blob: da06aa2ab16f2bf64deca478572780ccbc6e949e [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// $Id: dbreg.cpp,v 1.31 2011/06/17 14:04:32 mbansal Exp $
#include "dbreg.h"
#include <string.h>
#include <stdio.h>
#if PROFILE
#endif
//#include <iostream>
db_FrameToReferenceRegistration::db_FrameToReferenceRegistration() :
m_initialized(false),m_nr_matches(0),m_over_allocation(256),m_nr_bins(20),m_max_cost_pix(30), m_quarter_resolution(false)
{
m_reference_image = NULL;
m_aligned_ins_image = NULL;
m_quarter_res_image = NULL;
m_horz_smooth_subsample_image = NULL;
m_x_corners_ref = NULL;
m_y_corners_ref = NULL;
m_x_corners_ins = NULL;
m_y_corners_ins = NULL;
m_match_index_ref = NULL;
m_match_index_ins = NULL;
m_inlier_indices = NULL;
m_num_inlier_indices = 0;
m_temp_double = NULL;
m_temp_int = NULL;
m_corners_ref = NULL;
m_corners_ins = NULL;
m_sq_cost = NULL;
m_cost_histogram = NULL;
profile_string = NULL;
db_Identity3x3(m_K);
db_Identity3x3(m_H_ref_to_ins);
db_Identity3x3(m_H_dref_to_ref);
m_sq_cost_computed = false;
m_reference_set = false;
m_reference_update_period = 0;
m_nr_frames_processed = 0;
return;
}
db_FrameToReferenceRegistration::~db_FrameToReferenceRegistration()
{
Clean();
}
void db_FrameToReferenceRegistration::Clean()
{
if ( m_reference_image )
db_FreeImage_u(m_reference_image,m_im_height);
if ( m_aligned_ins_image )
db_FreeImage_u(m_aligned_ins_image,m_im_height);
if ( m_quarter_res_image )
{
db_FreeImage_u(m_quarter_res_image, m_im_height);
}
if ( m_horz_smooth_subsample_image )
{
db_FreeImage_u(m_horz_smooth_subsample_image, m_im_height*2);
}
delete [] m_x_corners_ref;
delete [] m_y_corners_ref;
delete [] m_x_corners_ins;
delete [] m_y_corners_ins;
delete [] m_match_index_ref;
delete [] m_match_index_ins;
delete [] m_temp_double;
delete [] m_temp_int;
delete [] m_corners_ref;
delete [] m_corners_ins;
delete [] m_sq_cost;
delete [] m_cost_histogram;
delete [] m_inlier_indices;
if(profile_string)
delete [] profile_string;
m_reference_image = NULL;
m_aligned_ins_image = NULL;
m_quarter_res_image = NULL;
m_horz_smooth_subsample_image = NULL;
m_x_corners_ref = NULL;
m_y_corners_ref = NULL;
m_x_corners_ins = NULL;
m_y_corners_ins = NULL;
m_match_index_ref = NULL;
m_match_index_ins = NULL;
m_inlier_indices = NULL;
m_temp_double = NULL;
m_temp_int = NULL;
m_corners_ref = NULL;
m_corners_ins = NULL;
m_sq_cost = NULL;
m_cost_histogram = NULL;
}
void db_FrameToReferenceRegistration::Init(int width, int height,
int homography_type,
int max_iterations,
bool linear_polish,
bool quarter_resolution,
double scale,
unsigned int reference_update_period,
bool do_motion_smoothing,
double motion_smoothing_gain,
int nr_samples,
int chunk_size,
int cd_target_nr_corners,
double cm_max_disparity,
bool cm_use_smaller_matching_window,
int cd_nr_horz_blocks,
int cd_nr_vert_blocks
)
{
Clean();
m_reference_update_period = reference_update_period;
m_nr_frames_processed = 0;
m_do_motion_smoothing = do_motion_smoothing;
m_motion_smoothing_gain = motion_smoothing_gain;
m_stab_smoother.setSmoothingFactor(m_motion_smoothing_gain);
m_quarter_resolution = quarter_resolution;
profile_string = new char[10240];
if (m_quarter_resolution == true)
{
width = width/2;
height = height/2;
m_horz_smooth_subsample_image = db_AllocImage_u(width,height*2,m_over_allocation);
m_quarter_res_image = db_AllocImage_u(width,height,m_over_allocation);
}
m_im_width = width;
m_im_height = height;
double temp[9];
db_Approx3DCalMat(m_K,temp,m_im_width,m_im_height);
m_homography_type = homography_type;
m_max_iterations = max_iterations;
m_scale = 2/(m_K[0]+m_K[4]);
m_nr_samples = nr_samples;
m_chunk_size = chunk_size;
double outlier_t1 = 5.0;
m_outlier_t2 = outlier_t1*outlier_t1;//*m_scale*m_scale;
m_current_is_reference = false;
m_linear_polish = linear_polish;
m_reference_image = db_AllocImage_u(m_im_width,m_im_height,m_over_allocation);
m_aligned_ins_image = db_AllocImage_u(m_im_width,m_im_height,m_over_allocation);
// initialize feature detection and matching:
//m_max_nr_corners = m_cd.Init(m_im_width,m_im_height,cd_target_nr_corners,cd_nr_horz_blocks,cd_nr_vert_blocks,0.0,0.0);
m_max_nr_corners = m_cd.Init(m_im_width,m_im_height,cd_target_nr_corners,cd_nr_horz_blocks,cd_nr_vert_blocks,DB_DEFAULT_ABS_CORNER_THRESHOLD/500.0,0.0);
int use_21 = 0;
m_max_nr_matches = m_cm.Init(m_im_width,m_im_height,cm_max_disparity,m_max_nr_corners,DB_DEFAULT_NO_DISPARITY,cm_use_smaller_matching_window,use_21);
// allocate space for corner feature locations for reference and inspection images:
m_x_corners_ref = new double [m_max_nr_corners];
m_y_corners_ref = new double [m_max_nr_corners];
m_x_corners_ins = new double [m_max_nr_corners];
m_y_corners_ins = new double [m_max_nr_corners];
// allocate space for match indices:
m_match_index_ref = new int [m_max_nr_matches];
m_match_index_ins = new int [m_max_nr_matches];
m_temp_double = new double [12*DB_DEFAULT_NR_SAMPLES+10*m_max_nr_matches];
m_temp_int = new int [db_maxi(DB_DEFAULT_NR_SAMPLES,m_max_nr_matches)];
// allocate space for homogenous image points:
m_corners_ref = new double [3*m_max_nr_corners];
m_corners_ins = new double [3*m_max_nr_corners];
// allocate cost array and histogram:
m_sq_cost = new double [m_max_nr_matches];
m_cost_histogram = new int [m_nr_bins];
// reserve array:
//m_inlier_indices.reserve(m_max_nr_matches);
m_inlier_indices = new int[m_max_nr_matches];
m_initialized = true;
m_max_inlier_count = 0;
}
#define MB 0
// Save the reference image, detect features and update the dref-to-ref transformation
int db_FrameToReferenceRegistration::UpdateReference(const unsigned char * const * im, bool subsample, bool detect_corners)
{
double temp[9];
db_Multiply3x3_3x3(temp,m_H_dref_to_ref,m_H_ref_to_ins);
db_Copy9(m_H_dref_to_ref,temp);
const unsigned char * const * imptr = im;
if (m_quarter_resolution && subsample)
{
GenerateQuarterResImage(im);
imptr = m_quarter_res_image;
}
// save the reference image, detect features and quit
db_CopyImage_u(m_reference_image,imptr,m_im_width,m_im_height,m_over_allocation);
if(detect_corners)
{
#if MB
m_cd.DetectCorners(imptr, m_x_corners_ref,m_y_corners_ref,&m_nr_corners_ref);
int nr = 0;
for(int k=0; k<m_nr_corners_ref; k++)
{
if(m_x_corners_ref[k]>m_im_width/3)
{
m_x_corners_ref[nr] = m_x_corners_ref[k];
m_y_corners_ref[nr] = m_y_corners_ref[k];
nr++;
}
}
m_nr_corners_ref = nr;
#else
m_cd.DetectCorners(imptr, m_x_corners_ref,m_y_corners_ref,&m_nr_corners_ref);
#endif
}
else
{
m_nr_corners_ref = m_nr_corners_ins;
for(int k=0; k<m_nr_corners_ins; k++)
{
m_x_corners_ref[k] = m_x_corners_ins[k];
m_y_corners_ref[k] = m_y_corners_ins[k];
}
}
db_Identity3x3(m_H_ref_to_ins);
m_max_inlier_count = 0; // Reset to 0 as no inliers seen until now
m_sq_cost_computed = false;
m_reference_set = true;
m_current_is_reference = true;
return 1;
}
void db_FrameToReferenceRegistration::Get_H_dref_to_ref(double H[9])
{
db_Copy9(H,m_H_dref_to_ref);
}
void db_FrameToReferenceRegistration::Get_H_dref_to_ins(double H[9])
{
db_Multiply3x3_3x3(H,m_H_dref_to_ref,m_H_ref_to_ins);
}
void db_FrameToReferenceRegistration::Set_H_dref_to_ins(double H[9])
{
double H_ins_to_ref[9];
db_Identity3x3(H_ins_to_ref); // Ensure it has proper values
db_InvertAffineTransform(H_ins_to_ref,m_H_ref_to_ins); // Invert to get ins to ref
db_Multiply3x3_3x3(m_H_dref_to_ref,H,H_ins_to_ref); // Update dref to ref using the input H from dref to ins
}
void db_FrameToReferenceRegistration::ResetDisplayReference()
{
db_Identity3x3(m_H_dref_to_ref);
}
bool db_FrameToReferenceRegistration::NeedReferenceUpdate()
{
// If less than 50% of the starting number of inliers left, then its time to update the reference.
if(m_max_inlier_count>0 && float(m_num_inlier_indices)/float(m_max_inlier_count)<0.5)
return true;
else
return false;
}
int db_FrameToReferenceRegistration::AddFrame(const unsigned char * const * im, double H[9],bool force_reference,bool prewarp)
{
m_current_is_reference = false;
if(!m_reference_set || force_reference)
{
db_Identity3x3(m_H_ref_to_ins);
db_Copy9(H,m_H_ref_to_ins);
UpdateReference(im,true,true);
return 0;
}
const unsigned char * const * imptr = im;
if (m_quarter_resolution)
{
if (m_quarter_res_image)
{
GenerateQuarterResImage(im);
}
imptr = (const unsigned char * const* )m_quarter_res_image;
}
double H_last[9];
db_Copy9(H_last,m_H_ref_to_ins);
db_Identity3x3(m_H_ref_to_ins);
m_sq_cost_computed = false;
// detect corners on inspection image and match to reference image features:s
// @jke - Adding code to time the functions. TODO: Remove after test
#if PROFILE
double iTimer1, iTimer2;
char str[255];
strcpy(profile_string,"\n");
sprintf(str,"[%dx%d] %p\n",m_im_width,m_im_height,im);
strcat(profile_string, str);
#endif
// @jke - Adding code to time the functions. TODO: Remove after test
#if PROFILE
iTimer1 = now_ms();
#endif
m_cd.DetectCorners(imptr, m_x_corners_ins,m_y_corners_ins,&m_nr_corners_ins);
// @jke - Adding code to time the functions. TODO: Remove after test
# if PROFILE
iTimer2 = now_ms();
double elapsedTimeCorner = iTimer2 - iTimer1;
sprintf(str,"Corner Detection [%d corners] = %g ms\n",m_nr_corners_ins, elapsedTimeCorner);
strcat(profile_string, str);
#endif
// @jke - Adding code to time the functions. TODO: Remove after test
#if PROFILE
iTimer1 = now_ms();
#endif
if(prewarp)
m_cm.Match(m_reference_image,imptr,m_x_corners_ref,m_y_corners_ref,m_nr_corners_ref,
m_x_corners_ins,m_y_corners_ins,m_nr_corners_ins,
m_match_index_ref,m_match_index_ins,&m_nr_matches,H,0);
else
m_cm.Match(m_reference_image,imptr,m_x_corners_ref,m_y_corners_ref,m_nr_corners_ref,
m_x_corners_ins,m_y_corners_ins,m_nr_corners_ins,
m_match_index_ref,m_match_index_ins,&m_nr_matches);
// @jke - Adding code to time the functions. TODO: Remove after test
# if PROFILE
iTimer2 = now_ms();
double elapsedTimeMatch = iTimer2 - iTimer1;
sprintf(str,"Matching [%d] = %g ms\n",m_nr_matches,elapsedTimeMatch);
strcat(profile_string, str);
#endif
// copy out matching features:
for ( int i = 0; i < m_nr_matches; ++i )
{
int offset = 3*i;
m_corners_ref[offset ] = m_x_corners_ref[m_match_index_ref[i]];
m_corners_ref[offset+1] = m_y_corners_ref[m_match_index_ref[i]];
m_corners_ref[offset+2] = 1.0;
m_corners_ins[offset ] = m_x_corners_ins[m_match_index_ins[i]];
m_corners_ins[offset+1] = m_y_corners_ins[m_match_index_ins[i]];
m_corners_ins[offset+2] = 1.0;
}
// @jke - Adding code to time the functions. TODO: Remove after test
#if PROFILE
iTimer1 = now_ms();
#endif
// perform the alignment:
db_RobImageHomography(m_H_ref_to_ins, m_corners_ref, m_corners_ins, m_nr_matches, m_K, m_K, m_temp_double, m_temp_int,
m_homography_type,NULL,m_max_iterations,m_max_nr_matches,m_scale,
m_nr_samples, m_chunk_size);
// @jke - Adding code to time the functions. TODO: Remove after test
# if PROFILE
iTimer2 = now_ms();
double elapsedTimeHomography = iTimer2 - iTimer1;
sprintf(str,"Homography = %g ms\n",elapsedTimeHomography);
strcat(profile_string, str);
#endif
SetOutlierThreshold();
// Compute the inliers for the db compute m_H_ref_to_ins
ComputeInliers(m_H_ref_to_ins);
// Update the max inlier count
m_max_inlier_count = (m_max_inlier_count > m_num_inlier_indices)?m_max_inlier_count:m_num_inlier_indices;
// Fit a least-squares model to just the inliers and put it in m_H_ref_to_ins
if(m_linear_polish)
Polish(m_inlier_indices, m_num_inlier_indices);
if (m_quarter_resolution)
{
m_H_ref_to_ins[2] *= 2.0;
m_H_ref_to_ins[5] *= 2.0;
}
#if PROFILE
sprintf(str,"#Inliers = %d \n",m_num_inlier_indices);
strcat(profile_string, str);
#endif
/*
///// CHECK IF CURRENT TRANSFORMATION GOOD OR BAD ////
///// IF BAD, then update reference to the last correctly aligned inspection frame;
if(m_num_inlier_indices<5)//0.9*m_nr_matches || m_nr_matches < 20)
{
db_Copy9(m_H_ref_to_ins,H_last);
UpdateReference(imptr,false);
// UpdateReference(m_aligned_ins_image,false);
}
else
{
///// IF GOOD, then update the last correctly aligned inspection frame to be this;
//db_CopyImage_u(m_aligned_ins_image,imptr,m_im_width,m_im_height,m_over_allocation);
*/
if(m_do_motion_smoothing)
SmoothMotion();
// Disable debug printing
// db_PrintDoubleMatrix(m_H_ref_to_ins,3,3);
db_Copy9(H, m_H_ref_to_ins);
m_nr_frames_processed++;
{
if ( (m_nr_frames_processed % m_reference_update_period) == 0 )
{
//UpdateReference(imptr,false, false);
#if MB
UpdateReference(imptr,false, true);
#else
UpdateReference(imptr,false, false);
#endif
}
}
return 1;
}
//void db_FrameToReferenceRegistration::ComputeInliers(double H[9],std::vector<int> &inlier_indices)
void db_FrameToReferenceRegistration::ComputeInliers(double H[9])
{
double totnummatches = m_nr_matches;
int inliercount=0;
m_num_inlier_indices = 0;
// inlier_indices.clear();
for(int c=0; c < totnummatches; c++ )
{
if (m_sq_cost[c] <= m_outlier_t2)
{
m_inlier_indices[inliercount] = c;
inliercount++;
}
}
m_num_inlier_indices = inliercount;
double frac=inliercount/totnummatches;
}
//void db_FrameToReferenceRegistration::Polish(std::vector<int> &inlier_indices)
void db_FrameToReferenceRegistration::Polish(int *inlier_indices, int &num_inlier_indices)
{
db_Zero(m_polish_C,36);
db_Zero(m_polish_D,6);
for (int i=0;i<num_inlier_indices;i++)
{
int j = 3*inlier_indices[i];
m_polish_C[0]+=m_corners_ref[j]*m_corners_ref[j];
m_polish_C[1]+=m_corners_ref[j]*m_corners_ref[j+1];
m_polish_C[2]+=m_corners_ref[j];
m_polish_C[7]+=m_corners_ref[j+1]*m_corners_ref[j+1];
m_polish_C[8]+=m_corners_ref[j+1];
m_polish_C[14]+=1;
m_polish_D[0]+=m_corners_ref[j]*m_corners_ins[j];
m_polish_D[1]+=m_corners_ref[j+1]*m_corners_ins[j];
m_polish_D[2]+=m_corners_ins[j];
m_polish_D[3]+=m_corners_ref[j]*m_corners_ins[j+1];
m_polish_D[4]+=m_corners_ref[j+1]*m_corners_ins[j+1];
m_polish_D[5]+=m_corners_ins[j+1];
}
double a=db_maxd(m_polish_C[0],m_polish_C[7]);
m_polish_C[0]/=a; m_polish_C[1]/=a; m_polish_C[2]/=a;
m_polish_C[7]/=a; m_polish_C[8]/=a; m_polish_C[14]/=a;
m_polish_D[0]/=a; m_polish_D[1]/=a; m_polish_D[2]/=a;
m_polish_D[3]/=a; m_polish_D[4]/=a; m_polish_D[5]/=a;
m_polish_C[6]=m_polish_C[1];
m_polish_C[12]=m_polish_C[2];
m_polish_C[13]=m_polish_C[8];
m_polish_C[21]=m_polish_C[0]; m_polish_C[22]=m_polish_C[1]; m_polish_C[23]=m_polish_C[2];
m_polish_C[28]=m_polish_C[7]; m_polish_C[29]=m_polish_C[8];
m_polish_C[35]=m_polish_C[14];
double d[6];
db_CholeskyDecomp6x6(m_polish_C,d);
db_CholeskyBacksub6x6(m_H_ref_to_ins,m_polish_C,d,m_polish_D);
}
void db_FrameToReferenceRegistration::EstimateSecondaryModel(double H[9])
{
/* if ( m_current_is_reference )
{
db_Identity3x3(H);
return;
}
*/
// select the outliers of the current model:
SelectOutliers();
// perform the alignment:
db_RobImageHomography(m_H_ref_to_ins, m_corners_ref, m_corners_ins, m_nr_matches, m_K, m_K, m_temp_double, m_temp_int,
m_homography_type,NULL,m_max_iterations,m_max_nr_matches,m_scale,
m_nr_samples, m_chunk_size);
db_Copy9(H,m_H_ref_to_ins);
}
void db_FrameToReferenceRegistration::ComputeCostArray()
{
if ( m_sq_cost_computed ) return;
for( int c=0, k=0 ;c < m_nr_matches; c++, k=k+3)
{
m_sq_cost[c] = SquaredInhomogenousHomographyError(m_corners_ins+k,m_H_ref_to_ins,m_corners_ref+k);
}
m_sq_cost_computed = true;
}
void db_FrameToReferenceRegistration::SelectOutliers()
{
int nr_outliers=0;
ComputeCostArray();
for(int c=0, k=0 ;c<m_nr_matches;c++,k=k+3)
{
if (m_sq_cost[c] > m_outlier_t2)
{
int offset = 3*nr_outliers++;
db_Copy3(m_corners_ref+offset,m_corners_ref+k);
db_Copy3(m_corners_ins+offset,m_corners_ins+k);
}
}
m_nr_matches = nr_outliers;
}
void db_FrameToReferenceRegistration::ComputeCostHistogram()
{
ComputeCostArray();
for ( int b = 0; b < m_nr_bins; ++b )
m_cost_histogram[b] = 0;
for(int c = 0; c < m_nr_matches; c++)
{
double error = db_SafeSqrt(m_sq_cost[c]);
int bin = (int)(error/m_max_cost_pix*m_nr_bins);
if ( bin < m_nr_bins )
m_cost_histogram[bin]++;
else
m_cost_histogram[m_nr_bins-1]++;
}
/*
for ( int i = 0; i < m_nr_bins; ++i )
std::cout << m_cost_histogram[i] << " ";
std::cout << std::endl;
*/
}
void db_FrameToReferenceRegistration::SetOutlierThreshold()
{
ComputeCostHistogram();
int i = 0, last=0;
for (; i < m_nr_bins-1; ++i )
{
if ( last > m_cost_histogram[i] )
break;
last = m_cost_histogram[i];
}
//std::cout << "I " << i << std::endl;
int max = m_cost_histogram[i];
for (; i < m_nr_bins-1; ++i )
{
if ( m_cost_histogram[i] < (int)(0.1*max) )
//if ( last < m_cost_histogram[i] )
break;
last = m_cost_histogram[i];
}
//std::cout << "J " << i << std::endl;
m_outlier_t2 = db_sqr(i*m_max_cost_pix/m_nr_bins);
//std::cout << "m_outlier_t2 " << m_outlier_t2 << std::endl;
}
void db_FrameToReferenceRegistration::SmoothMotion(void)
{
VP_MOTION inmot,outmot;
double H[9];
Get_H_dref_to_ins(H);
MXX(inmot) = H[0];
MXY(inmot) = H[1];
MXZ(inmot) = H[2];
MXW(inmot) = 0.0;
MYX(inmot) = H[3];
MYY(inmot) = H[4];
MYZ(inmot) = H[5];
MYW(inmot) = 0.0;
MZX(inmot) = H[6];
MZY(inmot) = H[7];
MZZ(inmot) = H[8];
MZW(inmot) = 0.0;
MWX(inmot) = 0.0;
MWY(inmot) = 0.0;
MWZ(inmot) = 0.0;
MWW(inmot) = 1.0;
inmot.type = VP_MOTION_AFFINE;
int w = m_im_width;
int h = m_im_height;
if(m_quarter_resolution)
{
w = w*2;
h = h*2;
}
#if 0
m_stab_smoother.smoothMotionAdaptive(w,h,&inmot,&outmot);
#else
m_stab_smoother.smoothMotion(&inmot,&outmot);
#endif
H[0] = MXX(outmot);
H[1] = MXY(outmot);
H[2] = MXZ(outmot);
H[3] = MYX(outmot);
H[4] = MYY(outmot);
H[5] = MYZ(outmot);
H[6] = MZX(outmot);
H[7] = MZY(outmot);
H[8] = MZZ(outmot);
Set_H_dref_to_ins(H);
}
void db_FrameToReferenceRegistration::GenerateQuarterResImage(const unsigned char* const* im)
{
int input_h = m_im_height*2;
int input_w = m_im_width*2;
for (int j = 0; j < input_h; j++)
{
const unsigned char* in_row_ptr = im[j];
unsigned char* out_row_ptr = m_horz_smooth_subsample_image[j]+1;
for (int i = 2; i < input_w-2; i += 2)
{
int smooth_val = (
6*in_row_ptr[i] +
((in_row_ptr[i-1]+in_row_ptr[i+1])<<2) +
in_row_ptr[i-2]+in_row_ptr[i+2]
) >> 4;
*out_row_ptr++ = (unsigned char) smooth_val;
if ( (smooth_val < 0) || (smooth_val > 255))
{
return;
}
}
}
for (int j = 2; j < input_h-2; j+=2)
{
unsigned char* in_row_ptr = m_horz_smooth_subsample_image[j];
unsigned char* out_row_ptr = m_quarter_res_image[j/2];
for (int i = 1; i < m_im_width-1; i++)
{
int smooth_val = (
6*in_row_ptr[i] +
((in_row_ptr[i-m_im_width]+in_row_ptr[i+m_im_width]) << 2)+
in_row_ptr[i-2*m_im_width]+in_row_ptr[i+2*m_im_width]
) >> 4;
*out_row_ptr++ = (unsigned char)smooth_val;
if ( (smooth_val < 0) || (smooth_val > 255))
{
return;
}
}
}
}