blob: abc4420f71ed5e37320bf1c9446a0bc9e787d093 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This file contains codegen for the Thumb ISA and is intended to be
* includes by:
*
* Codegen-$(TARGET_ARCH_VARIANT).c
*
*/
/*
* Reserve 6 bytes at the beginning of the trace
* +----------------------------+
* | prof count addr (4 bytes) |
* +----------------------------+
* | chain cell offset (2 bytes)|
* +----------------------------+
*
* ...and then code to increment the execution
*
* For continuous profiling (12 bytes):
*
* mov r0, pc @ move adr of "mov r0,pc" + 4 to r0
* sub r0, #10 @ back up to addr prof count pointer
* ldr r0, [r0] @ get address of counter
* ldr r1, [r0]
* add r1, #1
* str r1, [r0]
*
* For periodic profiling (4 bytes):
* call TEMPLATE_PERIODIC_PROFILING
*
* and return the size (in bytes) of the generated code.
*/
static int genTraceProfileEntry(CompilationUnit *cUnit)
{
intptr_t addr = (intptr_t)dvmJitNextTraceCounter();
assert(__BYTE_ORDER == __LITTLE_ENDIAN);
newLIR1(cUnit, kArm16BitData, addr & 0xffff);
newLIR1(cUnit, kArm16BitData, (addr >> 16) & 0xffff);
cUnit->chainCellOffsetLIR =
(LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
cUnit->headerSize = 6;
if ((gDvmJit.profileMode == kTraceProfilingContinuous) ||
(gDvmJit.profileMode == kTraceProfilingDisabled)) {
/* Thumb instruction used directly here to ensure correct size */
newLIR2(cUnit, kThumbMovRR_H2L, r0, r15pc);
newLIR2(cUnit, kThumbSubRI8, r0, 10);
newLIR3(cUnit, kThumbLdrRRI5, r0, r0, 0);
newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
newLIR2(cUnit, kThumbAddRI8, r1, 1);
newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
return 12;
} else {
int opcode = TEMPLATE_PERIODIC_PROFILING;
newLIR2(cUnit, kThumbBlx1,
(int) gDvmJit.codeCache + templateEntryOffsets[opcode],
(int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
newLIR2(cUnit, kThumbBlx2,
(int) gDvmJit.codeCache + templateEntryOffsets[opcode],
(int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
return 4;
}
}
/*
* Perform a "reg cmp imm" operation and jump to the PCR region if condition
* satisfies.
*/
static void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest,
RegLocation rlSrc)
{
RegLocation rlResult;
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegRegImm(cUnit, kOpAdd, rlResult.lowReg,
rlSrc.lowReg, 0x80000000);
storeValue(cUnit, rlDest, rlResult);
}
static void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest,
RegLocation rlSrc)
{
RegLocation rlResult;
rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegRegImm(cUnit, kOpAdd, rlResult.highReg, rlSrc.highReg,
0x80000000);
genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
storeValueWide(cUnit, rlDest, rlResult);
}
static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest,
RegLocation rlSrc1, RegLocation rlSrc2)
{
RegLocation rlResult;
loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
genDispatchToHandler(cUnit, TEMPLATE_MUL_LONG);
rlResult = dvmCompilerGetReturnWide(cUnit);
storeValueWide(cUnit, rlDest, rlResult);
}
static bool partialOverlap(int sreg1, int sreg2)
{
return abs(sreg1 - sreg2) == 1;
}
static void genLong3Addr(CompilationUnit *cUnit, MIR *mir, OpKind firstOp,
OpKind secondOp, RegLocation rlDest,
RegLocation rlSrc1, RegLocation rlSrc2)
{
RegLocation rlResult;
if (partialOverlap(rlSrc1.sRegLow,rlSrc2.sRegLow) ||
partialOverlap(rlSrc1.sRegLow,rlDest.sRegLow) ||
partialOverlap(rlSrc2.sRegLow,rlDest.sRegLow)) {
// Rare case - not enough registers to properly handle
genInterpSingleStep(cUnit, mir);
} else if (rlDest.sRegLow == rlSrc1.sRegLow) {
// Already 2-operand
rlResult = loadValueWide(cUnit, rlDest, kCoreReg);
rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
opRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc2.lowReg);
opRegReg(cUnit, secondOp, rlResult.highReg, rlSrc2.highReg);
storeValueWide(cUnit, rlDest, rlResult);
} else if (rlDest.sRegLow == rlSrc2.sRegLow) {
// Bad case - must use/clobber Src1 and reassign Dest
rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
rlResult = loadValueWide(cUnit, rlDest, kCoreReg);
opRegReg(cUnit, firstOp, rlSrc1.lowReg, rlResult.lowReg);
opRegReg(cUnit, secondOp, rlSrc1.highReg, rlResult.highReg);
// Old reg assignments are now invalid
dvmCompilerClobber(cUnit, rlResult.lowReg);
dvmCompilerClobber(cUnit, rlResult.highReg);
dvmCompilerClobber(cUnit, rlSrc1.lowReg);
dvmCompilerClobber(cUnit, rlSrc1.highReg);
rlDest.location = kLocDalvikFrame;
assert(rlSrc1.location == kLocPhysReg);
// Reassign registers - rlDest will now get rlSrc1's old regs
storeValueWide(cUnit, rlDest, rlSrc1);
} else {
// Copy Src1 to Dest
rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, false);
loadValueDirectWide(cUnit, rlSrc1, rlResult.lowReg,
rlResult.highReg);
rlResult.location = kLocPhysReg;
opRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc2.lowReg);
opRegReg(cUnit, secondOp, rlResult.highReg, rlSrc2.highReg);
storeValueWide(cUnit, rlDest, rlResult);
}
}
void dvmCompilerInitializeRegAlloc(CompilationUnit *cUnit)
{
int numTemps = sizeof(coreTemps)/sizeof(int);
RegisterPool *pool = (RegisterPool *) dvmCompilerNew(sizeof(*pool), true);
cUnit->regPool = pool;
pool->numCoreTemps = numTemps;
pool->coreTemps = (RegisterInfo *)
dvmCompilerNew(numTemps * sizeof(*pool->coreTemps), true);
pool->numFPTemps = 0;
pool->FPTemps = NULL;
dvmCompilerInitPool(pool->coreTemps, coreTemps, pool->numCoreTemps);
dvmCompilerInitPool(pool->FPTemps, NULL, 0);
pool->nullCheckedRegs =
dvmCompilerAllocBitVector(cUnit->numSSARegs, false);
}
/* Export the Dalvik PC assicated with an instruction to the StackSave area */
static ArmLIR *genExportPC(CompilationUnit *cUnit, MIR *mir)
{
ArmLIR *res;
int rDPC = dvmCompilerAllocTemp(cUnit);
int rAddr = dvmCompilerAllocTemp(cUnit);
int offset = offsetof(StackSaveArea, xtra.currentPc);
res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
newLIR2(cUnit, kThumbMovRR, rAddr, r5FP);
newLIR2(cUnit, kThumbSubRI8, rAddr, sizeof(StackSaveArea) - offset);
storeWordDisp( cUnit, rAddr, 0, rDPC);
return res;
}
static void genMonitor(CompilationUnit *cUnit, MIR *mir)
{
genMonitorPortable(cUnit, mir);
}
static void genCmpLong(CompilationUnit *cUnit, MIR *mir, RegLocation rlDest,
RegLocation rlSrc1, RegLocation rlSrc2)
{
RegLocation rlResult;
loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
genDispatchToHandler(cUnit, TEMPLATE_CMP_LONG);
rlResult = dvmCompilerGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
}
static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
{
int offset = offsetof(Thread, interpSave.retval);
RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
int reg0 = loadValue(cUnit, rlSrc, kCoreReg).lowReg;
int signMask = dvmCompilerAllocTemp(cUnit);
loadConstant(cUnit, signMask, 0x7fffffff);
newLIR2(cUnit, kThumbAndRR, reg0, signMask);
dvmCompilerFreeTemp(cUnit, signMask);
storeWordDisp(cUnit, r6SELF, offset, reg0);
//TUNING: rewrite this to not clobber
dvmCompilerClobber(cUnit, reg0);
return false;
}
static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
{
int offset = offsetof(Thread, interpSave.retval);
RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
RegLocation regSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
int reglo = regSrc.lowReg;
int reghi = regSrc.highReg;
int signMask = dvmCompilerAllocTemp(cUnit);
loadConstant(cUnit, signMask, 0x7fffffff);
storeWordDisp(cUnit, r6SELF, offset, reglo);
newLIR2(cUnit, kThumbAndRR, reghi, signMask);
dvmCompilerFreeTemp(cUnit, signMask);
storeWordDisp(cUnit, r6SELF, offset + 4, reghi);
//TUNING: rewrite this to not clobber
dvmCompilerClobber(cUnit, reghi);
return false;
}
/* No select in thumb, so we need to branch. Thumb2 will do better */
static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin)
{
int offset = offsetof(Thread, interpSave.retval);
RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
int reg0 = loadValue(cUnit, rlSrc1, kCoreReg).lowReg;
int reg1 = loadValue(cUnit, rlSrc2, kCoreReg).lowReg;
newLIR2(cUnit, kThumbCmpRR, reg0, reg1);
ArmLIR *branch1 = newLIR2(cUnit, kThumbBCond, 2,
isMin ? kArmCondLt : kArmCondGt);
newLIR2(cUnit, kThumbMovRR, reg0, reg1);
ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
newLIR3(cUnit, kThumbStrRRI5, reg0, r6SELF, offset >> 2);
branch1->generic.target = (LIR *)target;
//TUNING: rewrite this to not clobber
dvmCompilerClobber(cUnit,reg0);
return false;
}
static void genMultiplyByTwoBitMultiplier(CompilationUnit *cUnit,
RegLocation rlSrc, RegLocation rlResult, int lit,
int firstBit, int secondBit)
{
// We can't implement "add src, src, src, lsl#shift" on Thumb, so we have
// to do a regular multiply.
opRegRegImm(cUnit, kOpMul, rlResult.lowReg, rlSrc.lowReg, lit);
}