blob: ed5254a0a4bec7a20795928ff2f107e0192b8a95 [file] [log] [blame]
/*
* Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensorPack.h"
#include "arm_compute/core/Window.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/NEON/kernels/detail/NEActivationFunctionDetail.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include <arm_neon.h>
#include <cmath>
#include <cstddef>
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
namespace arm_compute
{
namespace
{
using BatchNomalizationPtr = void (*)(ITensor *src, ITensor *dst, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma,
float epsilon, ActivationLayerInfo &act_info, const Window &window);
template <typename T>
void batch_normalization(ITensor *src, ITensor *dst, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma,
float epsilon, ActivationLayerInfo &act_info, const Window &window)
{
/** SIMD vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<float16_t, wrapper::traits::BitWidth::W128>;
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(src, win_collapsed);
Iterator output(dst, win_collapsed);
const auto input_mean = reinterpret_cast<const float16_t *>(mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const float16_t *>(var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (gamma != nullptr) ? reinterpret_cast<const float16_t *>(gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (beta != nullptr) ? reinterpret_cast<const float16_t *>(beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
T activation_functor(act_info);
const auto epsilon_vec = wrapper::vdup_n(static_cast<float16_t>(epsilon), ExactTagType{});
execute_window_loop(win_collapsed, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const float16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<float16_t *>(output.ptr());
// Perform core calculations using vector operations
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Conctruct vectors
const auto mean_vec = wrapper::vloadq(input_mean + x);
const auto var_vec = wrapper::vloadq(input_var + x);
const auto gamma_vec = (input_gamma != nullptr) ? wrapper::vloadq(input_gamma + x) : wrapper::vdup_n(static_cast<float16_t>(1.f), ExactTagType{});
const auto beta_vec = (input_beta != nullptr) ? wrapper::vloadq(input_beta + x) : wrapper::vdup_n(static_cast<float16_t>(0.f), ExactTagType{});
// Calculate denominator
const auto denominator = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));
// Calculate x bar
const auto numerator = wrapper::vsub(wrapper::vloadq(input_ptr + x), mean_vec);
const auto x_bar = wrapper::vmul(numerator, denominator);
auto res = wrapper::vmla(beta_vec, x_bar, gamma_vec);
// Perform fused activation
if(act_info.enabled())
{
activation_functor(res);
}
// Store results
wrapper::vstore(output_ptr + x, res);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
// Conctruct vectors
const float16_t gamma = (input_gamma != nullptr) ? input_gamma[x] : 1.f;
const float16_t beta = (input_beta != nullptr) ? input_beta[x] : 0.f;
const float16_t denominator = sqrt(input_var[x] + epsilon);
const float16_t numerator = input_ptr[x] - input_mean[x];
const float16_t x_bar = numerator / denominator;
float16_t res = beta + x_bar * gamma;
// Perform fused activation
if(act_info.enabled())
{
activation_functor(res);
}
// Store results
*reinterpret_cast<float16_t *>(output_ptr + x) = res;
}
},
input, output);
}
// Fused Batched Normalization with activation functions
static std::map<ActivationLayerInfo::ActivationFunction, BatchNomalizationPtr> fused_map =
{
{ ActivationLayerInfo::ActivationFunction::RELU, &batch_normalization<detail::relu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &batch_normalization<detail::brelu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &batch_normalization<detail::lubrelu<float16_t, 8>> }
};
}
namespace cpu
{
void fp16_neon_batch_normalization(ITensor *src, ITensor *dst, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma,
float epsilon, ActivationLayerInfo &act_info, const Window &window)
{
if(act_info.enabled())
{
fused_map[act_info.activation()](src, dst, mean, var, beta, gamma, epsilon, act_info, window);
}
else
{
batch_normalization<detail::dummy<float16_t, 8>>(src, dst, mean, var, beta, gamma, epsilon, act_info, window);
}
}
} // namespace cpu
} // namespace arm_compute
#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */