blob: 43e44be5e2d80ebe3240c8acd8b52dd093667e96 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef SRC_CORE_NEON_KERNELS_ELEMENTWISE_LIST_H
#define SRC_CORE_NEON_KERNELS_ELEMENTWISE_LIST_H
#include "src/core/NEON/NEAsymm.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/helpers/WindowHelpers.h"
namespace arm_compute
{
namespace cpu
{
template <typename InputScalarType, typename OutputScalarType, typename InputVectorType>
void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
OutputScalarType (*scalar_func)(const InputScalarType &, const InputScalarType &),
int (*broadcast_func)(int, int, int, const InputScalarType *, const InputScalarType &, OutputScalarType *, const bool),
int (*neon_func)(int, int, int, const InputScalarType *, const InputScalarType *, OutputScalarType *))
{
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = std::min(16 / static_cast<int>(sizeof(OutputScalarType)), 8);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto non_broadcast_input_ptr = reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
const InputScalarType broadcast_value = *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());
int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_value, output_ptr, !is_broadcast_input_2);
for(; x < window_end_x; ++x)
{
const auto a = *(non_broadcast_input_ptr + x);
*(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? broadcast_value : a, !is_broadcast_input_2 ? a : broadcast_value);
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto input1_ptr = reinterpret_cast<const InputScalarType *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const InputScalarType *>(input2.ptr());
int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr);
for(; x < window_end_x; ++x)
{
const auto a = *(input1_ptr + x);
const auto b = *(input2_ptr + x);
*(output_ptr + x) = (*scalar_func)(a, b);
}
},
input1, input2, output);
}
}
template <ArithmeticOperation op, typename ScalarType>
inline ScalarType elementwise_arithm_op_scalar(const ScalarType &a, const ScalarType &b)
{
auto res = ScalarType(0);
switch(op)
{
case ArithmeticOperation::MAX:
res = std::max(a, b);
break;
case ArithmeticOperation::MIN:
res = std::min(a, b);
break;
case ArithmeticOperation::SQUARED_DIFF:
{
res = (a - b) * (a - b);
break;
}
case ArithmeticOperation::PRELU:
{
res = (a > 0 ? a : a * b);
break;
}
case ArithmeticOperation::DIV:
{
res = a / b;
if(std::is_integral<ScalarType>::value)
{
res = (b == 0) ? 0 : res;
if(static_cast<int32_t>(a) % static_cast<int32_t>(b) != 0 && ((a < 0) != (b < 0)))
{
--res;
}
}
break;
}
case ArithmeticOperation::POWER:
{
res = std::pow(a, b);
break;
}
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res;
}
template <ArithmeticOperation op, typename VectorType>
inline typename VectorType::type elementwise_arithm_op(const typename VectorType::type &a, const typename VectorType::type &b)
{
using vec_type = typename VectorType::type;
using scalar_type = typename VectorType::scalar_type;
using tag_type = typename VectorType::tag_type;
vec_type res = wrapper::vdup_n(static_cast<scalar_type>(0), tag_type{});
switch(op)
{
case ArithmeticOperation::MAX:
res = wrapper::vmax(a, b);
break;
case ArithmeticOperation::MIN:
res = wrapper::vmin(a, b);
break;
case ArithmeticOperation::SQUARED_DIFF:
{
const vec_type tmp = wrapper::vsub(a, b);
res = wrapper::vmul(tmp, tmp);
break;
}
case ArithmeticOperation::PRELU:
{
const vec_type zero = wrapper::vdup_n(static_cast<scalar_type>(0), tag_type{});
const vec_type tmp = wrapper::vmul(a, b);
const auto gt = wrapper::vcgt(a, zero);
res = wrapper::vbsl(gt, a, tmp);
break;
}
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res;
}
template <>
inline int32x4_t elementwise_arithm_op<ArithmeticOperation::DIV, typename wrapper::traits::neon_vector<int32_t, 4>>(const int32x4_t &a, const int32x4_t &b)
{
return vcvtq_s32_f32(vfloorq_f32(wrapper::vdiv(vcvtq_f32_s32(a), vcvtq_f32_s32(b))));
}
template <>
inline float32x4_t elementwise_arithm_op<ArithmeticOperation::DIV, typename wrapper::traits::neon_vector<float, 4>>(const float32x4_t &a, const float32x4_t &b)
{
return wrapper::vdiv(a, b);
}
template <>
inline float32x4_t elementwise_arithm_op<ArithmeticOperation::POWER, typename wrapper::traits::neon_vector<float, 4>>(const float32x4_t &a, const float32x4_t &b)
{
return wrapper::vpow(a, b);
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
inline float16x8_t elementwise_arithm_op<ArithmeticOperation::DIV, typename wrapper::traits::neon_vector<float16_t, 8>>(const float16x8_t &a, const float16x8_t &b)
{
return wrapper::vdiv(a, b);
}
template <>
inline float16x8_t elementwise_arithm_op<ArithmeticOperation::POWER, typename wrapper::traits::neon_vector<float16_t, 8>>(const float16x8_t &a, const float16x8_t &b)
{
return wrapper::vpow(a, b);
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <ArithmeticOperation op, typename ScalarType, typename VectorType>
inline typename VectorType::type elementwise_arithm_op_broadcast(const typename VectorType::type &a, const ScalarType &broadcast_value, const bool reorder)
{
using tag_type = typename VectorType::tag_type;
using vec_type = typename VectorType::type;
vec_type broadcast_vector = wrapper::vdup_n(broadcast_value, tag_type{});
return elementwise_arithm_op<op, VectorType>(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector);
}
template <ArithmeticOperation op, typename ScalarType, typename VectorType>
inline int elementwise_arithm_op_loop(int window_start_x, int window_end_x, int window_step_x,
const ScalarType *input1_ptr, const ScalarType *input2_ptr, ScalarType *output_ptr)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
wrapper::vstore(output_ptr + x, elementwise_arithm_op<op, VectorType>(a, b));
}
return x;
}
template <ArithmeticOperation op, typename ScalarType, typename VectorType>
inline int elementwise_arithm_op_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
const ScalarType *non_broadcast_input_ptr, const ScalarType &broadcast_value, ScalarType *output_ptr, const bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq((non_broadcast_input_ptr + x));
wrapper::vstore(output_ptr + x, elementwise_arithm_op_broadcast<op, ScalarType, VectorType>(a, broadcast_value, reorder));
}
return x;
}
template <ArithmeticOperation op, typename VectorType>
void elementwise_arithm_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
using scalar_type = typename VectorType::scalar_type;
elementwise_op<scalar_type, scalar_type, VectorType>(in1, in2, out, window,
&elementwise_arithm_op_scalar<op, scalar_type>,
&elementwise_arithm_op_broadcast_loop<op, scalar_type, VectorType>,
&elementwise_arithm_op_loop<op, scalar_type, VectorType>);
}
template <ComparisonOperation op, typename InputScalarType>
inline uint8_t elementwise_comp_op_scalar(const InputScalarType &a, const InputScalarType &b)
{
bool res = false;
switch(op)
{
case ComparisonOperation::Equal:
res = (a == b);
break;
case ComparisonOperation::NotEqual:
res = (a != b);
break;
case ComparisonOperation::Greater:
res = (a > b);
break;
case ComparisonOperation::GreaterEqual:
res = (a >= b);
break;
case ComparisonOperation::Less:
res = (a < b);
break;
case ComparisonOperation::LessEqual:
res = (a <= b);
break;
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res ? ~static_cast<uint8_t>(0) : static_cast<uint8_t>(0);
}
template <ComparisonOperation op, typename InputVectorType, typename OutputVectorType>
inline OutputVectorType elementwise_comp_op(const InputVectorType &a, const InputVectorType &b)
{
OutputVectorType res = { 0, 0, 0, 0 };
switch(op)
{
case ComparisonOperation::Equal:
res = wrapper::vceq(a, b);
break;
case ComparisonOperation::NotEqual:
res = wrapper::vnot(wrapper::vceq(a, b));
break;
case ComparisonOperation::Greater:
res = wrapper::vcgt(a, b);
break;
case ComparisonOperation::GreaterEqual:
res = wrapper::vcge(a, b);
break;
case ComparisonOperation::Less:
res = wrapper::vcgt(b, a);
break;
case ComparisonOperation::LessEqual:
res = wrapper::vcge(b, a);
break;
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType, typename OutputVectorType>
inline OutputVectorType elementwise_comp_op_broadcast(const InputVectorType &a, const InputScalarType &broadcast_value, const bool reorder)
{
InputVectorType broadcast_vector = wrapper::vdup_n(broadcast_value, wrapper::traits::vector_128_tag());
return elementwise_comp_op<op, InputVectorType, OutputVectorType>(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector);
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_broadcast_8_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint8x16_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
wrapper::vstore(output_ptr + x, a);
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_broadcast_16_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint16x8_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
wrapper::vstore(output_ptr + x, wrapper::vmovn(a));
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_broadcast_32_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq(non_broadcast_input_ptr + x), broadcast_value, reorder);
const auto b = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq(non_broadcast_input_ptr + x + 4), broadcast_value, reorder);
wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(a), wrapper::vmovn(b))));
}
if(x <= window_end_x - 4)
{
const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
for(int i = 0; i < 4; i++)
{
*(output_ptr + x + i) = wrapper::vgetlane(a, i);
}
x = +4;
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_8_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
const auto res = elementwise_comp_op<op, InputVectorType, uint8x16_t>(a, b);
wrapper::vstore(output_ptr + x, res);
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_16_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
const auto res = elementwise_comp_op<op, InputVectorType, uint16x8_t>(a, b);
wrapper::vstore(output_ptr + x, wrapper::vmovn(res));
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_32_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
auto a = wrapper::vloadq(input1_ptr + x);
auto b = wrapper::vloadq(input2_ptr + x);
const auto res = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
a = wrapper::vloadq(input1_ptr + x + 4);
b = wrapper::vloadq(input2_ptr + x + 4);
const auto res2 = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(res), wrapper::vmovn(res2))));
}
if(x <= window_end_x - 4)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
const auto res = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
for(int i = 0; i < 4; i++)
{
*(output_ptr + x + i) = wrapper::vgetlane(res, i);
}
x = +4;
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
void elementwise_comp_op_8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
&elementwise_comp_op_scalar<op, InputScalarType>,
&elementwise_comp_op_broadcast_8_loop<op, InputScalarType, InputVectorType>,
&elementwise_comp_op_8_loop<op, InputScalarType, InputVectorType>);
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
void elementwise_comp_op_16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
&elementwise_comp_op_scalar<op, InputScalarType>,
&elementwise_comp_op_broadcast_16_loop<op, InputScalarType, InputVectorType>,
&elementwise_comp_op_16_loop<op, InputScalarType, InputVectorType>);
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
void elementwise_comp_op_32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
&elementwise_comp_op_scalar<op, InputScalarType>,
&elementwise_comp_op_broadcast_32_loop<op, InputScalarType, InputVectorType>,
&elementwise_comp_op_32_loop<op, InputScalarType, InputVectorType>);
}
} // namesapce cpu
} // namespace arm_compute
#endif /* SRC_CORE_NEON_KERNELS_ELEMENTWISE_LIST_H */