blob: c8c4d66e842707bb24a7c1093f7d44643ae4aa98 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*! \file LowerAlu.cpp
\brief This file lowers ALU bytecodes.
*/
#include "libdex/DexOpcodes.h"
#include "libdex/DexFile.h"
#include "Lower.h"
#include "NcgAot.h"
#include "enc_wrapper.h"
/////////////////////////////////////////////
#define P_GPR_1 PhysicalReg_EBX
//! lower bytecode NEG_INT
//!
int op_neg_int() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
get_virtual_reg(vB, OpndSize_32, 1, false);
alu_unary_reg(OpndSize_32, neg_opc, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
rPC += 1;
return 0;
}
//! lower bytecode NOT_INT
//!
int op_not_int() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
get_virtual_reg(vB, OpndSize_32, 1, false);
alu_unary_reg(OpndSize_32, not_opc, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
rPC += 1;
return 0;
}
#undef P_GPR_1
//! lower bytecode NEG_LONG
//! This implementation uses XMM registers
int op_neg_long() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
get_virtual_reg(vB, OpndSize_64, 1, false);
alu_binary_reg_reg(OpndSize_64, xor_opc, 2, false, 2, false);
alu_binary_reg_reg(OpndSize_64, sub_opc, 1, false, 2, false);
set_virtual_reg(vA, OpndSize_64, 2, false);
rPC += 1;
return 0;
}
//! lower bytecode NOT_LONG
//! This implementation uses XMM registers
int op_not_long() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
get_virtual_reg(vB, OpndSize_64, 1, false);
load_global_data_API("64bits", OpndSize_64, 2, false);
alu_binary_reg_reg(OpndSize_64, andn_opc, 2, false, 1, false);
set_virtual_reg(vA, OpndSize_64, 1, false);
rPC += 1;
return 0;
}
#define P_GPR_1 PhysicalReg_EBX
//! lower bytecode NEG_FLOAT
//! This implementation uses GPR
int op_neg_float() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
get_virtual_reg(vB, OpndSize_32, 1, false);
alu_binary_imm_reg(OpndSize_32, add_opc, 0x80000000, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
rPC += 1;
return 0;
}
#undef P_GPR_1
//! lower bytecode NEG_DOUBLE
//! This implementation uses XMM registers
int op_neg_double() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
get_virtual_reg(vB, OpndSize_64, 1, false);
load_global_data_API("doubNeg", OpndSize_64, 2, false);
alu_binary_reg_reg(OpndSize_64, xor_opc, 1, false, 2, false);
set_virtual_reg(vA, OpndSize_64, 2, false);
rPC += 1;
return 0;
}
//! lower bytecode INT_TO_LONG
//! It uses native instruction cdq
int op_int_to_long() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
get_virtual_reg(vB, OpndSize_32, PhysicalReg_EAX, true);
convert_integer(OpndSize_32, OpndSize_64);
set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
set_virtual_reg(vA+1, OpndSize_32, PhysicalReg_EDX, true);
rPC += 1;
return 0;
}
//! lower bytecode INT_TO_FLOAT
//! This implementation uses FP stack
int op_int_to_float() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
load_int_fp_stack_VR(OpndSize_32, vB); //fildl
store_fp_stack_VR(true, OpndSize_32, vA); //fstps
rPC += 1;
return 0;
}
//! lower bytecode INT_TO_DOUBLE
//! This implementation uses FP stack
int op_int_to_double() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
load_int_fp_stack_VR(OpndSize_32, vB); //fildl
store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
rPC += 1;
return 0;
}
//! lower bytecode LONG_TO_FLOAT
//! This implementation uses FP stack
int op_long_to_float() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
load_int_fp_stack_VR(OpndSize_64, vB); //fildll
store_fp_stack_VR(true, OpndSize_32, vA); //fstps
rPC += 1;
return 0;
}
//! lower bytecode LONG_TO_DOUBLE
//! This implementation uses FP stack
int op_long_to_double() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
load_int_fp_stack_VR(OpndSize_64, vB); //fildll
store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
rPC += 1;
return 0;
}
//! lower bytecode FLOAT_TO_DOUBLE
//! This implementation uses FP stack
int op_float_to_double() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
load_fp_stack_VR(OpndSize_32, vB); //flds
store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
rPC += 1;
return 0;
}
//! lower bytecode DOUBLE_TO_FLOAT
//! This implementation uses FP stack
int op_double_to_float() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
load_fp_stack_VR(OpndSize_64, vB); //fldl
store_fp_stack_VR(true, OpndSize_32, vA); //fstps
rPC += 1;
return 0;
}
#define P_GPR_1 PhysicalReg_EBX
//! lower bytecode LONG_TO_INT
//! This implementation uses GPR
int op_long_to_int() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
get_virtual_reg(vB, OpndSize_32, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
rPC += 1;
return 0;
}
#undef P_GPR_1
//! common code to convert a float or double to integer
//! It uses FP stack
int common_fp_to_int(bool isDouble, u2 vA, u2 vB) {
if(isDouble) {
load_fp_stack_VR(OpndSize_64, vB); //fldl
}
else {
load_fp_stack_VR(OpndSize_32, vB); //flds
}
load_fp_stack_global_data_API("intMax", OpndSize_32);
load_fp_stack_global_data_API("intMin", OpndSize_32);
//ST(0) ST(1) ST(2) --> LintMin LintMax value
compare_fp_stack(true, 2, false/*isDouble*/); //ST(2)
//ST(0) ST(1) --> LintMax value
conditional_jump(Condition_AE, ".float_to_int_negInf", true);
rememberState(1);
compare_fp_stack(true, 1, false/*isDouble*/); //ST(1)
//ST(0) --> value
rememberState(2);
conditional_jump(Condition_C, ".float_to_int_nanInf", true);
//fnstcw, orw, fldcw, xorw
load_effective_addr(-2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
store_fpu_cw(false/*checkException*/, 0, PhysicalReg_ESP, true);
alu_binary_imm_mem(OpndSize_16, or_opc, 0xc00, 0, PhysicalReg_ESP, true);
load_fpu_cw(0, PhysicalReg_ESP, true);
alu_binary_imm_mem(OpndSize_16, xor_opc, 0xc00, 0, PhysicalReg_ESP, true);
store_int_fp_stack_VR(true/*pop*/, OpndSize_32, vA); //fistpl
//fldcw
load_fpu_cw(0, PhysicalReg_ESP, true);
load_effective_addr(2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
rememberState(3);
unconditional_jump(".float_to_int_okay", true);
insertLabel(".float_to_int_nanInf", true);
conditional_jump(Condition_NP, ".float_to_int_posInf", true);
//fstps CHECK
goToState(2);
store_fp_stack_VR(true, OpndSize_32, vA);
set_VR_to_imm(vA, OpndSize_32, 0);
transferToState(3);
unconditional_jump(".float_to_int_okay", true);
insertLabel(".float_to_int_posInf", true);
//fstps CHECK
goToState(2);
store_fp_stack_VR(true, OpndSize_32, vA);
set_VR_to_imm(vA, OpndSize_32, 0x7fffffff);
transferToState(3);
unconditional_jump(".float_to_int_okay", true);
insertLabel(".float_to_int_negInf", true);
goToState(1);
//fstps CHECK
store_fp_stack_VR(true, OpndSize_32, vA);
store_fp_stack_VR(true, OpndSize_32, vA);
set_VR_to_imm(vA, OpndSize_32, 0x80000000);
transferToState(3);
insertLabel(".float_to_int_okay", true);
return 0;
}
//! lower bytecode FLOAT_TO_INT by calling common_fp_to_int
//!
int op_float_to_int() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
int retval = common_fp_to_int(false, vA, vB);
rPC += 1;
return retval;
}
//! lower bytecode DOUBLE_TO_INT by calling common_fp_to_int
//!
int op_double_to_int() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
int retval = common_fp_to_int(true, vA, vB);
rPC += 1;
return retval;
}
//! common code to convert float or double to long
//! It uses FP stack
int common_fp_to_long(bool isDouble, u2 vA, u2 vB) {
if(isDouble) {
load_fp_stack_VR(OpndSize_64, vB); //fldl
}
else {
load_fp_stack_VR(OpndSize_32, vB); //flds
}
//Check if it is the special Negative Infinity value
load_fp_stack_global_data_API("valueNegInfLong", OpndSize_64);
//Stack status: ST(0) ST(1) --> LlongMin value
compare_fp_stack(true, 1, false/*isDouble*/); // Pops ST(1)
conditional_jump(Condition_AE, ".float_to_long_negInf", true);
rememberState(1);
//Check if it is the special Positive Infinity value
load_fp_stack_global_data_API("valuePosInfLong", OpndSize_64);
//Stack status: ST(0) ST(1) --> LlongMax value
compare_fp_stack(true, 1, false/*isDouble*/); // Pops ST(1)
rememberState(2);
conditional_jump(Condition_C, ".float_to_long_nanInf", true);
//Normal Case
//We want to truncate to 0 for conversion. That will be rounding mode 0x11
load_effective_addr(-2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
store_fpu_cw(false/*checkException*/, 0, PhysicalReg_ESP, true);
//Change control word to rounding mode 11:
alu_binary_imm_mem(OpndSize_16, or_opc, 0xc00, 0, PhysicalReg_ESP, true);
//Load the control word
load_fpu_cw(0, PhysicalReg_ESP, true);
//Reset the control word
alu_binary_imm_mem(OpndSize_16, xor_opc, 0xc00, 0, PhysicalReg_ESP, true);
//Perform the actual conversion
store_int_fp_stack_VR(true/*pop*/, OpndSize_64, vA); //fistpll
// Restore the original control word
load_fpu_cw(0, PhysicalReg_ESP, true);
load_effective_addr(2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
rememberState(3);
/* NOTE: We do not need to pop out the original value we pushed
* since load_fpu_cw above already clears the stack for
* normal values.
*/
unconditional_jump(".float_to_long_okay", true);
//We can be here for positive infinity or NaN. Check parity bit
insertLabel(".float_to_long_nanInf", true);
conditional_jump(Condition_NP, ".float_to_long_posInf", true);
goToState(2);
//Save corresponding Long NaN value
load_global_data_API("valueNanLong", OpndSize_64, 1, false);
set_virtual_reg(vA, OpndSize_64, 1, false);
transferToState(3);
//Pop out the original value we pushed
compare_fp_stack(true, 0, false/*isDouble*/); //ST(0)
unconditional_jump(".float_to_long_okay", true);
insertLabel(".float_to_long_posInf", true);
goToState(2);
//Save corresponding Long Positive Infinity value
load_global_data_API("valuePosInfLong", OpndSize_64, 2, false);
set_virtual_reg(vA, OpndSize_64, 2, false);
transferToState(3);
//Pop out the original value we pushed
compare_fp_stack(true, 0, false/*isDouble*/); //ST(0)
unconditional_jump(".float_to_long_okay", true);
insertLabel(".float_to_long_negInf", true);
//fstpl
goToState(1);
//Load corresponding Long Negative Infinity value
load_global_data_API("valueNegInfLong", OpndSize_64, 3, false);
set_virtual_reg(vA, OpndSize_64, 3, false);
transferToState(3);
//Pop out the original value we pushed
compare_fp_stack(true, 0, false/*isDouble*/); //ST(0)
insertLabel(".float_to_long_okay", true);
return 0;
}
//! lower bytecode FLOAT_TO_LONG by calling common_fp_to_long
//!
int op_float_to_long() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
int retval = common_fp_to_long(false, vA, vB);
rPC += 1;
return retval;
}
//! lower bytecode DOUBLE_TO_LONG by calling common_fp_to_long
//!
int op_double_to_long() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
int retval = common_fp_to_long(true, vA, vB);
rPC += 1;
return retval;
}
#define P_GPR_1 PhysicalReg_EBX
//! lower bytecode INT_TO_BYTE
//! It uses GPR
int op_int_to_byte() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
get_virtual_reg(vB, OpndSize_32, 1, false);
alu_binary_imm_reg(OpndSize_32, sal_opc, 24, 1, false);
alu_binary_imm_reg(OpndSize_32, sar_opc, 24, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
rPC += 1;
return 0;
}
//! lower bytecode INT_TO_CHAR
//! It uses GPR
int op_int_to_char() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
get_virtual_reg(vB, OpndSize_32, 1, false);
alu_binary_imm_reg(OpndSize_32, sal_opc, 16, 1, false);
alu_binary_imm_reg(OpndSize_32, shr_opc, 16, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
rPC += 1;
return 0;
}
//! lower bytecode INT_TO_SHORT
//! It uses GPR
int op_int_to_short() {
u2 vA = INST_A(inst); //destination
u2 vB = INST_B(inst);
get_virtual_reg(vB, OpndSize_32, 1, false);
alu_binary_imm_reg(OpndSize_32, sal_opc, 16, 1, false);
alu_binary_imm_reg(OpndSize_32, sar_opc, 16, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
rPC += 1;
return 0;
}
//! common code to handle integer ALU ops
//! It uses GPR
int common_alu_int(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) { //except div and rem
get_virtual_reg(v1, OpndSize_32, 1, false);
//in encoder, reg is first operand, which is the destination
//gpr_1 op v2(rFP) --> gpr_1
//shift only works with reg cl, v2 should be in %ecx
alu_binary_VR_reg(OpndSize_32, opc, v2, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
return 0;
}
#undef P_GPR_1
#define P_GPR_1 PhysicalReg_EBX
//! common code to handle integer shift ops
//! It uses GPR
int common_shift_int(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) {
get_virtual_reg(v2, OpndSize_32, PhysicalReg_ECX, true);
get_virtual_reg(v1, OpndSize_32, 1, false);
//in encoder, reg2 is first operand, which is the destination
//gpr_1 op v2(rFP) --> gpr_1
//shift only works with reg cl, v2 should be in %ecx
alu_binary_reg_reg(OpndSize_32, opc, PhysicalReg_ECX, true, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
return 0;
}
#undef p_GPR_1
//! lower bytecode ADD_INT by calling common_alu_int
//!
int op_add_int() {
u2 vA, v1, v2;
vA = INST_AA(inst);
v1 = *((u1*)rPC + 2);
v2 = *((u1*)rPC + 3);
int retval = common_alu_int(add_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode SUB_INT by calling common_alu_int
//!
int op_sub_int() {
u2 vA, v1, v2;
vA = INST_AA(inst);
v1 = *((u1*)rPC + 2);
v2 = *((u1*)rPC + 3);
int retval = common_alu_int(sub_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode MUL_INT by calling common_alu_int
//!
int op_mul_int() {
u2 vA, v1, v2;
vA = INST_AA(inst);
v1 = *((u1*)rPC + 2);
v2 = *((u1*)rPC + 3);
int retval = common_alu_int(imul_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode AND_INT by calling common_alu_int
//!
int op_and_int() {
u2 vA, v1, v2;
vA = INST_AA(inst);
v1 = *((u1*)rPC + 2);
v2 = *((u1*)rPC + 3);
int retval = common_alu_int(and_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode OR_INT by calling common_alu_int
//!
int op_or_int() {
u2 vA, v1, v2;
vA = INST_AA(inst);
v1 = *((u1*)rPC + 2);
v2 = *((u1*)rPC + 3);
int retval = common_alu_int(or_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode XOR_INT by calling common_alu_int
//!
int op_xor_int() {
u2 vA, v1, v2;
vA = INST_AA(inst);
v1 = *((u1*)rPC + 2);
v2 = *((u1*)rPC + 3);
int retval = common_alu_int(xor_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode SHL_INT by calling common_shift_int
//!
int op_shl_int() {
u2 vA, v1, v2;
vA = INST_AA(inst);
v1 = *((u1*)rPC + 2);
v2 = *((u1*)rPC + 3);
int retval = common_shift_int(shl_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode SHR_INT by calling common_shift_int
//!
int op_shr_int() {
u2 vA, v1, v2;
vA = INST_AA(inst);
v1 = *((u1*)rPC + 2);
v2 = *((u1*)rPC + 3);
int retval = common_shift_int(sar_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode USHR_INT by calling common_shift_int
//!
int op_ushr_int() {
u2 vA, v1, v2;
vA = INST_AA(inst);
v1 = *((u1*)rPC + 2);
v2 = *((u1*)rPC + 3);
int retval = common_shift_int(shr_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode ADD_INT_2ADDR by calling common_alu_int
//!
int op_add_int_2addr() {
u2 vA, v1, v2;
vA = INST_A(inst);
v1 = vA;
v2 = INST_B(inst);
int retval = common_alu_int(add_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode SUB_INT_2ADDR by calling common_alu_int
//!
int op_sub_int_2addr() {
u2 vA, v1, v2;
vA = INST_A(inst);
v1 = vA;
v2 = INST_B(inst);
int retval = common_alu_int(sub_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode MUL_INT_2ADDR by calling common_alu_int
//!
int op_mul_int_2addr() {
u2 vA, v1, v2;
vA = INST_A(inst);
v1 = vA;
v2 = INST_B(inst);
int retval = common_alu_int(imul_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode AND_INT_2ADDR by calling common_alu_int
//!
int op_and_int_2addr() {
u2 vA, v1, v2;
vA = INST_A(inst);
v1 = vA;
v2 = INST_B(inst);
int retval = common_alu_int(and_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode OR_INT_2ADDR by calling common_alu_int
//!
int op_or_int_2addr() {
u2 vA, v1, v2;
vA = INST_A(inst);
v1 = vA;
v2 = INST_B(inst);
int retval = common_alu_int(or_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode XOR_INT_2ADDR by calling common_alu_int
//!
int op_xor_int_2addr() {
u2 vA, v1, v2;
vA = INST_A(inst);
v1 = vA;
v2 = INST_B(inst);
int retval = common_alu_int(xor_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode SHL_INT_2ADDR by calling common_shift_int
//!
int op_shl_int_2addr() {
u2 vA, v1, v2;
vA = INST_A(inst);
v1 = vA;
v2 = INST_B(inst);
int retval = common_shift_int(shl_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode SHR_INT_2ADDR by calling common_shift_int
//!
int op_shr_int_2addr() {
u2 vA, v1, v2;
vA = INST_A(inst);
v1 = vA;
v2 = INST_B(inst);
int retval = common_shift_int(sar_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode USHR_INT_2ADDR by calling common_shift_int
//!
int op_ushr_int_2addr() {
u2 vA, v1, v2;
vA = INST_A(inst);
v1 = vA;
v2 = INST_B(inst);
int retval = common_shift_int(shr_opc, vA, v1, v2);
rPC += 1;
return retval;
}
#define P_GPR_1 PhysicalReg_EBX
//!common code to handle integer DIV & REM, it used GPR
//!The special case: when op0 == minint && op1 == -1, return 0 for isRem, return 0x80000000 for isDiv
//!There are two merge points in the control flow for this bytecode
//!make sure the reg. alloc. state is the same at merge points by calling transferToState
int common_div_rem_int(bool isRem, u2 vA, u2 v1, u2 v2) {
get_virtual_reg(v1, OpndSize_32, PhysicalReg_EAX, true);
get_virtual_reg(v2, OpndSize_32, 2, false);
compare_imm_reg(OpndSize_32, 0, 2, false);
handlePotentialException(
Condition_E, Condition_NE,
1, "common_errDivideByZero");
/////////////////// handle special cases
//conditional move 0 to $edx for rem for the two special cases
//conditional move 0x80000000 to $eax for div
//handle -1 special case divide error
compare_imm_reg(OpndSize_32, -1, 2, false);
conditional_jump(Condition_NE, ".common_div_rem_int_normal", true);
//handle min int special case divide error
rememberState(1);
compare_imm_reg(OpndSize_32, 0x80000000, PhysicalReg_EAX, true);
transferToState(1);
conditional_jump(Condition_E, ".common_div_rem_int_special", true);
insertLabel(".common_div_rem_int_normal", true); //merge point
convert_integer(OpndSize_32, OpndSize_64); //cdq
//idiv: dividend in edx:eax; quotient in eax; remainder in edx
alu_unary_reg(OpndSize_32, idiv_opc, 2, false);
if(isRem)
set_virtual_reg(vA, OpndSize_32, PhysicalReg_EDX, true);
else //divide: quotient in %eax
set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
rememberState(2);
unconditional_jump(".common_div_rem_int_okay", true);
insertLabel(".common_div_rem_int_special", true);
goToState(1);
if(isRem)
set_VR_to_imm(vA, OpndSize_32, 0);
else
set_VR_to_imm(vA, OpndSize_32, 0x80000000);
transferToState(2);
insertLabel(".common_div_rem_int_okay", true); //merge point 2
return 0;
}
#undef P_GPR_1
//! lower bytecode DIV_INT by calling common_div_rem_int
//!
int op_div_int() {
u2 vA, v1, v2;
vA = INST_AA(inst);
v1 = *((u1*)rPC + 2);
v2 = *((u1*)rPC + 3);
int retval = common_div_rem_int(false, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode REM_INT by calling common_div_rem_int
//!
int op_rem_int() {
u2 vA, v1, v2;
vA = INST_AA(inst);
v1 = *((u1*)rPC + 2);
v2 = *((u1*)rPC + 3);
int retval = common_div_rem_int(true, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode DIV_INT_2ADDR by calling common_div_rem_int
//!
int op_div_int_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_div_rem_int(false, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode REM_INT_2ADDR by calling common_div_rem_int
//!
int op_rem_int_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_div_rem_int(true, vA, v1, v2);
rPC += 1;
return retval;
}
#define P_GPR_1 PhysicalReg_EBX
//! common code to handle integer ALU ops with literal
//! It uses GPR
int common_alu_int_lit(ALU_Opcode opc, u2 vA, u2 vB, s2 imm) { //except div and rem
get_virtual_reg(vB, OpndSize_32, 1, false);
alu_binary_imm_reg(OpndSize_32, opc, imm, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
return 0;
}
//! calls common_alu_int_lit
int common_shift_int_lit(ALU_Opcode opc, u2 vA, u2 vB, s2 imm) {
return common_alu_int_lit(opc, vA, vB, imm);
}
#undef p_GPR_1
//! lower bytecode ADD_INT_LIT16 by calling common_alu_int_lit
//!
int op_add_int_lit16() {
u2 vA = INST_A(inst);
u2 vB = INST_B(inst);
s4 tmp = (s2)FETCH(1);
int retval = common_alu_int_lit(add_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
int alu_rsub_int(ALU_Opcode opc, u2 vA, s2 imm, u2 vB) {
move_imm_to_reg(OpndSize_32, imm, 2, false);
get_virtual_reg(vB, OpndSize_32, 1, false);
alu_binary_reg_reg(OpndSize_32, opc, 1, false, 2, false);
set_virtual_reg(vA, OpndSize_32, 2, false);
return 0;
}
//! lower bytecode RSUB_INT by calling common_alu_int_lit
//!
int op_rsub_int() {
u2 vA = INST_A(inst);
u2 vB = INST_B(inst);
s4 tmp = (s2)FETCH(1);
int retval = alu_rsub_int(sub_opc, vA, tmp, vB);
rPC += 2;
return retval;
}
//! lower bytecode MUL_INT_LIT16 by calling common_alu_int_lit
//!
int op_mul_int_lit16() {
u2 vA = INST_A(inst);
u2 vB = INST_B(inst);
s4 tmp = (s2)FETCH(1);
int retval = common_alu_int_lit(imul_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode AND_INT_LIT16 by calling common_alu_int_lit
//!
int op_and_int_lit16() {
u2 vA = INST_A(inst);
u2 vB = INST_B(inst);
s4 tmp = (s2)FETCH(1);
int retval = common_alu_int_lit(and_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode OR_INT_LIT16 by calling common_alu_int_lit
//!
int op_or_int_lit16() {
u2 vA = INST_A(inst);
u2 vB = INST_B(inst);
s4 tmp = (s2)FETCH(1);
int retval = common_alu_int_lit(or_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode XOR_INT_LIT16 by calling common_alu_int_lit
//!
int op_xor_int_lit16() {
u2 vA = INST_A(inst);
u2 vB = INST_B(inst);
s4 tmp = (s2)FETCH(1);
int retval = common_alu_int_lit(xor_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode SHL_INT_LIT16 by calling common_shift_int_lit
//!
int op_shl_int_lit16() {
u2 vA = INST_A(inst);
u2 vB = INST_B(inst);
s4 tmp = (s2)FETCH(1);
int retval = common_shift_int_lit(shl_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode SHR_INT_LIT16 by calling common_shift_int_lit
//!
int op_shr_int_lit16() {
u2 vA = INST_A(inst);
u2 vB = INST_B(inst);
s4 tmp = (s2)FETCH(1);
int retval = common_shift_int_lit(sar_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode USHR_INT_LIT16 by calling common_shift_int_lit
//!
int op_ushr_int_lit16() {
u2 vA = INST_A(inst);
u2 vB = INST_B(inst);
s4 tmp = (s2)FETCH(1);
int retval = common_shift_int_lit(shr_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode ADD_INT_LIT8 by calling common_alu_int_lit
//!
int op_add_int_lit8() {
u2 vA = INST_AA(inst);
u2 vB = (u2)FETCH(1) & 0xff;
s2 tmp = (s2)FETCH(1) >> 8;
int retval = common_alu_int_lit(add_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode RSUB_INT_LIT8 by calling common_alu_int_lit
//!
int op_rsub_int_lit8() {
u2 vA = INST_AA(inst);
u2 vB = (u2)FETCH(1) & 0xff;
s2 tmp = (s2)FETCH(1) >> 8;
int retval = alu_rsub_int(sub_opc, vA, tmp, vB);
rPC += 2;
return retval;
}
//! lower bytecode MUL_INT_LIT8 by calling common_alu_int_lit
//!
int op_mul_int_lit8() {
u2 vA = INST_AA(inst);
u2 vB = (u2)FETCH(1) & 0xff;
s2 tmp = (s2)FETCH(1) >> 8;
int retval = common_alu_int_lit(imul_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode AND_INT_LIT8 by calling common_alu_int_lit
//!
int op_and_int_lit8() {
u2 vA = INST_AA(inst);
u2 vB = (u2)FETCH(1) & 0xff;
s2 tmp = (s2)FETCH(1) >> 8;
int retval = common_alu_int_lit(and_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode OR_INT_LIT8 by calling common_alu_int_lit
//!
int op_or_int_lit8() {
u2 vA = INST_AA(inst);
u2 vB = (u2)FETCH(1) & 0xff;
s2 tmp = (s2)FETCH(1) >> 8;
int retval = common_alu_int_lit(or_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode XOR_INT_LIT8 by calling common_alu_int_lit
//!
int op_xor_int_lit8() {
u2 vA = INST_AA(inst);
u2 vB = (u2)FETCH(1) & 0xff;
s2 tmp = (s2)FETCH(1) >> 8;
int retval = common_alu_int_lit(xor_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode SHL_INT_LIT8 by calling common_shift_int_lit
//!
int op_shl_int_lit8() {
u2 vA = INST_AA(inst);
u2 vB = (u2)FETCH(1) & 0xff;
s2 tmp = (s2)FETCH(1) >> 8;
int retval = common_shift_int_lit(shl_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode SHR_INT_LIT8 by calling common_shift_int_lit
//!
int op_shr_int_lit8() {
u2 vA = INST_AA(inst);
u2 vB = (u2)FETCH(1) & 0xff;
s2 tmp = (s2)FETCH(1) >> 8;
int retval = common_shift_int_lit(sar_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode USHR_INT_LIT8 by calling common_shift_int_lit
//!
int op_ushr_int_lit8() {
u2 vA = INST_AA(inst);
u2 vB = (u2)FETCH(1) & 0xff;
s2 tmp = (s2)FETCH(1) >> 8;
int retval = common_shift_int_lit(shr_opc, vA, vB, tmp);
rPC += 2;
return retval;
}
int isPowerOfTwo(int imm) {
int i;
for(i = 1; i < 17; i++) {
if(imm == (1 << i)) return i;
}
return -1;
}
#define P_GPR_1 PhysicalReg_EBX
int div_lit_strength_reduction(u2 vA, u2 vB, s2 imm) {
if(gDvm.executionMode == kExecutionModeNcgO1) {
//strength reduction for div by 2,4,8,...
int power = isPowerOfTwo(imm);
if(power < 1) return 0;
//tmp2 is not updated, so it can share with vB
get_virtual_reg(vB, OpndSize_32, 2, false);
//if imm is 2, power will be 1
if(power == 1) {
/* mov tmp1, tmp2
shrl $31, tmp1
addl tmp2, tmp1
sarl $1, tmp1 */
move_reg_to_reg(OpndSize_32, 2, false, 1, false);
alu_binary_imm_reg(OpndSize_32, shr_opc, 31, 1, false);
alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false);
alu_binary_imm_reg(OpndSize_32, sar_opc, 1, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
return 1;
}
//power > 1
/* mov tmp1, tmp2
sarl $power-1, tmp1
shrl 32-$power, tmp1
addl tmp2, tmp1
sarl $power, tmp1 */
move_reg_to_reg(OpndSize_32, 2, false, 1, false);
alu_binary_imm_reg(OpndSize_32, sar_opc, power-1, 1, false);
alu_binary_imm_reg(OpndSize_32, shr_opc, 32-power, 1, false);
alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false);
alu_binary_imm_reg(OpndSize_32, sar_opc, power, 1, false);
set_virtual_reg(vA, OpndSize_32, 1, false);
return 1;
}
return 0;
}
////////// throws exception!!!
//! common code to handle integer DIV & REM with literal
//! It uses GPR
int common_div_rem_int_lit(bool isRem, u2 vA, u2 vB, s2 imm) {
if(!isRem) {
int retCode = div_lit_strength_reduction(vA, vB, imm);
if(retCode > 0) return 0;
}
if(imm == 0) {
export_pc(); //use %edx
#ifdef DEBUG_EXCEPTION
LOGI("EXTRA code to handle exception");
#endif
constVREndOfBB();
beforeCall("exception"); //dump GG, GL VRs
unconditional_jump_global_API(
"common_errDivideByZero", false);
return 0;
}
get_virtual_reg(vB, OpndSize_32, PhysicalReg_EAX, true);
//check against -1 for DIV_INT??
if(imm == -1) {
compare_imm_reg(OpndSize_32, 0x80000000, PhysicalReg_EAX, true);
conditional_jump(Condition_E, ".div_rem_int_lit_special", true);
rememberState(1);
}
move_imm_to_reg(OpndSize_32, imm, 2, false);
convert_integer(OpndSize_32, OpndSize_64); //cdq
//idiv: dividend in edx:eax; quotient in eax; remainder in edx
alu_unary_reg(OpndSize_32, idiv_opc, 2, false);
if(isRem)
set_virtual_reg(vA, OpndSize_32, PhysicalReg_EDX, true);
else
set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
if(imm == -1) {
unconditional_jump(".div_rem_int_lit_okay", true);
rememberState(2);
insertLabel(".div_rem_int_lit_special", true);
goToState(1);
if(isRem)
set_VR_to_imm(vA, OpndSize_32, 0);
else
set_VR_to_imm(vA, OpndSize_32, 0x80000000);
transferToState(2);
}
insertLabel(".div_rem_int_lit_okay", true); //merge point 2
return 0;
}
#undef P_GPR_1
//! lower bytecode DIV_INT_LIT16 by calling common_div_rem_int_lit
//!
int op_div_int_lit16() {
u2 vA = INST_A(inst);
u2 vB = INST_B(inst);
s4 tmp = (s2)FETCH(1);
int retval = common_div_rem_int_lit(false, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode REM_INT_LIT16 by calling common_div_rem_int_lit
//!
int op_rem_int_lit16() {
u2 vA = INST_A(inst);
u2 vB = INST_B(inst);
s4 tmp = (s2)FETCH(1);
int retval = common_div_rem_int_lit(true, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode DIV_INT_LIT8 by calling common_div_rem_int_lit
//!
int op_div_int_lit8() {
u2 vA = INST_AA(inst);
u2 vB = (u2)FETCH(1) & 0xff;
s2 tmp = (s2)FETCH(1) >> 8;
int retval = common_div_rem_int_lit(false, vA, vB, tmp);
rPC += 2;
return retval;
}
//! lower bytecode REM_INT_LIT8 by calling common_div_rem_int_lit
//!
int op_rem_int_lit8() {
u2 vA = INST_AA(inst);
u2 vB = (u2)FETCH(1) & 0xff;
s2 tmp = (s2)FETCH(1) >> 8;
int retval = common_div_rem_int_lit(true, vA, vB, tmp);
rPC += 2;
return retval;
}
//! common code to hanle long ALU ops
//! It uses XMM
int common_alu_long(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) { //except div and rem
get_virtual_reg(v1, OpndSize_64, 1, false);
get_virtual_reg(v2, OpndSize_64, 2, false);
alu_binary_reg_reg(OpndSize_64, opc, 2, false, 1, false);
set_virtual_reg(vA, OpndSize_64, 1, false);
return 0;
}
//! lower bytecode ADD_LONG by calling common_alu_long
//!
int op_add_long() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_long(add_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode SUB_LONG by calling common_alu_long
//!
int op_sub_long() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_long(sub_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode AND_LONG by calling common_alu_long
//!
int op_and_long() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_long(and_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode OR_LONG by calling common_alu_long
//!
int op_or_long() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_long(or_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode XOR_LONG by calling common_alu_long
//!
int op_xor_long() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_long(xor_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode ADD_LONG_2ADDR by calling common_alu_long
//!
int op_add_long_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_long(add_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode SUB_LONG_2ADDR by calling common_alu_long
//!
int op_sub_long_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_long(sub_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode AND_LONG_2ADDR by calling common_alu_long
//!
int op_and_long_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_long(and_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode OR_LONG_2ADDR by calling common_alu_long
//!
int op_or_long_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_long(or_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode XOR_LONG_2ADDR by calling common_alu_long
//!
int op_xor_long_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_long(xor_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//signed vs unsigned imul and mul?
#define P_GPR_1 PhysicalReg_EBX
#define P_GPR_2 PhysicalReg_ECX
#define P_GPR_3 PhysicalReg_ESI
//! common code to handle multiplication of long
//! It uses GPR
int common_mul_long(u2 vA, u2 v1, u2 v2) {
get_virtual_reg(v2, OpndSize_32, 1, false);
move_reg_to_reg(OpndSize_32, 1, false, PhysicalReg_EAX, true);
//imul: 2L * 1H update temporary 1
alu_binary_VR_reg(OpndSize_32, imul_opc, (v1+1), 1, false);
get_virtual_reg(v1, OpndSize_32, 3, false);
move_reg_to_reg(OpndSize_32, 3, false, 2, false);
//imul: 1L * 2H
alu_binary_VR_reg(OpndSize_32, imul_opc, (v2+1), 2, false);
alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false);
alu_unary_reg(OpndSize_32, mul_opc, 3, false);
alu_binary_reg_reg(OpndSize_32, add_opc, PhysicalReg_EDX, true, 1, false);
set_virtual_reg(vA+1, OpndSize_32, 1, false);
set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
return 0;
}
#undef P_GPR_1
#undef P_GPR_2
#undef P_GPR_3
//! lower bytecode MUL_LONG by calling common_mul_long
//!
int op_mul_long() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_mul_long(vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode MUL_LONG_2ADDR by calling common_mul_long
//!
int op_mul_long_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_mul_long(vA, v1, v2);
rPC += 1;
return retval;
}
#define P_GPR_1 PhysicalReg_EBX
#define P_GPR_2 PhysicalReg_ECX
//! common code to handle DIV & REM of long
//! It uses GPR & XMM; and calls call_moddi3 & call_divdi3
int common_div_rem_long(bool isRem, u2 vA, u2 v1, u2 v2) {
get_virtual_reg(v2, OpndSize_32, 1, false);
get_virtual_reg(v2+1, OpndSize_32, 2, false);
//save to native stack before changing register P_GPR_1
load_effective_addr(-16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
move_reg_to_mem(OpndSize_32, 1, false, 8, PhysicalReg_ESP, true);
alu_binary_reg_reg(OpndSize_32, or_opc, 2, false, 1, false);
handlePotentialException(
Condition_E, Condition_NE,
1, "common_errDivideByZero");
move_reg_to_mem(OpndSize_32, 2, false, 12, PhysicalReg_ESP, true);
get_virtual_reg(v1, OpndSize_64, 1, false);
move_reg_to_mem(OpndSize_64, 1, false, 0, PhysicalReg_ESP, true);
scratchRegs[0] = PhysicalReg_SCRATCH_1;
nextVersionOfHardReg(PhysicalReg_EDX, 2); //next version has 2 refs
if(isRem)
call_moddi3();
else
call_divdi3();
load_effective_addr(16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
set_virtual_reg(vA+1, OpndSize_32,PhysicalReg_EDX, true);
set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
return 0;
}
#undef P_GPR_1
#undef P_GPR_2
//! lower bytecode DIV_LONG by calling common_div_rem_long
//!
int op_div_long() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_div_rem_long(false, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode REM_LONG by calling common_div_rem_long
//!
int op_rem_long() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_div_rem_long(true, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode DIV_LONG_2ADDR by calling common_div_rem_long
//!
int op_div_long_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_div_rem_long(false, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode REM_LONG_2ADDR by calling common_div_rem_long
//!
int op_rem_long_2addr() { //call __moddi3 instead of __divdi3
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_div_rem_long(true, vA, v1, v2);
rPC += 1;
return retval;
}
//! common code to handle SHL long
//! It uses XMM
int common_shl_long(u2 vA, u2 v1, u2 v2) {
get_VR_ss(v2, 2, false);
load_global_data_API("shiftMask", OpndSize_64, 3, false);
get_virtual_reg(v1, OpndSize_64, 1, false);
alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false);
alu_binary_reg_reg(OpndSize_64, sll_opc, 2, false, 1, false);
set_virtual_reg(vA, OpndSize_64, 1, false);
return 0;
}
//! common code to handle SHR long
//! It uses XMM
int common_shr_long(u2 vA, u2 v1, u2 v2) {
get_VR_ss(v2, 2, false);
load_global_data_API("shiftMask", OpndSize_64, 3, false);
get_virtual_reg(v1, OpndSize_64, 1, false);
alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false);
alu_binary_reg_reg(OpndSize_64, srl_opc, 2, false, 1, false);
compare_imm_VR(OpndSize_32, 0, (v1+1));
conditional_jump(Condition_GE, ".common_shr_long_special", true);
rememberState(1);
load_global_data_API("value64", OpndSize_64, 4, false);
alu_binary_reg_reg(OpndSize_64, sub_opc, 2, false, 4, false);
load_global_data_API("64bits", OpndSize_64, 5, false);
alu_binary_reg_reg(OpndSize_64, sll_opc, 4, false, 5, false);
alu_binary_reg_reg(OpndSize_64, or_opc, 5, false, 1, false);
rememberState(2);
//check whether the target is next instruction TODO
unconditional_jump(".common_shr_long_done", true);
insertLabel(".common_shr_long_special", true);
goToState(1);
transferToState(2);
insertLabel(".common_shr_long_done", true);
set_virtual_reg(vA, OpndSize_64, 1, false);
return 0;
}
//! common code to handle USHR long
//! It uses XMM
int common_ushr_long(u2 vA, u2 v1, u2 v2) {
get_VR_sd(v1, 1, false);
get_VR_ss(v2, 2, false);
load_sd_global_data_API("shiftMask", 3, false);
alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false);
alu_binary_reg_reg(OpndSize_64, srl_opc, 2, false, 1, false);
set_VR_sd(vA, 1, false);
return 0;
}
//! lower bytecode SHL_LONG by calling common_shl_long
//!
int op_shl_long() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_shl_long(vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode SHL_LONG_2ADDR by calling common_shl_long
//!
int op_shl_long_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_shl_long(vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode SHR_LONG by calling common_shr_long
//!
int op_shr_long() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_shr_long(vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode SHR_LONG_2ADDR by calling common_shr_long
//!
int op_shr_long_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_shr_long(vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode USHR_LONG by calling common_ushr_long
//!
int op_ushr_long() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_ushr_long(vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode USHR_LONG_2ADDR by calling common_ushr_long
//!
int op_ushr_long_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_ushr_long(vA, v1, v2);
rPC += 1;
return retval;
}
#define USE_MEM_OPERAND
///////////////////////////////////////////
//! common code to handle ALU of floats
//! It uses XMM
int common_alu_float(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) {//add, sub, mul
get_VR_ss(v1, 1, false);
#ifdef USE_MEM_OPERAND
alu_sd_binary_VR_reg(opc, v2, 1, false, false/*isSD*/);
#else
get_VR_ss(v2, 2, false);
alu_ss_binary_reg_reg(opc, 2, false, 1, false);
#endif
set_VR_ss(vA, 1, false);
return 0;
}
//! lower bytecode ADD_FLOAT by calling common_alu_float
//!
int op_add_float() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_float(add_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode SUB_FLOAT by calling common_alu_float
//!
int op_sub_float() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_float(sub_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode MUL_FLOAT by calling common_alu_float
//!
int op_mul_float() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_float(mul_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode ADD_FLOAT_2ADDR by calling common_alu_float
//!
int op_add_float_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_float(add_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode SUB_FLOAT_2ADDR by calling common_alu_float
//!
int op_sub_float_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_float(sub_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode MUL_FLOAT_2ADDR by calling common_alu_float
//!
int op_mul_float_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_float(mul_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! common code to handle DIV of float
//! It uses FP stack
int common_div_float(u2 vA, u2 v1, u2 v2) {
load_fp_stack_VR(OpndSize_32, v1); //flds
fpu_VR(div_opc, OpndSize_32, v2);
store_fp_stack_VR(true, OpndSize_32, vA); //fstps
return 0;
}
//! lower bytecode DIV_FLOAT by calling common_div_float
//!
int op_div_float() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_float(div_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode DIV_FLOAT_2ADDR by calling common_div_float
//!
int op_div_float_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_float(div_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! common code to handle DIV of double
//! It uses XMM
int common_alu_double(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) {//add, sub, mul
get_VR_sd(v1, 1, false);
#ifdef USE_MEM_OPERAND
alu_sd_binary_VR_reg(opc, v2, 1, false, true /*isSD*/);
#else
get_VR_sd(v2, 2, false);
alu_sd_binary_reg_reg(opc, 2, false, 1, false);
#endif
set_VR_sd(vA, 1, false);
return 0;
}
//! lower bytecode ADD_DOUBLE by calling common_alu_double
//!
int op_add_double() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_double(add_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode SUB_DOUBLE by calling common_alu_double
//!
int op_sub_double() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_double(sub_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode MUL_DOUBLE by calling common_alu_double
//!
int op_mul_double() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_double(mul_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode ADD_DOUBLE_2ADDR by calling common_alu_double
//!
int op_add_double_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_double(add_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode SUB_DOUBLE_2ADDR by calling common_alu_double
//!
int op_sub_double_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_double(sub_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode MUL_DOUBLE_2ADDR by calling common_alu_double
//!
int op_mul_double_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_double(mul_opc, vA, v1, v2);
rPC += 1;
return retval;
}
//! common code to handle DIV of double
//! It uses FP stack
int common_div_double(u2 vA, u2 v1, u2 v2) {
load_fp_stack_VR(OpndSize_64, v1); //fldl
fpu_VR(div_opc, OpndSize_64, v2); //fdivl
store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
return 0;
}
//! lower bytecode DIV_DOUBLE by calling common_div_double
//!
int op_div_double() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_alu_double(div_opc, vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode DIV_DOUBLE_2ADDR by calling common_div_double
//!
int op_div_double_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_alu_double(div_opc, vA, v1, v2);
rPC += 1;
return retval;
}
#define P_GPR_1 PhysicalReg_EBX
#define P_GPR_2 PhysicalReg_ECX
//! common code to handle REM of float
//! It uses GPR & calls call_fmodf
int common_rem_float(u2 vA, u2 v1, u2 v2) {
get_virtual_reg(v1, OpndSize_32, 1, false);
get_virtual_reg(v2, OpndSize_32, 2, false);
load_effective_addr(-8, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
move_reg_to_mem(OpndSize_32, 1, false, 0, PhysicalReg_ESP, true);
move_reg_to_mem(OpndSize_32, 2, false, 4, PhysicalReg_ESP, true);
scratchRegs[0] = PhysicalReg_SCRATCH_1;
call_fmodf(); //(float x, float y) return float
load_effective_addr(8, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
store_fp_stack_VR(true, OpndSize_32, vA); //fstps
return 0;
}
#undef P_GPR_1
#undef P_GPR_2
//! lower bytecode REM_FLOAT by calling common_rem_float
//!
int op_rem_float() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_rem_float(vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode REM_FLOAT_2ADDR by calling common_rem_float
//!
int op_rem_float_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_rem_float(vA, v1, v2);
rPC += 1;
return retval;
}
//! common code to handle REM of double
//! It uses XMM & calls call_fmod
int common_rem_double(u2 vA, u2 v1, u2 v2) {
get_virtual_reg(v1, OpndSize_64, 1, false);
get_virtual_reg(v2, OpndSize_64, 2, false);
load_effective_addr(-16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
move_reg_to_mem(OpndSize_64, 1, false, 0, PhysicalReg_ESP, true);
move_reg_to_mem(OpndSize_64, 2, false, 8, PhysicalReg_ESP, true);
scratchRegs[0] = PhysicalReg_SCRATCH_1;
call_fmod(); //(long double x, long double y) return double
load_effective_addr(16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
return 0;
}
//! lower bytecode REM_DOUBLE by calling common_rem_double
//!
int op_rem_double() {
u2 vA = INST_AA(inst);
u2 v1 = *((u1*)rPC + 2);
u2 v2 = *((u1*)rPC + 3);
int retval = common_rem_double(vA, v1, v2);
rPC += 2;
return retval;
}
//! lower bytecode REM_DOUBLE_2ADDR by calling common_rem_double
//!
int op_rem_double_2addr() {
u2 vA = INST_A(inst);
u2 v1 = vA;
u2 v2 = INST_B(inst);
int retval = common_rem_double(vA, v1, v2);
rPC += 1;
return retval;
}
//! lower bytecode CMPL_FLOAT
//!
int op_cmpl_float() {
u2 vA = INST_AA(inst);
u4 v1 = FETCH(1) & 0xff;
u4 v2 = FETCH(1) >> 8;
get_VR_ss(v1, 1, false); //xmm
move_imm_to_reg(OpndSize_32, 0, 1, false);
move_imm_to_reg(OpndSize_32, 1, 2, false);
move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
compare_VR_ss_reg(v2, 1, false);
//default: 0xffffffff??
move_imm_to_reg(OpndSize_32,
0xffffffff, 4, false);
//ORDER of cmov matters !!! (Z,P,A)
//finalNaN: unordered 0xffffffff
conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
1, false, 4, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_P,
3, false, 4, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_A,
2, false, 4, false);
set_virtual_reg(vA, OpndSize_32, 4, false);
rPC += 2;
return 0;
}
//! lower bytecode CMPG_FLOAT
//!
int op_cmpg_float() {
u2 vA = INST_AA(inst);
u4 v1 = FETCH(1) & 0xff;
u4 v2 = FETCH(1) >> 8;
get_VR_ss(v1, 1, false);
compare_VR_ss_reg(v2, 1, false);
move_imm_to_reg(OpndSize_32, 0, 1, false);
move_imm_to_reg(OpndSize_32, 1, 2, false);
//default: 0xffffffff??
move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
1, false, 3, false);
//finalNaN: unordered
conditional_move_reg_to_reg(OpndSize_32, Condition_P,
2, false, 3, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_A,
2, false, 3, false);
set_virtual_reg(vA, OpndSize_32, 3, false);
rPC += 2;
return 0;
}
//! lower bytecode CMPL_DOUBLE
//!
int op_cmpl_double() {
u2 vA = INST_AA(inst);
u4 v1 = FETCH(1) & 0xff;
u4 v2 = FETCH(1) >> 8;
get_VR_sd(v1, 1, false);
compare_VR_sd_reg(v2, 1, false);
move_imm_to_reg(OpndSize_32, 0, 1, false);
move_imm_to_reg(OpndSize_32, 1, 2, false);
move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
//default: 0xffffffff??
move_imm_to_reg(OpndSize_32, 0xffffffff, 4, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
1, false, 4, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_P,
3, false, 4, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_A,
2, false, 4, false);
set_virtual_reg(vA, OpndSize_32, 4, false);
rPC += 2;
return 0;
}
//! lower bytecode CMPG_DOUBLE
//!
int op_cmpg_double() {
u2 vA = INST_AA(inst);
u4 v1 = FETCH(1) & 0xff;
u4 v2 = FETCH(1) >> 8;
get_VR_sd(v1, 1, false);
compare_VR_sd_reg(v2, 1, false);
move_imm_to_reg(OpndSize_32, 0, 1, false);
move_imm_to_reg(OpndSize_32, 1, 2, false);
//default: 0xffffffff??
move_imm_to_reg(OpndSize_32,
0xffffffff, 3, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
1, false, 3, false);
//finalNaN: unordered
conditional_move_reg_to_reg(OpndSize_32, Condition_P,
2, false, 3, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_A,
2, false, 3, false);
set_virtual_reg(vA, OpndSize_32, 3, false);
rPC += 2;
return 0;
}
#define P_GPR_1 PhysicalReg_EBX
#define P_GPR_2 PhysicalReg_ECX
#define P_GPR_3 PhysicalReg_ESI
#define P_SCRATCH_1 PhysicalReg_EDX
#define P_SCRATCH_2 PhysicalReg_EAX
#define OPTION_OLD //for simpler cfg
//! lower bytecode CMP_LONG
//!
int op_cmp_long() {
u2 vA = INST_AA(inst);
u4 v1 = FETCH(1) & 0xff;
u4 v2 = FETCH(1) >> 8;
get_virtual_reg(v1+1, OpndSize_32, 2, false);
#ifdef OPTION_OLD
move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
move_imm_to_reg(OpndSize_32, 1, 4, false);
move_imm_to_reg(OpndSize_32, 0, 5, false);
#endif
compare_VR_reg(OpndSize_32,
v2+1, 2, false);
#ifndef OPTION_OLD
conditional_jump(Condition_L, ".cmp_long_less", true);
conditional_jump(Condition_G, ".cmp_long_greater", true);
#else
conditional_jump(Condition_E, ".cmp_long_equal", true);
rememberState(1);
conditional_move_reg_to_reg(OpndSize_32, Condition_L, //below vs less
3, false, 6, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_G, //above vs greater
4, false, 6, false);
set_virtual_reg(vA, OpndSize_32, 6, false);
rememberState(2);
unconditional_jump(".cmp_long_okay", true);
insertLabel(".cmp_long_equal", true);
goToState(1);
#endif
get_virtual_reg(v1, OpndSize_32, 1, false);
compare_VR_reg(OpndSize_32,
v2, 1, false);
#ifdef OPTION_OLD
conditional_move_reg_to_reg(OpndSize_32, Condition_E,
5, false, 6, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_B, //below vs less
3, false, 6, false);
conditional_move_reg_to_reg(OpndSize_32, Condition_A, //above vs greater
4, false, 6, false);
set_virtual_reg(vA, OpndSize_32, 6, false);
transferToState(2);
#else
conditional_jump(Condition_A, ".cmp_long_greater", true);
conditional_jump(Condition_NE, ".cmp_long_less", true);
set_VR_to_imm(vA, OpndSize_32, 0);
unconditional_jump(".cmp_long_okay", true);
insertLabel(".cmp_long_less", true);
set_VR_to_imm(vA, OpndSize_32, 0xffffffff);
unconditional_jump(".cmp_long_okay", true);
insertLabel(".cmp_long_greater", true);
set_VR_to_imm(vA, OpndSize_32, 1);
#endif
insertLabel(".cmp_long_okay", true);
rPC += 2;
return 0;
}
#undef P_GPR_1
#undef P_GPR_2
#undef P_GPR_3