|  | /* | 
|  | * Copyright (c) 2021 Arm Limited. | 
|  | * | 
|  | * SPDX-License-Identifier: MIT | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to | 
|  | * deal in the Software without restriction, including without limitation the | 
|  | * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | 
|  | * sell copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in all | 
|  | * copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
|  | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | */ | 
|  | #include "src/cpu/kernels/CpuTransposeKernel.h" | 
|  |  | 
|  | #include "arm_compute/core/Error.h" | 
|  | #include "arm_compute/core/Helpers.h" | 
|  | #include "arm_compute/core/ITensor.h" | 
|  | #include "arm_compute/core/TensorInfo.h" | 
|  | #include "arm_compute/core/Types.h" | 
|  | #include "arm_compute/core/Validate.h" | 
|  | #include "arm_compute/core/utils/misc/ShapeCalculator.h" | 
|  | #include "src/core/helpers/AutoConfiguration.h" | 
|  | #include "src/core/helpers/WindowHelpers.h" | 
|  |  | 
|  | #include <arm_neon.h> | 
|  |  | 
|  | namespace arm_compute | 
|  | { | 
|  | namespace cpu | 
|  | { | 
|  | namespace kernels | 
|  | { | 
|  | namespace | 
|  | { | 
|  | unsigned int num_elems_processed(size_t element_size) | 
|  | { | 
|  | switch(element_size) | 
|  | { | 
|  | case 1: | 
|  | return 8; | 
|  | case 2: | 
|  | case 4: | 
|  | return 4; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | ARM_COMPUTE_ERROR("Element size not supported"); | 
|  | } | 
|  |  | 
|  | void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window) | 
|  | { | 
|  | const int    window_step_x            = 8; | 
|  | const int    window_step_y            = 8; | 
|  | const int    window_start_x           = window.x().start(); | 
|  | const int    window_end_x             = window.x().end(); | 
|  | const int    window_start_y           = window.y().start(); | 
|  | const int    window_end_y             = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1))); | 
|  | const int    window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; | 
|  | const size_t input_stride_in_bytes    = in->info()->strides_in_bytes()[1]; | 
|  | const size_t output_stride_in_bytes   = out->info()->strides_in_bytes()[1]; | 
|  |  | 
|  | // Check if we need a left-over loop for the y dimension | 
|  | bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); | 
|  |  | 
|  | Window window_in(window); | 
|  | window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); | 
|  | if(left_over_loop_y) | 
|  | { | 
|  | // Check if window_end_y_multiple_of is greater than window_start_y | 
|  | if(window_end_y_multiple_of > window_start_y) | 
|  | { | 
|  | window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); | 
|  | } | 
|  | else | 
|  | { | 
|  | window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Window window_out(window); | 
|  | window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); | 
|  | window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); | 
|  |  | 
|  | Iterator output(out, window_out); | 
|  |  | 
|  | // Run the SIMD path if and only if the input is not a row-vector | 
|  | if(in->info()->dimension(1) != 1) | 
|  | { | 
|  | Iterator input(in, window_in); | 
|  | execute_window_loop(window_in, [&](const Coordinates & id) | 
|  | { | 
|  | // Compute 8x8 elements per iteration | 
|  | int x = window_start_x; | 
|  | for(; x <= (window_end_x - window_step_x); x += window_step_x) | 
|  | { | 
|  | const uint8x8_t row0 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 0 * input_stride_in_bytes)); | 
|  | const uint8x8_t row1 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 1 * input_stride_in_bytes)); | 
|  | const uint8x8_t row2 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 2 * input_stride_in_bytes)); | 
|  | const uint8x8_t row3 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 3 * input_stride_in_bytes)); | 
|  | const uint8x8_t row4 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 4 * input_stride_in_bytes)); | 
|  | const uint8x8_t row5 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 5 * input_stride_in_bytes)); | 
|  | const uint8x8_t row6 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 6 * input_stride_in_bytes)); | 
|  | const uint8x8_t row7 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 7 * input_stride_in_bytes)); | 
|  |  | 
|  | // Transpose 2x2 | 
|  | const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1); | 
|  | const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3); | 
|  | const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5); | 
|  | const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7); | 
|  |  | 
|  | // Transpose 4x4 | 
|  | const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0])); | 
|  | const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1])); | 
|  | const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0])); | 
|  | const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1])); | 
|  |  | 
|  | // Transpose 8x8 | 
|  | const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0])); | 
|  | const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1])); | 
|  | const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0])); | 
|  | const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1])); | 
|  |  | 
|  | // Compute destination address | 
|  | const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes; | 
|  |  | 
|  | vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0]))); | 
|  | vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0]))); | 
|  | vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0]))); | 
|  | vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0]))); | 
|  | vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1]))); | 
|  | vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1]))); | 
|  | vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1]))); | 
|  | vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1]))); | 
|  | } | 
|  |  | 
|  | // Compute left-over elements along the x dimension (1x8) | 
|  | for(; x < window_end_x; ++x) | 
|  | { | 
|  | const uint8_t val0 = *(input.ptr() + x + 0 * input_stride_in_bytes); | 
|  | const uint8_t val1 = *(input.ptr() + x + 1 * input_stride_in_bytes); | 
|  | const uint8_t val2 = *(input.ptr() + x + 2 * input_stride_in_bytes); | 
|  | const uint8_t val3 = *(input.ptr() + x + 3 * input_stride_in_bytes); | 
|  | const uint8_t val4 = *(input.ptr() + x + 4 * input_stride_in_bytes); | 
|  | const uint8_t val5 = *(input.ptr() + x + 5 * input_stride_in_bytes); | 
|  | const uint8_t val6 = *(input.ptr() + x + 6 * input_stride_in_bytes); | 
|  | const uint8_t val7 = *(input.ptr() + x + 7 * input_stride_in_bytes); | 
|  |  | 
|  | uint8x8_t result = vdup_n_u8(0); | 
|  | result           = vset_lane_u8(val0, result, 0); | 
|  | result           = vset_lane_u8(val1, result, 1); | 
|  | result           = vset_lane_u8(val2, result, 2); | 
|  | result           = vset_lane_u8(val3, result, 3); | 
|  | result           = vset_lane_u8(val4, result, 4); | 
|  | result           = vset_lane_u8(val5, result, 5); | 
|  | result           = vset_lane_u8(val6, result, 6); | 
|  | result           = vset_lane_u8(val7, result, 7); | 
|  |  | 
|  | // Compute destination address | 
|  | const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes; | 
|  |  | 
|  | vst1_u8(output.ptr() + dst_offset_in_bytes, result); | 
|  | } | 
|  | }, | 
|  | input, output); | 
|  | } | 
|  |  | 
|  | if(left_over_loop_y) | 
|  | { | 
|  | window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); | 
|  | window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); | 
|  |  | 
|  | Iterator input(in, window_in); | 
|  | Iterator output(out, window_out); | 
|  |  | 
|  | // Compute left-over elements along the y dimension (1x1) | 
|  | execute_window_loop(window_in, [&](const Coordinates & id) | 
|  | { | 
|  | const uint8_t val0 = *input.ptr(); | 
|  |  | 
|  | // Compute destination address | 
|  | const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes; | 
|  |  | 
|  | *(output.ptr() + dst_offset_in_bytes) = val0; | 
|  | }, | 
|  | input, output); | 
|  | } | 
|  | } | 
|  |  | 
|  | void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window) | 
|  | { | 
|  | const int    window_step_x            = 4; | 
|  | const int    window_step_y            = 4; | 
|  | const int    window_start_x           = window.x().start(); | 
|  | const int    window_end_x             = window.x().end(); | 
|  | const int    window_start_y           = window.y().start(); | 
|  | const int    window_end_y             = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1))); | 
|  | const int    window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; | 
|  | const size_t input_stride_in_bytes    = in->info()->strides_in_bytes()[1]; | 
|  | const size_t output_stride_in_bytes   = out->info()->strides_in_bytes()[1]; | 
|  |  | 
|  | // Check if we need a left-over loop for the y dimension | 
|  | bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); | 
|  |  | 
|  | Window window_in(window); | 
|  | window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); | 
|  | if(left_over_loop_y) | 
|  | { | 
|  | // Check if window_end_y_multiple_of is greater than window_start_y | 
|  | if(window_end_y_multiple_of > window_start_y) | 
|  | { | 
|  | window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); | 
|  | } | 
|  | else | 
|  | { | 
|  | window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Window window_out(window); | 
|  | window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); | 
|  | window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); | 
|  |  | 
|  | Iterator output(out, window_out); | 
|  |  | 
|  | // Run the SIMD path if and only if the input is not a row-vector | 
|  | if(in->info()->dimension(1) != 1) | 
|  | { | 
|  | Iterator input(in, window_in); | 
|  | execute_window_loop(window_in, [&](const Coordinates & id) | 
|  | { | 
|  | // Compute 4x4 elements per iteration | 
|  | int x = window_start_x; | 
|  | for(; x <= (window_end_x - window_step_x); x += window_step_x) | 
|  | { | 
|  | const uint16x4_t row0 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x); | 
|  | const uint16x4_t row1 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x); | 
|  | const uint16x4_t row2 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x); | 
|  | const uint16x4_t row3 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x); | 
|  |  | 
|  | // Transpose 2x2 | 
|  | const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1); | 
|  | const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3); | 
|  |  | 
|  | // Transpose 4x4 | 
|  | const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0])); | 
|  | const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1])); | 
|  |  | 
|  | // Compute destination address | 
|  | const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes; | 
|  |  | 
|  | vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0])); | 
|  | vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0])); | 
|  | vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1])); | 
|  | vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1])); | 
|  | } | 
|  |  | 
|  | // Compute left-over elements (1x4) | 
|  | for(; x < window_end_x; ++x) | 
|  | { | 
|  | const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x); | 
|  | const uint16_t val1 = *(reinterpret_cast<uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x); | 
|  | const uint16_t val2 = *(reinterpret_cast<uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x); | 
|  | const uint16_t val3 = *(reinterpret_cast<uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x); | 
|  |  | 
|  | uint16x4_t result = vdup_n_u16(0); | 
|  | result            = vset_lane_u16(val0, result, 0); | 
|  | result            = vset_lane_u16(val1, result, 1); | 
|  | result            = vset_lane_u16(val2, result, 2); | 
|  | result            = vset_lane_u16(val3, result, 3); | 
|  |  | 
|  | // Compute destination address | 
|  | const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes; | 
|  |  | 
|  | vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes), result); | 
|  | } | 
|  | }, | 
|  | input, output); | 
|  | } | 
|  |  | 
|  | if(left_over_loop_y) | 
|  | { | 
|  | window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); | 
|  | window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); | 
|  |  | 
|  | Iterator input(in, window_in); | 
|  | Iterator output(out, window_out); | 
|  |  | 
|  | // Compute left-over elements along the y dimension (1x1) | 
|  | execute_window_loop(window_in, [&](const Coordinates & id) | 
|  | { | 
|  | const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr())); | 
|  |  | 
|  | // Compute destination address | 
|  | const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes; | 
|  |  | 
|  | *(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes)) = val0; | 
|  | }, | 
|  | input, output); | 
|  | } | 
|  | } | 
|  |  | 
|  | void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window) | 
|  | { | 
|  | const int    window_step_x            = 4; | 
|  | const int    window_step_y            = 4; | 
|  | const int    window_start_x           = window.x().start(); | 
|  | const int    window_end_x             = window.x().end(); | 
|  | const int    window_start_y           = window.y().start(); | 
|  | const int    window_end_y             = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1))); | 
|  | const int    window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; | 
|  | const size_t input_stride_in_bytes    = in->info()->strides_in_bytes()[1]; | 
|  | const size_t output_stride_in_bytes   = out->info()->strides_in_bytes()[1]; | 
|  |  | 
|  | // Check if we need a left-over loop for the y dimension | 
|  | bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); | 
|  |  | 
|  | Window window_in(window); | 
|  | window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); | 
|  | if(left_over_loop_y) | 
|  | { | 
|  | // Check if window_end_y_multiple_of is greater than window_start_y | 
|  | if(window_end_y_multiple_of > window_start_y) | 
|  | { | 
|  | window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); | 
|  | } | 
|  | else | 
|  | { | 
|  | window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Window window_out(window); | 
|  | window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); | 
|  | window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); | 
|  |  | 
|  | Iterator output(out, window_out); | 
|  |  | 
|  | // Run the SIMD path if and only if the input is not a row-vector | 
|  | if(in->info()->dimension(1) != 1) | 
|  | { | 
|  | Iterator input(in, window_in); | 
|  | execute_window_loop(window_in, [&](const Coordinates & id) | 
|  | { | 
|  | // Compute 4x4 elements per iteration | 
|  | int x = window_start_x; | 
|  | for(; x <= (window_end_x - window_step_x); x += window_step_x) | 
|  | { | 
|  | const uint32x4_t row0 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x); | 
|  | const uint32x4_t row1 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x); | 
|  | const uint32x4_t row2 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x); | 
|  | const uint32x4_t row3 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x); | 
|  |  | 
|  | // Transpose 2x2 | 
|  | const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1)); | 
|  | const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3)); | 
|  | const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1)); | 
|  | const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3)); | 
|  |  | 
|  | // Compute destination address | 
|  | const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes; | 
|  |  | 
|  | // Swap block 01 with block 10 and store | 
|  | vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0])); | 
|  | vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1])); | 
|  | vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0])); | 
|  | vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1])); | 
|  | } | 
|  |  | 
|  | // Compute left-over elements (1x4) | 
|  | for(; x < window_end_x; ++x) | 
|  | { | 
|  | const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x); | 
|  | const uint32_t val1 = *(reinterpret_cast<uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x); | 
|  | const uint32_t val2 = *(reinterpret_cast<uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x); | 
|  | const uint32_t val3 = *(reinterpret_cast<uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x); | 
|  |  | 
|  | uint32x4_t result = vdupq_n_u32(0); | 
|  | result            = vsetq_lane_u32(val0, result, 0); | 
|  | result            = vsetq_lane_u32(val1, result, 1); | 
|  | result            = vsetq_lane_u32(val2, result, 2); | 
|  | result            = vsetq_lane_u32(val3, result, 3); | 
|  |  | 
|  | // Compute destination address | 
|  | const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes; | 
|  |  | 
|  | vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes), result); | 
|  | } | 
|  | }, | 
|  | input, output); | 
|  | } | 
|  |  | 
|  | if(left_over_loop_y) | 
|  | { | 
|  | window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); | 
|  | window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); | 
|  |  | 
|  | Iterator input(in, window_in); | 
|  | Iterator output(out, window_out); | 
|  |  | 
|  | // Compute left-over elements along the y dimension (1x1) | 
|  | execute_window_loop(window_in, [&](const Coordinates & id) | 
|  | { | 
|  | const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr())); | 
|  |  | 
|  | // Compute destination address | 
|  | const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes; | 
|  |  | 
|  | *(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes)) = val0; | 
|  | }, | 
|  | input, output); | 
|  | } | 
|  | } | 
|  | } // namespace | 
|  |  | 
|  | void CpuTransposeKernel::configure(const ITensorInfo *src, ITensorInfo *dst) | 
|  | { | 
|  | ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst); | 
|  |  | 
|  | // Destination auto inizialitation if not yet initialized | 
|  | const TensorShape dst_shape = misc::shape_calculator::compute_transposed_shape(*src); | 
|  | auto_init_if_empty(*dst, src->clone()->set_tensor_shape(dst_shape)); | 
|  |  | 
|  | // Perform validation step | 
|  | ARM_COMPUTE_ERROR_THROW_ON(validate(src, dst)); | 
|  |  | 
|  | // Note: This kernel performs 16 elements per iteration. | 
|  | // However, since we use a left-over for loop on both dimensions (X and Y), we cannot have any read or write out of memory | 
|  | // For this reason num_elems_processed_per_iteration_x is set to 1 | 
|  | const unsigned int num_elems_processed_per_iteration_x = 1; | 
|  | const unsigned int num_elems_processed_per_iteration_y = num_elems_processed(src->element_size()); | 
|  |  | 
|  | // Configure kernel window | 
|  | Window win = calculate_max_window(*src, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); | 
|  |  | 
|  | // The CpuTranspose doesn't need padding so update_window_and_padding() can be skipped | 
|  | Coordinates coord; | 
|  | coord.set_num_dimensions(dst->num_dimensions()); | 
|  | dst->set_valid_region(ValidRegion(coord, dst->tensor_shape())); | 
|  |  | 
|  | ICpuKernel::configure(win); | 
|  | } | 
|  |  | 
|  | Status CpuTransposeKernel::validate(const ITensorInfo *src, const ITensorInfo *dst) | 
|  | { | 
|  | ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src); | 
|  | //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use CPU FP16 instructions. | 
|  | ARM_COMPUTE_RETURN_ERROR_ON(src->data_type() == DataType::UNKNOWN); | 
|  |  | 
|  | // Error if input is not 8 bit, 16bit or 32bit | 
|  | ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->element_size() != 1 && src->element_size() != 2 && src->element_size() != 4, | 
|  | "Element size not supported"); | 
|  |  | 
|  | // Validate configured destination | 
|  | if(dst->total_size() != 0) | 
|  | { | 
|  | const TensorShape dst_shape = misc::shape_calculator::compute_transposed_shape(*src); | 
|  |  | 
|  | ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), dst_shape); | 
|  | ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(src, dst); | 
|  | ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst); | 
|  | } | 
|  |  | 
|  | return Status{}; | 
|  | } | 
|  |  | 
|  | void CpuTransposeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) | 
|  | { | 
|  | ARM_COMPUTE_UNUSED(info); | 
|  | ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); | 
|  | ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window); | 
|  |  | 
|  | const auto src = tensors.get_const_tensor(TensorType::ACL_SRC); | 
|  | auto       dst = tensors.get_tensor(TensorType::ACL_DST); | 
|  |  | 
|  | switch(src->info()->element_size()) | 
|  | { | 
|  | case 1: | 
|  | transpose_8bit_elements(src, dst, window); | 
|  | break; | 
|  | case 2: | 
|  | transpose_16bit_elements(src, dst, window); | 
|  | break; | 
|  | case 4: | 
|  | transpose_32bit_elements(src, dst, window); | 
|  | break; | 
|  | default: | 
|  | ARM_COMPUTE_ERROR("Element size not supported"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *CpuTransposeKernel::name() const | 
|  | { | 
|  | return "CpuTransposeKernel"; | 
|  | } | 
|  | } // namespace kernels | 
|  | } // namespace cpu | 
|  | } // namespace arm_compute |