinedPixelTrait)
object[i].color.alpha/=(object[i].area/QuantumRange);
if (image->colorspace == CMYKColorspace)
object[i].color.black/=(object[i].area/QuantumRange);
object[i].centroid.x/=object[i].area;
object[i].centroid.y/=object[i].area;
max_threshold+=object[i].area;
if (object[i].area > object[background_id].area)
background_id=i;
}
max_threshold+=MagickEpsilon;
n=(-1);
artifact=GetImageArtifact(image,"connected-components:background-id");
if (artifact != (const char *) NULL)
background_id=(ssize_t) StringToDouble(artifact,(char **) NULL);
artifact=GetImageArtifact(image,"connected-components:area-threshold");
if (artifact != (const char *) NULL)
{
/*
Merge any object not within the min and max area threshold.
*/
(void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
for (i=0; i < (ssize_t) component_image->colors; i++)
if (((object[i].area < min_threshold) ||
(object[i].area >= max_threshold)) && (i != background_id))
object[i].merge=MagickTrue;
}
artifact=GetImageArtifact(image,"connected-components:keep-colors");
if (artifact != (const char *) NULL)
{
register const char
*p;
/*
Keep selected objects based on color, merge others.
*/
for (i=0; i < (ssize_t) component_image->colors; i++)
object[i].merge=MagickTrue;
for (p=artifact; ; )
{
char
color[MagickPathExtent];
PixelInfo
pixel;
register const char
*q;
for (q=p; *q != '\0'; q++)
if (*q == ';')
break;
(void) CopyMagickString(color,p,(size_t) MagickMin(q-p+1,
MagickPathExtent));
(void) QueryColorCompliance(color,AllCompliance,&pixel,exception);
for (i=0; i < (ssize_t) component_image->colors; i++)
if (IsFuzzyEquivalencePixelInfo(&object[i].color,&pixel) != MagickFalse)
object[i].merge=MagickFalse;
if (*q == '\0')
break;
p=q+1;
}
}
artifact=GetImageArtifact(image,"connected-components:keep-ids");
if (artifact == (const char *) NULL)
artifact=GetImageArtifact(image,"connected-components:keep");
if (artifact != (const char *) NULL)
{
/*
Keep selected objects based on id, merge others.
*/
for (i=0; i < (ssize_t) component_image->colors; i++)
object[i].merge=MagickTrue;
for (c=(char *) artifact; *c != '\0';)
{
while ((isspace((int) ((unsigned char) *c)) != 0) || (*c == ','))
c++;
first=(ssize_t) strtol(c,&c,10);
if (first < 0)
first+=(ssize_t) component_image->colors;
last=first;
while (isspace((int) ((unsigned char) *c)) != 0)
c++;
if (*c == '-')
{
last=(ssize_t) strtol(c+1,&c,10);
if (last < 0)
last+=(ssize_t) component_image->colors;
}
step=(ssize_t) (first > last ? -1 : 1);
for ( ; first != (last+step); first+=step)
object[first].merge=MagickFalse;
}
}
artifact=GetImageArtifact(image,"connected-components:keep-top");
if (artifact != (const char *) NULL)
{
CCObjectInfo
*top_objects;
ssize_t
top_ids;
/*
Keep top objects.
*/
top_ids=(ssize_t) StringToDouble(artifact,(char **) NULL);
top_objects=(CCObjectInfo *) AcquireQuantumMemory(component_image->colors,
sizeof(*top_objects));
if (top_objects == (CCObjectInfo *) NULL)
{
object=(CCObjectInfo *) RelinquishMagickMemory(object);
component_image=DestroyImage(component_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
(void) memcpy(top_objects,object,component_image->colors*sizeof(*object));
qsort((void *) top_objects,component_image->colors,sizeof(*top_objects),
CCObjectInfoCompare);
for (i=top_ids+1; i < (ssize_t) component_image->colors; i++)
object[top_objects[i].id].merge=MagickTrue;
top_objects=(CCObjectInfo *) RelinquishMagickMemory(top_objects);
}
artifact=GetImageArtifact(image,"connected-components:remove-colors");
if (artifact != (const char *) NULL)
{
register const char
*p;
/*
Remove selected objects based on color, keep others.
*/
for (p=artifact; ; )
{
char
color[MagickPathExtent];
PixelInfo
pixel;
register const char
*q;
for (q=p; *q != '\0'; q++)
if (*q == ';')
break;
(void) CopyMagickString(color,p,(size_t) MagickMin(q-p+1,
MagickPathExtent));
(void) QueryColorCompliance(color,AllCompliance,&pixel,exception);
for (i=0; i < (ssize_t) component_image->colors; i++)
if (IsFuzzyEquivalencePixelInfo(&object[i].color,&pixel) != MagickFalse)
object[i].merge=MagickTrue;
if (*q == '\0')
break;
p=q+1;
}
}
artifact=GetImageArtifact(image,"connected-components:remove-ids");
if (artifact == (const char *) NULL)
artifact=GetImageArtifact(image,"connected-components:remove");
if (artifact != (const char *) NULL)
for (c=(char *) artifact; *c != '\0';)
{
/*
Remove selected objects based on id, keep others.
*/
while ((isspace((int) ((unsigned char) *c)) != 0) || (*c == ','))
c++;
first=(ssize_t) strtol(c,&c,10);
if (first < 0)
first+=(ssize_t) component_image->colors;
last=first;
while (isspace((int) ((unsigned char) *c)) != 0)
c++;
if (*c == '-')
{
last=(ssize_t) strtol(c+1,&c,10);
if (last < 0)
last+=(ssize_t) component_image->colors;
}
step=(ssize_t) (first > last ? -1 : 1);
for ( ; first != (last+step); first+=step)
object[first].merge=MagickTrue;
}
artifact=GetImageArtifact(image,"connected-components:perimeter-threshold");
if (artifact != (const char *) NULL)
{
/*
Merge any object not within the min and max perimeter threshold.
*/
(void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
metrics[++n]="perimeter";
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic) shared(status) \
magick_number_threads(component_image,component_image,component_image->colors,1)
#endif
for (i=0; i < (ssize_t) component_image->colors; i++)
{
CacheView
*component_view;
RectangleInfo
bounding_box;
size_t
pattern[4] = { 1, 0, 0, 0 };
ssize_t
y;
/*
Compute perimeter of each object.
*/
if (status == MagickFalse)
continue;
component_view=AcquireAuthenticCacheView(component_image,exception);
bounding_box=object[i].bounding_box;
for (y=(-1); y < (ssize_t) bounding_box.height+1; y++)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,bounding_box.x-1,
bounding_box.y+y,bounding_box.width+2,2,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (x=(-1); x < (ssize_t) bounding_box.width+1; x++)
{
Quantum
pixels[4];
register ssize_t
v;
size_t
foreground;
/*
An Algorithm for Calculating Objects’ Shape Features in Binary
Images, Lifeng He, Yuyan Chao.
*/
foreground=0;
for (v=0; v < 2; v++)
{
register ssize_t
u;
for (u=0; u < 2; u++)
{
ssize_t
offset;
offset=v*(bounding_box.width+2)*
GetPixelChannels(component_image)+u*
GetPixelChannels(component_image);
pixels[2*v+u]=GetPixelIndex(component_image,p+offset);
if ((ssize_t) pixels[2*v+u] == i)
foreground++;
}
}
if (foreground == 1)
pattern[1]++;
else
if (foreground == 2)
{
if ((((ssize_t) pixels[0] == i) &&
((ssize_t) pixels[3] == i)) ||
(((ssize_t) pixels[1] == i) &&
((ssize_t) pixels[2] == i)))
pattern[0]++; /* diagonal */
else
pattern[2]++;
}
else
if (foreground == 3)
pattern[3]++;
p+=GetPixelChannels(component_image);
}
}
component_view=DestroyCacheView(component_view);
object[i].metric[n]=ceil(MagickSQ1_2*pattern[1]+1.0*pattern[2]+
MagickSQ1_2*pattern[3]+MagickSQ2*pattern[0]-0.5);
}
for (i=0; i < (ssize_t) component_image->colors; i++)
if (((object[i].metric[n] < min_threshold) ||
(object[i].metric[n] >= max_threshold)) && (i != background_id))
object[i].merge=MagickTrue;
}
artifact=GetImageArtifact(image,"connected-components:circularity-threshold");
if (artifact != (const char *) NULL)
{
/*
Merge any object not within the min and max circularity threshold.
*/
(void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
metrics[++n]="circularity";
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic) shared(status) \
magick_number_threads(component_image,component_image,component_image->colors,1)
#endif
for (i=0; i < (ssize_t) component_image->colors; i++)
{
CacheView
*component_view;
RectangleInfo
bounding_box;
size_t
pattern[4] = { 1, 0, 0, 0 };
ssize_t
y;
/*
Compute perimeter of each object.
*/
if (status == MagickFalse)
continue;
component_view=AcquireAuthenticCacheView(component_image,exception);
bounding_box=object[i].bounding_box;
for (y=(-1); y < (ssize_t) bounding_box.height; y++)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,bounding_box.x-1,
bounding_box.y+y,bounding_box.width+2,2,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (x=(-1); x < (ssize_t) bounding_box.width; x++)
{
Quantum
pixels[4];
register ssize_t
v;
size_t
foreground;
/*
An Algorithm for Calculating Objects’ Shape Features in Binary
Images, Lifeng He, Yuyan Chao.
*/
foreground=0;
for (v=0; v < 2; v++)
{
register ssize_t
u;
for (u=0; u < 2; u++)
{
ssize_t
offset;
offset=v*(bounding_box.width+2)*
GetPixelChannels(component_image)+u*
GetPixelChannels(component_image);
pixels[2*v+u]=GetPixelIndex(component_image,p+offset);
if ((ssize_t) pixels[2*v+u] == i)
foreground++;
}
}
if (foreground == 1)
pattern[1]++;
else
if (foreground == 2)
{
if ((((ssize_t) pixels[0] == i) &&
((ssize_t) pixels[3] == i)) ||
(((ssize_t) pixels[1] == i) &&
((ssize_t) pixels[2] == i)))
pattern[0]++; /* diagonal */
else
pattern[2]++;
}
else
if (foreground == 3)
pattern[3]++;
p+=GetPixelChannels(component_image);
}
}
component_view=DestroyCacheView(component_view);
object[i].metric[n]=ceil(MagickSQ1_2*pattern[1]+1.0*pattern[2]+
MagickSQ1_2*pattern[3]+MagickSQ2*pattern[0]-0.5);
object[i].metric[n]=4.0*MagickPI*object[i].area/(object[i].metric[n]*
object[i].metric[n]);
}
for (i=0; i < (ssize_t) component_image->colors; i++)
if (((object[i].metric[n] < min_threshold) ||
(object[i].metric[n] >= max_threshold)) && (i != background_id))
object[i].merge=MagickTrue;
}
artifact=GetImageArtifact(image,"connected-components:diameter-threshold");
if (artifact != (const char *) NULL)
{
/*
Merge any object not within the min and max diameter threshold.
*/
(void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
metrics[++n]="diameter";
for (i=0; i < (ssize_t) component_image->colors; i++)
{
object[i].metric[n]=ceil(sqrt(4.0*object[i].area/MagickPI)-0.5);
if (((object[i].metric[n] < min_threshold) ||
(object[i].metric[n] >= max_threshold)) && (i != background_id))
object[i].merge=MagickTrue;
}
}
artifact=GetImageArtifact(image,"connected-components:major-axis-threshold");
if (artifact != (const char *) NULL)
{
/*
Merge any object not within the min and max ellipse major threshold.
*/
(void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
metrics[++n]="major-axis";
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic) shared(status) \
magick_number_threads(component_image,component_image,component_image->colors,1)
#endif
for (i=0; i < (ssize_t) component_image->colors; i++)
{
CacheView
*component_view;
double
M00 = 0.0,
M01 = 0.0,
M02 = 0.0,
M10 = 0.0,
M11 = 0.0,
M20 = 0.0;
PointInfo
centroid = { 0.0, 0.0 };
RectangleInfo
bounding_box;
register const Quantum
*magick_restrict p;
register ssize_t
x;
ssize_t
y;
/*
Compute ellipse major axis of each object.
*/
if (status == MagickFalse)
continue;
component_view=AcquireAuthenticCacheView(component_image,exception);
bounding_box=object[i].bounding_box;
for (y=0; y < (ssize_t) bounding_box.height; y++)
{
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
bounding_box.y+y,bounding_box.width,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (x=0; x < (ssize_t) bounding_box.width; x++)
{
if ((ssize_t) GetPixelIndex(component_image,p) == i)
{
M00++;
M10+=x;
M01+=y;
}
p+=GetPixelChannels(component_image);
}
}
centroid.x=M10*PerceptibleReciprocal(M00);
centroid.y=M01*PerceptibleReciprocal(M00);
for (y=0; y < (ssize_t) bounding_box.height; y++)
{
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
bounding_box.y+y,bounding_box.width,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (x=0; x < (ssize_t) bounding_box.width; x++)
{
if ((ssize_t) GetPixelIndex(component_image,p) == i)
{
M11+=(x-centroid.x)*(y-centroid.y);
M20+=(x-centroid.x)*(x-centroid.x);
M02+=(y-centroid.y)*(y-centroid.y);
}
p+=GetPixelChannels(component_image);
}
}
component_view=DestroyCacheView(component_view);
object[i].metric[n]=sqrt((2.0*PerceptibleReciprocal(M00))*((M20+M02)+
sqrt(4.0*M11*M11+(M20-M02)*(M20-M02))));
}
for (i=0; i < (ssize_t) component_image->colors; i++)
if (((object[i].metric[n] < min_threshold) ||
(object[i].metric[n] >= max_threshold)) && (i != background_id))
object[i].merge=MagickTrue;
}
artifact=GetImageArtifact(image,"connected-components:minor-axis-threshold");
if (artifact != (const char *) NULL)
{
/*
Merge any object not within the min and max ellipse minor threshold.
*/
(void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
metrics[++n]="minor-axis";
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic) shared(status) \
magick_number_threads(component_image,component_image,component_image->colors,1)
#endif
for (i=0; i < (ssize_t) component_image->colors; i++)
{
CacheView
*component_view;
double
M00 = 0.0,
M01 = 0.0,
M02 = 0.0,
M10 = 0.0,
M11 = 0.0,
M20 = 0.0;
PointInfo
centroid = { 0.0, 0.0 };
RectangleInfo
bounding_box;
register const Quantum
*magick_restrict p;
register ssize_t
x;
ssize_t
y;
/*
Compute ellipse major axis of each object.
*/
if (status == MagickFalse)
continue;
component_view=AcquireAuthenticCacheView(component_image,exception);
bounding_box=object[i].bounding_box;
for (y=0; y < (ssize_t) bounding_box.height; y++)
{
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
bounding_box.y+y,bounding_box.width,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (x=0; x < (ssize_t) bounding_box.width; x++)
{
if ((ssize_t) GetPixelIndex(component_image,p) == i)
{
M00++;
M10+=x;
M01+=y;
}
p+=GetPixelChannels(component_image);
}
}
centroid.x=M10*PerceptibleReciprocal(M00);
centroid.y=M01*PerceptibleReciprocal(M00);
for (y=0; y < (ssize_t) bounding_box.height; y++)
{
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
bounding_box.y+y,bounding_box.width,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (x=0; x < (ssize_t) bounding_box.width; x++)
{
if ((ssize_t) GetPixelIndex(component_image,p) == i)
{
M11+=(x-centroid.x)*(y-centroid.y);
M20+=(x-centroid.x)*(x-centroid.x);
M02+=(y-centroid.y)*(y-centroid.y);
}
p+=GetPixelChannels(component_image);
}
}
component_view=DestroyCacheView(component_view);
object[i].metric[n]=sqrt((2.0*PerceptibleReciprocal(M00))*((M20+M02)-
sqrt(4.0*M11*M11+(M20-M02)*(M20-M02))));
}
for (i=0; i < (ssize_t) component_image->colors; i++)
if (((object[i].metric[n] < min_threshold) ||
(object[i].metric[n] >= max_threshold)) && (i != background_id))
object[i].merge=MagickTrue;
}
artifact=GetImageArtifact(image,
"connected-components:eccentricity-threshold");
if (artifact != (const char *) NULL)
{
/*
Merge any object not within the min and max eccentricity threshold.
*/
(void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
metrics[++n]="eccentricy";
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic) shared(status) \
magick_number_threads(component_image,component_image,component_image->colors,1)
#endif
for (i=0; i < (ssize_t) component_image->colors; i++)
{
CacheView
*component_view;
double
M00 = 0.0,
M01 = 0.0,
M02 = 0.0,
M10 = 0.0,
M11 = 0.0,
M20 = 0.0;
PointInfo
centroid = { 0.0, 0.0 },
ellipse_axis = { 0.0, 0.0 };
RectangleInfo
bounding_box;
register const Quantum
*magick_restrict p;
register ssize_t
x;
ssize_t
y;
/*
Compute eccentricity of each object.
*/
if (status == MagickFalse)
continue;
component_view=AcquireAuthenticCacheView(component_image,exception);
bounding_box=object[i].bounding_box;
for (y=0; y < (ssize_t) bounding_box.height; y++)
{
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
bounding_box.y+y,bounding_box.width,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (x=0; x < (ssize_t) bounding_box.width; x++)
{
if ((ssize_t) GetPixelIndex(component_image,p) == i)
{
M00++;
M10+=x;
M01+=y;
}
p+=GetPixelChannels(component_image);
}
}
centroid.x=M10*PerceptibleReciprocal(M00);
centroid.y=M01*PerceptibleReciprocal(M00);
for (y=0; y < (ssize_t) bounding_box.height; y++)
{
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
bounding_box.y+y,bounding_box.width,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (x=0; x < (ssize_t) bounding_box.width; x++)
{
if ((ssize_t) GetPixelIndex(component_image,p) == i)
{
M11+=(x-centroid.x)*(y-centroid.y);
M20+=(x-centroid.x)*(x-centroid.x);
M02+=(y-centroid.y)*(y-centroid.y);
}
p+=GetPixelChannels(component_image);
}
}
component_view=DestroyCacheView(component_view);
ellipse_axis.x=sqrt((2.0*PerceptibleReciprocal(M00))*((M20+M02)+
sqrt(4.0*M11*M11+(M20-M02)*(M20-M02))));
ellipse_axis.y=sqrt((2.0*PerceptibleReciprocal(M00))*((M20+M02)-
sqrt(4.0*M11*M11+(M20-M02)*(M20-M02))));
object[i].metric[n]=sqrt(1.0-(ellipse_axis.y*ellipse_axis.y*
PerceptibleReciprocal(ellipse_axis.x*ellipse_axis.x)));
}
for (i=0; i < (ssize_t) component_image->colors; i++)
if (((object[i].metric[n] < min_threshold) ||
(object[i].metric[n] >= max_threshold)) && (i != background_id))
object[i].merge=MagickTrue;
}
artifact=GetImageArtifact(image,"connected-components:angle-threshold");
if (artifact != (const char *) NULL)
{
/*
Merge any object not within the min and max ellipse angle threshold.
*/
(void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
metrics[++n]="angle";
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic) shared(status) \
magick_number_threads(component_image,component_image,component_image->colors,1)
#endif
for (i=0; i < (ssize_t) component_image->colors; i++)
{
CacheView
*component_view;
double
M00 = 0.0,
M01 = 0.0,
M02 = 0.0,
M10 = 0.0,
M11 = 0.0,
M20 = 0.0;
PointInfo
centroid = { 0.0, 0.0 };
RectangleInfo
bounding_box;
register const Quantum
*magick_restrict p;
register ssize_t
x;
ssize_t
y;
/*
Compute ellipse angle of each object.
*/
if (status == MagickFalse)
continue;
component_view=AcquireAuthenticCacheView(component_image,exception);
bounding_box=object[i].bounding_box;
for (y=0; y < (ssize_t) bounding_box.height; y++)
{
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
bounding_box.y+y,bounding_box.width,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (x=0; x < (ssize_t) bounding_box.width; x++)
{
if ((ssize_t) GetPixelIndex(component_image,p) == i)
{
M00++;
M10+=x;
M01+=y;
}
p+=GetPixelChannels(component_image);
}
}
centroid.x=M10*PerceptibleReciprocal(M00);
centroid.y=M01*PerceptibleReciprocal(M00);
for (y=0; y < (ssize_t) bounding_box.height; y++)
{
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
bounding_box.y+y,bounding_box.width,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (x=0; x < (ssize_t) bounding_box.width; x++)
{
if ((ssize_t) GetPixelIndex(component_image,p) == i)
{
M11+=(x-centroid.x)*(y-centroid.y);
M20+=(x-centroid.x)*(x-centroid.x);
M02+=(y-centroid.y)*(y-centroid.y);
}
p+=GetPixelChannels(component_image);
}
}
component_view=DestroyCacheView(component_view);
object[i].metric[n]=RadiansToDegrees(1.0/2.0*atan(2.0*M11*
PerceptibleReciprocal(M20-M02)));
if (fabs(M11) < 0.0)
{
if ((fabs(M20-M02) >= 0.0) && ((M20-M02) < 0.0))
object[i].metric[n]+=90.0;
}
else
if (M11 < 0.0)
{
if (fabs(M20-M02) >= 0.0)
{
if ((M20-M02) < 0.0)
object[i].metric[n]+=90.0;
else
object[i].metric[n]+=180.0;
}
}
else
if ((fabs(M20-M02) >= 0.0) && ((M20-M02) < 0.0))
object[i].metric[n]+=90.0;
}
for (i=0; i < (ssize_t) component_image->colors; i++)
if (((object[i].metric[n] < min_threshold) ||
(object[i].metric[n] >= max_threshold)) && (i != background_id))
object[i].merge=MagickTrue;
}
/*
Merge any object not within the min and max area threshold.
*/
component_view=AcquireAuthenticCacheView(component_image,exception);
object_view=AcquireVirtualCacheView(component_image,exception);
for (i=0; i < (ssize_t) component_image->colors; i++)
{
register ssize_t
j;
size_t
id;
if (status == MagickFalse)
continue;
if ((object[i].merge == MagickFalse) || (i == background_id))
continue; /* keep object */
/*
Merge this object.
*/
for (j=0; j < (ssize_t) component_image->colors; j++)
object[j].census=0;
bounding_box=object[i].bounding_box;
for (y=0; y < (ssize_t) bounding_box.height; y++)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
bounding_box.y+y,bounding_box.width,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) bounding_box.width; x++)
{
register ssize_t
n;
if (status == MagickFalse)
continue;
j=(ssize_t) GetPixelIndex(component_image,p);
if (j == i)
for (n=0; n < (ssize_t) (connectivity > 4 ? 4 : 2); n++)
{
register const Quantum
*p;
/*
Compute area of adjacent objects.
*/
if (status == MagickFalse)
continue;
dx=connectivity > 4 ? connect8[n][1] : connect4[n][1];
dy=connectivity > 4 ? connect8[n][0] : connect4[n][0];
p=GetCacheViewVirtualPixels(object_view,bounding_box.x+x+dx,
bounding_box.y+y+dy,1,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
j=(ssize_t) GetPixelIndex(component_image,p);
if (j != i)
object[j].census++;
}
p+=GetPixelChannels(component_image);
}
}
/*
Merge with object of greatest adjacent area.
*/
id=0;
for (j=1; j < (ssize_t) component_image->colors; j++)
if (object[j].census > object[id].census)
id=(size_t) j;
object[id].area+=object[i].area;
object[i].area=0.0;
for (y=0; y < (ssize_t) bounding_box.height; y++)
{
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(component_view,bounding_box.x,
bounding_box.y+y,bounding_box.width,1,exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) bounding_box.width; x++)
{
if ((ssize_t) GetPixelIndex(component_image,q) == i)
SetPixelIndex(component_image,(Quantum) id,q);
q+=GetPixelChannels(component_image);
}
if (SyncCacheViewAuthenticPixels(component_view,exception) == MagickFalse)
status=MagickFalse;
}
}
object_view=DestroyCacheView(object_view);
component_view=DestroyCacheView(component_view);
artifact=GetImageArtifact(image,"connected-components:mean-color");
if (IsStringTrue(artifact) != MagickFalse)
{
/*
Replace object with mean color.
*/
for (i=0; i < (ssize_t) component_image->colors; i++)
component_image->colormap[i]=object[i].color;
}
(void) SyncImage(component_image,exception);
artifact=GetImageArtifact(image,"connected-components:verbose");
if ((IsStringTrue(artifact) != MagickFalse) ||
(objects != (CCObjectInfo **) NULL))
{
/*
Report statistics on each unique object.
*/
for (i=0; i < (ssize_t) component_image->colors; i++)
{
object[i].bounding_box.width=0;
object[i].bounding_box.height=0;
object[i].bounding_box.x=(ssize_t) component_image->columns;
object[i].bounding_box.y=(ssize_t) component_image->rows;
object[i].centroid.x=0;
object[i].centroid.y=0;
object[i].census=object[i].area == 0.0 ? 0.0 : 1.0;
object[i].area=0;
}
component_view=AcquireVirtualCacheView(component_image,exception);
for (y=0; y < (ssize_t) component_image->rows; y++)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(component_view,0,y,component_image->columns,
1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) component_image->columns; x++)
{
size_t
id;
id=(size_t) GetPixelIndex(component_image,p);
if (x < object[id].bounding_box.x)
object[id].bounding_box.x=x;
if (x > (ssize_t) object[id].bounding_box.width)
object[id].bounding_box.width=(size_t) x;
if (y < object[id].bounding_box.y)
object[id].bounding_box.y=y;
if (y > (ssize_t) object[id].bounding_box.height)
object[id].bounding_box.height=(size_t) y;
object[id].centroid.x+=x;
object[id].centroid.y+=y;
object[id].area++;
p+=GetPixelChannels(component_image);
}
}
for (i=0; i < (ssize_t) component_image->colors; i++)
{
object[i].bounding_box.width-=(object[i].bounding_box.x-1);
object[i].bounding_box.height-=(object[i].bounding_box.y-1);
object[i].centroid.x=object[i].centroid.x/object[i].area;
object[i].centroid.y=object[i].centroid.y/object[i].area;
}
component_view=DestroyCacheView(component_view);
qsort((void *) object,component_image->colors,sizeof(*object),
CCObjectInfoCompare);
if (objects == (CCObjectInfo **) NULL)
{
register ssize_t
j;
artifact=GetImageArtifact(image,
"connected-components:exclude-header");
if (IsStringTrue(artifact) == MagickFalse)
{
(void) fprintf(stdout,
"Objects (id: bounding-box centroid area mean-color");
for (j=0; j <= n; j++)
(void) fprintf(stdout," %s",metrics[j]);
(void) fprintf(stdout,"):\n");
}
for (i=0; i < (ssize_t) component_image->colors; i++)
if (object[i].census > 0.0)
{
char
mean_color[MagickPathExtent];
GetColorTuple(&object[i].color,MagickFalse,mean_color);
(void) fprintf(stdout,
" %.20g: %.20gx%.20g%+.20g%+.20g %.1f,%.1f %.*g %s",
(double) object[i].id,(double) object[i].bounding_box.width,
(double) object[i].bounding_box.height,(double)
object[i].bounding_box.x,(double) object[i].bounding_box.y,
object[i].centroid.x,object[i].centroid.y,
GetMagickPrecision(),(double) object[i].area,mean_color);
for (j=0; j <= n; j++)
(void) fprintf(stdout," %.*g",GetMagickPrecision(),
object[i].metric[j]);
(void) fprintf(stdout,"\n");
}
}
}
if (objects == (CCObjectInfo **) NULL)
object=(CCObjectInfo *) RelinquishMagickMemory(object);
else
*objects=object;
return(component_image);
}