blob: b7534853518ec858f18d5012d0415e8c91c3b70c [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "SchedulerTimer.h"
#include "Instruments.h"
#include "WallClockTimer.h"
#include "arm_compute/core/CPP/ICPPKernel.h"
#include "arm_compute/graph/DataLayerVisitor.h"
#include "arm_compute/graph/INode.h"
#include "support/Cast.h"
namespace arm_compute
{
namespace test
{
namespace framework
{
template <bool output_timestamps>
std::string SchedulerClock<output_timestamps>::id() const
{
if(output_timestamps)
{
return "SchedulerTimestamps";
}
else
{
return "SchedulerTimer";
}
}
template <bool output_timestamps>
class Interceptor final : public IScheduler
{
public:
/** Default constructor. */
Interceptor(std::list<struct SchedulerClock<output_timestamps>::kernel_info> &kernels,
std::map<std::string, SchedulerTimer::LayerData> &layers, IScheduler &real_scheduler,
ScaleFactor scale_factor)
: _kernels(kernels), _layer_data_map(layers), _real_scheduler(real_scheduler), _timer(scale_factor), _prefix()
{
}
void set_num_threads(unsigned int num_threads) override
{
_real_scheduler.set_num_threads(num_threads);
}
void set_num_threads_with_affinity(unsigned int num_threads, BindFunc func) override
{
_real_scheduler.set_num_threads_with_affinity(num_threads, func);
}
unsigned int num_threads() const override
{
return _real_scheduler.num_threads();
}
void set_prefix(const std::string &prefix)
{
_prefix = prefix;
}
void schedule(ICPPKernel *kernel, const Hints &hints) override
{
_timer.start();
_real_scheduler.schedule(kernel, hints);
_timer.stop();
typename SchedulerClock<output_timestamps>::kernel_info info;
info.name = kernel->name();
info.prefix = _prefix;
info.measurements = _timer.measurements();
_kernels.push_back(std::move(info));
}
void schedule_op(ICPPKernel *kernel, const Hints &hints, const Window &window, ITensorPack &tensors) override
{
_timer.start();
_real_scheduler.schedule_op(kernel, hints, window, tensors);
_timer.stop();
typename SchedulerClock<output_timestamps>::kernel_info info;
info.name = kernel->name();
info.prefix = _prefix;
info.measurements = _timer.measurements();
_kernels.push_back(std::move(info));
}
void run_tagged_workloads(std::vector<Workload> &workloads, const char *tag) override
{
_timer.start();
_real_scheduler.run_tagged_workloads(workloads, tag);
_timer.stop();
typename SchedulerClock<output_timestamps>::kernel_info info;
info.name = tag != nullptr ? tag : "Unknown";
info.prefix = _prefix;
info.measurements = _timer.measurements();
_kernels.push_back(std::move(info));
}
protected:
void run_workloads(std::vector<Workload> &workloads) override
{
ARM_COMPUTE_UNUSED(workloads);
ARM_COMPUTE_ERROR("Can't be reached");
}
private:
std::list<struct SchedulerClock<output_timestamps>::kernel_info> &_kernels;
std::map<std::string, SchedulerTimer::LayerData> &_layer_data_map;
IScheduler &_real_scheduler;
WallClock<output_timestamps> _timer;
std::string _prefix;
};
template <bool output_timestamps>
SchedulerClock<output_timestamps>::SchedulerClock(ScaleFactor scale_factor)
: _kernels(),
_layer_data_map(),
_real_scheduler(nullptr),
_real_scheduler_type(),
#ifdef ARM_COMPUTE_GRAPH_ENABLED
_real_graph_function(nullptr),
#endif /* ARM_COMPUTE_GRAPH_ENABLED */
_scale_factor(scale_factor),
_interceptor(nullptr),
_scheduler_users()
{
if(instruments_info != nullptr)
{
_scheduler_users = instruments_info->_scheduler_users;
}
}
template <bool output_timestamps>
void SchedulerClock<output_timestamps>::test_start()
{
#ifdef ARM_COMPUTE_GRAPH_ENABLED
// Start intercepting tasks:
ARM_COMPUTE_ERROR_ON(_real_graph_function != nullptr);
_real_graph_function = graph::TaskExecutor::get().execute_function;
auto task_interceptor = [this](graph::ExecutionTask & task)
{
Interceptor<output_timestamps> *scheduler = nullptr;
if(dynamic_cast<Interceptor<output_timestamps> *>(this->_interceptor.get()) != nullptr)
{
scheduler = arm_compute::utils::cast::polymorphic_downcast<Interceptor<output_timestamps> *>(_interceptor.get());
if(task.node != nullptr && !task.node->name().empty())
{
scheduler->set_prefix(task.node->name() + "/");
if(_layer_data_map.find(task.node->name()) == _layer_data_map.end())
{
arm_compute::graph::DataLayerVisitor dlv = {};
task.node->accept(dlv);
_layer_data_map[task.node->name()] = dlv.layer_data();
}
}
else
{
scheduler->set_prefix("");
}
}
this->_real_graph_function(task);
if(scheduler != nullptr)
{
scheduler->set_prefix("");
}
};
#endif /* ARM_COMPUTE_GRAPH_ENABLED */
ARM_COMPUTE_ERROR_ON(_real_scheduler != nullptr);
_real_scheduler_type = Scheduler::get_type();
//Note: We can't currently replace a custom scheduler
if(_real_scheduler_type != Scheduler::Type::CUSTOM)
{
_real_scheduler = &Scheduler::get();
_interceptor = std::make_shared<Interceptor<output_timestamps>>(_kernels, _layer_data_map, *_real_scheduler, _scale_factor);
Scheduler::set(std::static_pointer_cast<IScheduler>(_interceptor));
#ifdef ARM_COMPUTE_GRAPH_ENABLED
graph::TaskExecutor::get().execute_function = task_interceptor;
#endif /* ARM_COMPUTE_GRAPH_ENABLED */
// Create an interceptor for each scheduler
// TODO(COMPID-2638) : Allow multiple schedulers, now it assumes the same scheduler is used.
std::for_each(std::begin(_scheduler_users), std::end(_scheduler_users),
[&](ISchedulerUser * user)
{
if(user != nullptr && user->scheduler() != nullptr)
{
user->intercept_scheduler(std::make_unique<Interceptor<output_timestamps>>(_kernels, _layer_data_map, *user->scheduler(), _scale_factor));
}
});
}
}
template <bool output_timestamps>
void SchedulerClock<output_timestamps>::start()
{
_kernels.clear();
}
template <bool output_timestamps>
void SchedulerClock<output_timestamps>::test_stop()
{
// Restore real scheduler
Scheduler::set(_real_scheduler_type);
_real_scheduler = nullptr;
_interceptor = nullptr;
#ifdef ARM_COMPUTE_GRAPH_ENABLED
graph::TaskExecutor::get().execute_function = _real_graph_function;
_real_graph_function = nullptr;
#endif /* ARM_COMPUTE_GRAPH_ENABLED */
// Restore schedulers
std::for_each(std::begin(_scheduler_users), std::end(_scheduler_users),
[&](ISchedulerUser * user)
{
if(user != nullptr)
{
user->restore_scheduler();
}
});
}
template <bool output_timestamps>
Instrument::MeasurementsMap SchedulerClock<output_timestamps>::measurements() const
{
MeasurementsMap measurements;
unsigned int kernel_number = 0;
for(auto kernel : _kernels)
{
std::string name = kernel.prefix + kernel.name + " #" + support::cpp11::to_string(kernel_number++);
if(output_timestamps)
{
ARM_COMPUTE_ERROR_ON(kernel.measurements.size() != 2);
for(auto const &m : kernel.measurements)
{
if(m.first.find("[start]") != std::string::npos)
{
measurements.emplace("[start]" + name, m.second);
}
else if(m.first.find("[end]") != std::string::npos)
{
measurements.emplace("[end]" + name, m.second);
}
else
{
ARM_COMPUTE_ERROR("Measurement not handled");
}
}
}
else
{
measurements.emplace(name, kernel.measurements.begin()->second);
}
}
return measurements;
}
template <bool output_timestamps>
std::string SchedulerClock<output_timestamps>::instrument_header() const
{
std::string output{ "" };
output += R"("layer_data" : {)";
for(auto i_it = _layer_data_map.cbegin(), i_end = _layer_data_map.cend(); i_it != i_end; ++i_it)
{
output += "\"" + i_it->first + "\" : {";
if(i_it->second.size() != 0)
{
// Print for each entry in layer
for(auto entry_it = i_it->second.cbegin(), entry_end = i_it->second.cend(); entry_it != entry_end; ++entry_it)
{
output += "\"" + entry_it->first + "\" : \"" + entry_it->second + "\"";
if(std::next(entry_it) != entry_end)
{
output += ",";
}
}
}
output += "}";
if(std::next(i_it) != i_end)
{
output += ",";
}
}
output += "}";
return output;
}
} // namespace framework
} // namespace test
} // namespace arm_compute
template class arm_compute::test::framework::SchedulerClock<true>;
template class arm_compute::test::framework::SchedulerClock<false>;