blob: 343b817ebabb964f19887805f9e6abd48ec96f69 [file] [log] [blame]
/*
* Copyright (c) 2019-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEFFT1D.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/common/utils/Log.h"
#include "src/core/NEON/kernels/NEFFTDigitReverseKernel.h"
#include "src/core/NEON/kernels/NEFFTRadixStageKernel.h"
#include "src/core/NEON/kernels/NEFFTScaleKernel.h"
#include "src/core/utils/helpers/fft.h"
namespace arm_compute
{
NEFFT1D::~NEFFT1D() = default;
NEFFT1D::NEFFT1D(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _digit_reverse_kernel(), _fft_kernels(), _scale_kernel(), _digit_reversed_input(), _digit_reverse_indices(), _num_ffts(0), _axis(0), _run_scale(false)
{
}
void NEFFT1D::configure(const ITensor *input, ITensor *output, const FFT1DInfo &config)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_ERROR_THROW_ON(NEFFT1D::validate(input->info(), output->info(), config));
ARM_COMPUTE_LOG_PARAMS(input, output, config);
// Decompose size to radix factors
const auto supported_radix = NEFFTRadixStageKernel::supported_radix();
const unsigned int N = input->info()->tensor_shape()[config.axis];
const auto decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
ARM_COMPUTE_ERROR_ON(decomposed_vector.empty());
// Flags
_run_scale = config.direction == FFTDirection::Inverse;
const bool is_c2r = input->info()->num_channels() == 2 && output->info()->num_channels() == 1;
// Configure digit reverse
FFTDigitReverseKernelInfo digit_reverse_config;
digit_reverse_config.axis = config.axis;
digit_reverse_config.conjugate = config.direction == FFTDirection::Inverse;
TensorInfo digit_reverse_indices_info(TensorShape(input->info()->tensor_shape()[config.axis]), 1, DataType::U32);
_digit_reverse_indices.allocator()->init(digit_reverse_indices_info);
_memory_group.manage(&_digit_reversed_input);
_digit_reverse_kernel = std::make_unique<NEFFTDigitReverseKernel>();
_digit_reverse_kernel->configure(input, &_digit_reversed_input, &_digit_reverse_indices, digit_reverse_config);
// Create and configure FFT kernels
unsigned int Nx = 1;
_num_ffts = decomposed_vector.size();
_fft_kernels.resize(_num_ffts);
_axis = config.axis;
for(unsigned int i = 0; i < _num_ffts; ++i)
{
const unsigned int radix_for_stage = decomposed_vector.at(i);
FFTRadixStageKernelInfo fft_kernel_info;
fft_kernel_info.axis = config.axis;
fft_kernel_info.radix = radix_for_stage;
fft_kernel_info.Nx = Nx;
fft_kernel_info.is_first_stage = (i == 0);
_fft_kernels[i] = std::make_unique<NEFFTRadixStageKernel>();
_fft_kernels[i]->configure(&_digit_reversed_input, ((i == (_num_ffts - 1)) && !is_c2r) ? output : nullptr, fft_kernel_info);
Nx *= radix_for_stage;
}
// Configure scale kernel
if(_run_scale)
{
FFTScaleKernelInfo scale_config;
scale_config.scale = static_cast<float>(N);
scale_config.conjugate = config.direction == FFTDirection::Inverse;
_scale_kernel = std::make_unique<NEFFTScaleKernel>();
is_c2r ? _scale_kernel->configure(&_digit_reversed_input, output, scale_config) : _scale_kernel->configure(output, nullptr, scale_config);
}
// Allocate tensors
_digit_reversed_input.allocator()->allocate();
_digit_reverse_indices.allocator()->allocate();
// Init digit reverse indices
const auto digit_reverse_cpu = arm_compute::helpers::fft::digit_reverse_indices(N, decomposed_vector);
std::copy_n(digit_reverse_cpu.data(), N, reinterpret_cast<unsigned int *>(_digit_reverse_indices.buffer()));
}
Status NEFFT1D::validate(const ITensorInfo *input, const ITensorInfo *output, const FFT1DInfo &config)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
// Check if FFT is decomposable
const auto supported_radix = NEFFTRadixStageKernel::supported_radix();
const unsigned int N = input->tensor_shape()[config.axis];
const auto decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
ARM_COMPUTE_RETURN_ERROR_ON(decomposed_vector.empty());
// Checks performed when output is configured
if((output != nullptr) && (output->total_size() != 0))
{
// All combinations are supported except real input with real output (i.e., both input channels set to 1)
ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() == 1 && input->num_channels() == 1);
ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() > 2);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
void NEFFT1D::run()
{
MemoryGroupResourceScope scope_mg(_memory_group);
NEScheduler::get().schedule(_digit_reverse_kernel.get(), (_axis == 0 ? Window::DimY : Window::DimZ));
for(unsigned int i = 0; i < _num_ffts; ++i)
{
NEScheduler::get().schedule(_fft_kernels[i].get(), (_axis == 0 ? Window::DimY : Window::DimX));
}
// Run output scaling
if(_run_scale)
{
NEScheduler::get().schedule(_scale_kernel.get(), Window::DimY);
}
}
} // namespace arm_compute