blob: 0857702eee5d40b702dd7f31fc5ed5eb3a117122 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/CLValidate.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, int mult_interleave4x4_height, bool reinterpret_input_as_3d)
{
ARM_COMPUTE_RETURN_ERROR_ON(mult_interleave4x4_height < 1);
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::U8, DataType::S8,
DataType::U16, DataType::S16, DataType::U32, DataType::S32,
DataType::F16, DataType::F32);
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), compute_interleaved_shape(*input, mult_interleave4x4_height, reinterpret_input_as_3d));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, int mult_interleave4x4_height, bool reinterpret_input_as_3d)
{
constexpr unsigned int num_elems_processed_per_iteration_x = 4;
constexpr unsigned int num_elems_processed_per_iteration_y = 4;
const unsigned int num_elems_written_per_iteration = num_elems_processed_per_iteration_x * num_elems_processed_per_iteration_y * mult_interleave4x4_height;
bool window_changed = false;
TensorInfo tmp_info(*input);
if(reinterpret_input_as_3d)
{
// Since the input tensor has to be reinterpreted as 3D and the execute window is based on a 2D interleave,
// the window needs to be constructed on the 2D collapsed version of the tensor
TensorShape tmp_shape(input->tensor_shape());
tmp_shape.collapse(2U, 1U);
tmp_info.set_tensor_shape(tmp_shape);
}
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output, input->clone()->set_tensor_shape(compute_interleaved_shape(*input, mult_interleave4x4_height)));
// Configure window
const float scale_x = 4.0f * static_cast<float>(mult_interleave4x4_height);
const float scale_y = 1.0f / (scale_x);
// Note: bottom paddings are calculated manually as the input can be reinterpreted as 3D tensor
// The only way to set properly the paddings, it is to set those explicitly through the AccessWindowStatic
const int m = reinterpret_input_as_3d ? input->tensor_shape()[1] * input->tensor_shape()[2] : input->tensor_shape()[1];
const int bottom_pad = (num_elems_processed_per_iteration_y - (m % num_elems_processed_per_iteration_y)) % num_elems_processed_per_iteration_y;
Window win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
Window win_in = calculate_max_window(*input, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowStatic input_access(input, 0, 0,
ceil_to_multiple(input->dimension(0), num_elems_processed_per_iteration_x),
input->dimension(1) + bottom_pad);
AccessWindowRectangle output_access(output, 0, 0, num_elems_written_per_iteration, 1, scale_x, scale_y);
window_changed = update_window_and_padding(win_in, input_access) || // window used by the execute_window_loop
update_window_and_padding(win, output_access); // window used to update the padding requirements of output tensor
output_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), output->tensor_shape()));
// Collapse along the Z direction
// This collapse needs to be here in order to tune the Z dimension of LWS
Window collapsed = win.collapse(win, Window::DimZ);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, collapsed);
}
} // namespace
CLGEMMInterleave4x4Kernel::CLGEMMInterleave4x4Kernel()
: _input(nullptr), _output(nullptr), _reinterpret_input_as_3d(false)
{
}
void CLGEMMInterleave4x4Kernel::configure(const ICLTensor *input, ICLTensor *output, int mult_interleave4x4_height, bool reinterpret_input_as_3d, bool unroll_block)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(compute_interleaved_shape(*input->info(), mult_interleave4x4_height, reinterpret_input_as_3d)));
// Perform validate step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), mult_interleave4x4_height, reinterpret_input_as_3d));
_input = input;
_output = output;
_reinterpret_input_as_3d = reinterpret_input_as_3d;
// Create build options
CLBuildOptions build_opts;
build_opts.add_option("-DMULT_INTERLEAVE4X4_HEIGHT=" + support::cpp11::to_string(mult_interleave4x4_height));
build_opts.add_option_if(unroll_block, "-DUNROLL_BLOCK");
build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
build_opts.add_option_if(_reinterpret_input_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(input->info()->dimension(1)));
build_opts.add_option_if(_reinterpret_input_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(input->info()->dimension(2)));
switch(input->info()->element_size())
{
case 1:
build_opts.add_option("-DDATA_TYPE=uchar");
break;
case 2:
build_opts.add_option("-DDATA_TYPE=ushort");
break;
case 4:
build_opts.add_option("-DDATA_TYPE=uint");
break;
default:
ARM_COMPUTE_ERROR("Data type not supported");
}
// Create kernel
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel("gemm_interleave4x4", build_opts.options()));
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), output->info(), mult_interleave4x4_height, reinterpret_input_as_3d);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
// Set config_id for enabling LWS tuning
_config_id = "interleave4x4_";
_config_id += (_reinterpret_input_as_3d ? "3d_" : "");
_config_id += lower_string(string_from_data_type(input->info()->data_type()));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(2));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(3));
}
Status CLGEMMInterleave4x4Kernel::validate(const ITensorInfo *input, const ITensorInfo *output, int mult_interleave4x4_height, bool reinterpret_input_as_3d)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, mult_interleave4x4_height, reinterpret_input_as_3d));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), mult_interleave4x4_height, reinterpret_input_as_3d).first);
return Status{};
}
void CLGEMMInterleave4x4Kernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
/*
* This kernel puts the values in a 4x4 block of Matrix A on the same row (Interleaved values)
* |a00 a01 a02 a03|
* |a10 a11 a12 a13|
* |a20 a21 a22 a23| = | a00 a10 a20 a30 || a01 a11 a21 a31 || a02 a12 a22 a32 || a03 a13 a23 a33 |
* |a30 a31 a32 a33|
*
* After this operation, the output matrix will have the following shape: [ height * 4, width / 4 ]
*/
Window slice = window.first_slice_window_3D();
if(_reinterpret_input_as_3d)
{
// Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
const unsigned int idx0 = 2 * num_arguments_per_3D_tensor();
const unsigned int total_cross_plane_pad = _input->info()->padding().top + _input->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
}
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, _input, slice);
add_3D_tensor_argument(idx, _output, slice);
enqueue(queue, *this, slice, lws_hint());
}
while(window.slide_window_slice_3D(slice));
}