blob: b1086494e4d4e668f9b3fc76dc22f21689f71173 [file] [log] [blame]
/*
* Copyright (c) 2019-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_CORE_KERNEL_DESCRIPTORS_H
#define ARM_COMPUTE_CORE_KERNEL_DESCRIPTORS_H
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/experimental/IPostOp.h"
namespace arm_compute
{
/** Descriptor for FFT scale kernels */
struct FFTScaleKernelInfo
{
float scale{ 0.f }; /**< Axis to perform the kernel on. */
bool conjugate{ true }; /**< Flag to conjugate the output/ */
};
/** Descriptor for FFT digit reverse kernels */
struct FFTDigitReverseKernelInfo
{
unsigned int axis{ 0 }; /**< Axis to perform the kernel on. */
bool conjugate{ false }; /**< Flag to conjugate the output/ */
};
/** Descriptor used by the FFT core kernels */
struct FFTRadixStageKernelInfo
{
unsigned int axis{ 0 }; /**< Axis to run the kernel on. */
unsigned int radix{ 0 }; /**< Radix to use. */
unsigned int Nx{ 0 }; /**< Nx coefficient. */
bool is_first_stage{ false }; /**< Flags if the FFT kernels is the first stage of a decomposed FFT. */
};
class ITensorInfo;
/** Descriptor used by the GEMM kernels */
struct GEMMKernelInfo
{
GEMMKernelInfo() = default;
GEMMKernelInfo(
unsigned int im,
unsigned int in,
unsigned int ik,
unsigned int idepth_output_gemm3d,
bool ireinterpret_input_as_3d,
bool ibroadcast_bias,
bool ifp_mixed_precision,
bool ihas_pad_y,
ActivationLayerInfo iactivation_info,
int inmult_transpose1xW_width,
int imult_interleave4x4_height,
GEMMLHSMatrixInfo ilhs_info,
GEMMRHSMatrixInfo irhs_info,
int32_t ina_offset,
int32_t inb_offset,
const experimental::PostOpList<ITensorInfo *> &ipost_ops = experimental::PostOpList<ITensorInfo *> {})
: m(im), n(in), k(ik), depth_output_gemm3d(idepth_output_gemm3d), reinterpret_input_as_3d(ireinterpret_input_as_3d), broadcast_bias(ibroadcast_bias), fp_mixed_precision(ifp_mixed_precision),
has_pad_y(ihas_pad_y), activation_info(iactivation_info), mult_transpose1xW_width(inmult_transpose1xW_width), mult_interleave4x4_height(imult_interleave4x4_height), lhs_info(ilhs_info),
rhs_info(irhs_info), a_offset(ina_offset), b_offset(inb_offset), post_ops(ipost_ops)
{
}
unsigned int m{ 0 }; /**< Number of LHS rows*/
unsigned int n{ 0 }; /**< Number of RHS columns*/
unsigned int k{ 0 }; /**< Number of LHS columns or RHS rows */
unsigned int depth_output_gemm3d{ 0 }; /**< Depth of the output tensor in case is reinterpreted as 3D */
bool reinterpret_input_as_3d{ false }; /**< Flag used to reinterpret the input as 3D */
bool broadcast_bias{ false }; /**< Flag used to broadcast the bias addition */
bool fp_mixed_precision{ false }; /**< Flag used to indicate wider accumulators (32 bit instead of 16 for FP16). */
bool has_pad_y{ false }; /**< Flag used to indicate if the input/output tensors have internal pad on the y direction */
ActivationLayerInfo activation_info{}; /**< Activation function to perform after the matrix multiplication */
int mult_transpose1xW_width{ 1 }; /**< Multiplication factor for the width of the 1xW transposed block */
int mult_interleave4x4_height{ 1 }; /**< Multiplication factor for the height of the 4x4 interleaved block */
GEMMLHSMatrixInfo lhs_info{}; /**< LHS matrix information used to retrieve the number of rows processed by each thread */
GEMMRHSMatrixInfo rhs_info{}; /**< RHS matrix information used for reshaping the RHS matrix */
int32_t a_offset{ 0 }; /**< Offset to be added to each element of the matrix A */
int32_t b_offset{ 0 }; /**< Offset to be added to each element of the matrix B */
GEMMLowpOutputStageInfo output_stage{}; /**< GEMMLowp output stage information */
experimental::PostOpList<ITensorInfo *> post_ops{}; /**< (EXPERIMENTAL_POST_OPS) Specifies a list of post ops to be fused after the main op. Note unsupported post ops would not be executed.
* If specified, automatically disable the @ref activation_info */
};
/** Compute descriptor used by the depthwise convolution native kernel */
struct DWCComputeKernelInfo
{
unsigned int n0{ 0 }; /**< Number of columns processed by each thread */
unsigned int m0{ 0 }; /**< Number of rows processed by each thread */
bool export_weights_to_cl_image{ false }; /**< Export the weights to cl_image */
};
/** Descriptor used by the softmax kernels */
struct SoftmaxKernelInfo
{
float beta{ 1.f }; /**< A scaling factor for the exponent with default value 1.0 */
bool is_log{ false }; /**< Flag used to perform Log Softmax operation */
DataType input_data_type{ DataType::UNKNOWN }; /**< Input tensor data type */
int32_t axis{ 0 }; /**< The dimension in which to apply softmax. */
};
/** Descriptor used by the direct convolution layer output stage kernels */
struct DirectConvolutionLayerOutputStageKernelInfo
{
int32_t result_fixedpoint_multiplier{ 0 }; /**< Result output stage multiplier used for quantizing */
int32_t result_shift{ 0 }; /**< Result output stage shift used for quantizing */
int32_t result_offset_after_shift{ 0 }; /**< Result offset used for quantizing */
DataType output_data_type{ DataType::UNKNOWN }; /**< Output tensor data type to use if the output is not initialized */
};
struct InstanceNormalizationLayerKernelInfo
{
/** Default constructor */
InstanceNormalizationLayerKernelInfo()
: InstanceNormalizationLayerKernelInfo(1.f, 0.f, 1e-12, true)
{
}
/** Constructor
*
* @param[in] gamma The scale scalar value applied to the normalized tensor.
* @param[in] beta The offset scalar value applied to the normalized tensor
* @param[in] epsilon Lower bound value for the normalization.
* @param[in] use_mixed_precision Use mixed precision in case of FP16 execution.
*/
InstanceNormalizationLayerKernelInfo(float gamma, float beta, float epsilon, bool use_mixed_precision)
: gamma(gamma), beta(beta), epsilon(epsilon), use_mixed_precision(use_mixed_precision)
{
}
float gamma; /**< The scale scalar value applied to the normalized tensor. Defaults to 1.0 */
float beta; /**< The offset scalar value applied to the normalized tensor. Defaults to 0.0 */
float epsilon; /**< Lower bound value for the normalization. Defaults to 1e-12 */
bool use_mixed_precision; /**< Use mixed precision in case of FP16 execution. Defaults to true */
};
struct GEMMLowpReductionKernelInfo
{
/** Default constructor */
GEMMLowpReductionKernelInfo() = default;
/** Constructor
*
* @param[in] k Number of matrix columns/rows.
* @param[in] is_reshaped True if the input tensor has been reshaped.
* @param[in] scalar Scalar value to multiply each reduced column/row by.
* @param[in] mul_by_scalar True if each column/row reduction has to be multiplied by a scalar value.
*/
GEMMLowpReductionKernelInfo(int32_t k, bool is_reshaped, int32_t scalar, bool mul_by_scalar)
: k(k), is_reshaped(is_reshaped), scalar(scalar), mul_by_scalar(mul_by_scalar)
{
}
int32_t k{ 0 }; /**< Number of matrix columns/rows */
bool is_reshaped{ false }; /**< True if the input tensor has been reshaped */
int32_t scalar{ 0 }; /**< Scalar value to multiply each reduced column/row by */
bool mul_by_scalar{ false }; /**< True if each column/row reduction has to be multiplied by a scalar value */
};
struct ScaleKernelInfo
{
/** Constructor
*
* @param[in] interpolation_policy Interpolation type to use
* @param[in] border_mode Border mode policy
* @param[in] constant_border_value (Optional) Constant value to use for borders if border_mode is set to CONSTANT and use_padding is set to false. Defaults to default @ref PixelValue
* @param[in] sampling_policy (Optional) Sampling policy used by the interpolation. Defaults to @ref SamplingPolicy::CENTER
* @param[in] use_padding (Optional) Is padding in use or not. Defaults to true.
* @param[in] align_corners (Optional) Align corners of input and output, only affecting bilinear policy with TOP_LEFT sampling policy. Defaults to false.
* @param[in] data_layout (Optional) Data layout used by the layer. Defaults to @ref DataLayout::UNKNOWN
*/
ScaleKernelInfo(InterpolationPolicy interpolation_policy,
BorderMode border_mode,
PixelValue constant_border_value = PixelValue(),
SamplingPolicy sampling_policy = SamplingPolicy::CENTER,
bool use_padding = true,
bool align_corners = false,
DataLayout data_layout = DataLayout::UNKNOWN) noexcept
: interpolation_policy{ interpolation_policy },
border_mode{ border_mode },
constant_border_value{ constant_border_value },
sampling_policy{ sampling_policy },
use_padding{ use_padding },
align_corners{ align_corners },
data_layout{ data_layout }
{
}
InterpolationPolicy interpolation_policy; /**< Interpolation type to use */
BorderMode border_mode; /**< Border mode policy */
PixelValue constant_border_value; /**< Constant value to use for constant border mode policy */
SamplingPolicy sampling_policy; /**< Sampling policy used by the interpolation. */
bool use_padding; /**< Indication of using padding */
bool align_corners; /**< Align corners of input and output */
DataLayout data_layout; /**< Data layout to use */
};
} // namespace arm_compute
#endif /* ARM_COMPUTE_CORE_KERNEL_DESCRIPTORS_H */