blob: 835a4a4935998712eff61e7edf7d0d2b47871818 [file] [log] [blame]
# Copyright 2013 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import its.error
import os
import os.path
import sys
import re
import json
import time
import unittest
import socket
import subprocess
import hashlib
import numpy
class ItsSession(object):
"""Controls a device over adb to run ITS scripts.
The script importing this module (on the host machine) prepares JSON
objects encoding CaptureRequests, specifying sets of parameters to use
when capturing an image using the Camera2 APIs. This class encapsulates
sending the requests to the device, monitoring the device's progress, and
copying the resultant captures back to the host machine when done. TCP
forwarded over adb is the transport mechanism used.
The device must have CtsVerifier.apk installed.
Attributes:
sock: The open socket.
"""
# Open a connection to localhost:<host_port>, forwarded to port 6000 on the
# device. <host_port> is determined at run-time to support multiple
# connected devices.
IPADDR = '127.0.0.1'
REMOTE_PORT = 6000
BUFFER_SIZE = 4096
# LOCK_PORT is used as a mutex lock to protect the list of forwarded ports
# among all processes. The script assumes LOCK_PORT is available and will
# try to use ports between CLIENT_PORT_START and
# CLIENT_PORT_START+MAX_NUM_PORTS-1 on host for ITS sessions.
CLIENT_PORT_START = 6000
MAX_NUM_PORTS = 100
LOCK_PORT = CLIENT_PORT_START + MAX_NUM_PORTS
# Seconds timeout on each socket operation.
SOCK_TIMEOUT = 10.0
SEC_TO_NSEC = 1000*1000*1000.0
PACKAGE = 'com.android.cts.verifier.camera.its'
INTENT_START = 'com.android.cts.verifier.camera.its.START'
ACTION_ITS_RESULT = 'com.android.cts.verifier.camera.its.ACTION_ITS_RESULT'
EXTRA_CAMERA_ID = 'camera.its.extra.CAMERA_ID'
EXTRA_SUCCESS = 'camera.its.extra.SUCCESS'
EXTRA_SUMMARY = 'camera.its.extra.SUMMARY'
adb = "adb -d"
device_id = ""
# Definitions for some of the common output format options for do_capture().
# Each gets images of full resolution for each requested format.
CAP_RAW = {"format":"raw"}
CAP_DNG = {"format":"dng"}
CAP_YUV = {"format":"yuv"}
CAP_JPEG = {"format":"jpeg"}
CAP_RAW_YUV = [{"format":"raw"}, {"format":"yuv"}]
CAP_DNG_YUV = [{"format":"dng"}, {"format":"yuv"}]
CAP_RAW_JPEG = [{"format":"raw"}, {"format":"jpeg"}]
CAP_DNG_JPEG = [{"format":"dng"}, {"format":"jpeg"}]
CAP_YUV_JPEG = [{"format":"yuv"}, {"format":"jpeg"}]
CAP_RAW_YUV_JPEG = [{"format":"raw"}, {"format":"yuv"}, {"format":"jpeg"}]
CAP_DNG_YUV_JPEG = [{"format":"dng"}, {"format":"yuv"}, {"format":"jpeg"}]
# Initialize the socket port for the host to forward requests to the device.
# This method assumes localhost's LOCK_PORT is available and will try to
# use ports between CLIENT_PORT_START and CLIENT_PORT_START+MAX_NUM_PORTS-1
def __init_socket_port(self):
NUM_RETRIES = 100
RETRY_WAIT_TIME_SEC = 0.05
# Bind a socket to use as mutex lock
socket_lock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
for i in range(NUM_RETRIES):
try:
socket_lock.bind((ItsSession.IPADDR, ItsSession.LOCK_PORT))
break
except socket.error:
if i == NUM_RETRIES - 1:
raise its.error.Error(self.device_id,
"acquiring socket lock timed out")
else:
time.sleep(RETRY_WAIT_TIME_SEC)
# Check if a port is already assigned to the device.
command = "adb forward --list"
proc = subprocess.Popen(command.split(), stdout=subprocess.PIPE)
output, error = proc.communicate()
port = None
used_ports = []
for line in output.split(os.linesep):
# each line should be formatted as:
# "<device_id> tcp:<host_port> tcp:<remote_port>"
forward_info = line.split()
if len(forward_info) >= 3 and \
len(forward_info[1]) > 4 and forward_info[1][:4] == "tcp:" and \
len(forward_info[2]) > 4 and forward_info[2][:4] == "tcp:":
local_p = int(forward_info[1][4:])
remote_p = int(forward_info[2][4:])
if forward_info[0] == self.device_id and \
remote_p == ItsSession.REMOTE_PORT:
port = local_p
break;
else:
used_ports.append(local_p)
# Find the first available port if no port is assigned to the device.
if port is None:
for p in range(ItsSession.CLIENT_PORT_START,
ItsSession.CLIENT_PORT_START +
ItsSession.MAX_NUM_PORTS):
if p not in used_ports:
# Try to run "adb forward" with the port
command = "%s forward tcp:%d tcp:%d" % \
(self.adb, p, self.REMOTE_PORT)
proc = subprocess.Popen(command.split(),
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
output, error = proc.communicate()
# Check if there is no error
if error is None or error.find("error") < 0:
port = p
break
if port is None:
raise its.error.Error(self.device_id, " cannot find an available " +
"port")
# Release the socket as mutex unlock
socket_lock.close()
# Connect to the socket
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.sock.connect((self.IPADDR, port))
self.sock.settimeout(self.SOCK_TIMEOUT)
# Reboot the device if needed and wait for the service to be ready for
# connection.
def __wait_for_service(self):
# This also includes the optional reboot handling: if the user
# provides a "reboot" or "reboot=N" arg, then reboot the device,
# waiting for N seconds (default 30) before returning.
for s in sys.argv[1:]:
if s[:6] == "reboot":
duration = 30
if len(s) > 7 and s[6] == "=":
duration = int(s[7:])
print "Rebooting device"
_run("%s reboot" % (self.adb));
_run("%s wait-for-device" % (self.adb))
time.sleep(duration)
print "Reboot complete"
# TODO: Figure out why "--user 0" is needed, and fix the problem.
_run('%s shell am force-stop --user 0 %s' % (self.adb, self.PACKAGE))
_run(('%s shell am startservice --user 0 -t text/plain '
'-a %s') % (self.adb, self.INTENT_START))
# Wait until the socket is ready to accept a connection.
proc = subprocess.Popen(
self.adb.split() + ["logcat"],
stdout=subprocess.PIPE)
logcat = proc.stdout
while True:
line = logcat.readline().strip()
if line.find('ItsService ready') >= 0:
break
proc.kill()
def __init__(self):
# Initialize device id and adb command.
self.device_id = get_device_id()
self.adb = "adb -s " + self.device_id
self.__wait_for_service()
self.__init_socket_port()
self.__close_camera()
self.__open_camera()
def __del__(self):
if hasattr(self, 'sock') and self.sock:
self.__close_camera()
self.sock.close()
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
return False
def __read_response_from_socket(self):
# Read a line (newline-terminated) string serialization of JSON object.
chars = []
while len(chars) == 0 or chars[-1] != '\n':
ch = self.sock.recv(1)
if len(ch) == 0:
# Socket was probably closed; otherwise don't get empty strings
raise its.error.Error('Problem with socket on device side')
chars.append(ch)
line = ''.join(chars)
jobj = json.loads(line)
# Optionally read a binary buffer of a fixed size.
buf = None
if jobj.has_key("bufValueSize"):
n = jobj["bufValueSize"]
buf = bytearray(n)
view = memoryview(buf)
while n > 0:
nbytes = self.sock.recv_into(view, n)
view = view[nbytes:]
n -= nbytes
buf = numpy.frombuffer(buf, dtype=numpy.uint8)
return jobj, buf
def __open_camera(self):
# Get the camera ID to open as an argument.
camera_id = 0
for s in sys.argv[1:]:
if s[:7] == "camera=" and len(s) > 7:
camera_id = int(s[7:])
cmd = {"cmdName":"open", "cameraId":camera_id}
self.sock.send(json.dumps(cmd) + "\n")
data,_ = self.__read_response_from_socket()
if data['tag'] != 'cameraOpened':
raise its.error.Error('Invalid command response')
def __close_camera(self):
cmd = {"cmdName":"close"}
self.sock.send(json.dumps(cmd) + "\n")
data,_ = self.__read_response_from_socket()
if data['tag'] != 'cameraClosed':
raise its.error.Error('Invalid command response')
def do_vibrate(self, pattern):
"""Cause the device to vibrate to a specific pattern.
Args:
pattern: Durations (ms) for which to turn on or off the vibrator.
The first value indicates the number of milliseconds to wait
before turning the vibrator on. The next value indicates the
number of milliseconds for which to keep the vibrator on
before turning it off. Subsequent values alternate between
durations in milliseconds to turn the vibrator off or to turn
the vibrator on.
Returns:
Nothing.
"""
cmd = {}
cmd["cmdName"] = "doVibrate"
cmd["pattern"] = pattern
self.sock.send(json.dumps(cmd) + "\n")
data,_ = self.__read_response_from_socket()
if data['tag'] != 'vibrationStarted':
raise its.error.Error('Invalid command response')
def start_sensor_events(self):
"""Start collecting sensor events on the device.
See get_sensor_events for more info.
Returns:
Nothing.
"""
cmd = {}
cmd["cmdName"] = "startSensorEvents"
self.sock.send(json.dumps(cmd) + "\n")
data,_ = self.__read_response_from_socket()
if data['tag'] != 'sensorEventsStarted':
raise its.error.Error('Invalid command response')
def get_sensor_events(self):
"""Get a trace of all sensor events on the device.
The trace starts when the start_sensor_events function is called. If
the test runs for a long time after this call, then the device's
internal memory can fill up. Calling get_sensor_events gets all events
from the device, and then stops the device from collecting events and
clears the internal buffer; to start again, the start_sensor_events
call must be used again.
Events from the accelerometer, compass, and gyro are returned; each
has a timestamp and x,y,z values.
Note that sensor events are only produced if the device isn't in its
standby mode (i.e.) if the screen is on.
Returns:
A Python dictionary with three keys ("accel", "mag", "gyro") each
of which maps to a list of objects containing "time","x","y","z"
keys.
"""
cmd = {}
cmd["cmdName"] = "getSensorEvents"
self.sock.send(json.dumps(cmd) + "\n")
data,_ = self.__read_response_from_socket()
if data['tag'] != 'sensorEvents':
raise its.error.Error('Invalid command response')
return data['objValue']
def get_camera_ids(self):
"""Get a list of camera device Ids that can be opened.
Returns:
a list of camera ID string
"""
cmd = {}
cmd["cmdName"] = "getCameraIds"
self.sock.send(json.dumps(cmd) + "\n")
data,_ = self.__read_response_from_socket()
if data['tag'] != 'cameraIds':
raise its.error.Error('Invalid command response')
return data['objValue']['cameraIdArray']
def get_camera_properties(self):
"""Get the camera properties object for the device.
Returns:
The Python dictionary object for the CameraProperties object.
"""
cmd = {}
cmd["cmdName"] = "getCameraProperties"
self.sock.send(json.dumps(cmd) + "\n")
data,_ = self.__read_response_from_socket()
if data['tag'] != 'cameraProperties':
raise its.error.Error('Invalid command response')
return data['objValue']['cameraProperties']
def do_3a(self, regions_ae=[[0,0,1,1,1]],
regions_awb=[[0,0,1,1,1]],
regions_af=[[0,0,1,1,1]],
do_ae=True, do_awb=True, do_af=True,
lock_ae=False, lock_awb=False,
get_results=False,
ev_comp=0):
"""Perform a 3A operation on the device.
Triggers some or all of AE, AWB, and AF, and returns once they have
converged. Uses the vendor 3A that is implemented inside the HAL.
Throws an assertion if 3A fails to converge.
Args:
regions_ae: List of weighted AE regions.
regions_awb: List of weighted AWB regions.
regions_af: List of weighted AF regions.
do_ae: Trigger AE and wait for it to converge.
do_awb: Wait for AWB to converge.
do_af: Trigger AF and wait for it to converge.
lock_ae: Request AE lock after convergence, and wait for it.
lock_awb: Request AWB lock after convergence, and wait for it.
get_results: Return the 3A results from this function.
ev_comp: An EV compensation value to use when running AE.
Region format in args:
Arguments are lists of weighted regions; each weighted region is a
list of 5 values, [x,y,w,h, wgt], and each argument is a list of
these 5-value lists. The coordinates are given as normalized
rectangles (x,y,w,h) specifying the region. For example:
[[0.0, 0.0, 1.0, 0.5, 5], [0.0, 0.5, 1.0, 0.5, 10]].
Weights are non-negative integers.
Returns:
Five values are returned if get_results is true::
* AE sensitivity; None if do_ae is False
* AE exposure time; None if do_ae is False
* AWB gains (list); None if do_awb is False
* AWB transform (list); None if do_awb is false
* AF focus position; None if do_af is false
Otherwise, it returns five None values.
"""
print "Running vendor 3A on device"
cmd = {}
cmd["cmdName"] = "do3A"
cmd["regions"] = {"ae": sum(regions_ae, []),
"awb": sum(regions_awb, []),
"af": sum(regions_af, [])}
cmd["triggers"] = {"ae": do_ae, "af": do_af}
if lock_ae:
cmd["aeLock"] = True
if lock_awb:
cmd["awbLock"] = True
if ev_comp != 0:
cmd["evComp"] = ev_comp
self.sock.send(json.dumps(cmd) + "\n")
# Wait for each specified 3A to converge.
ae_sens = None
ae_exp = None
awb_gains = None
awb_transform = None
af_dist = None
converged = False
while True:
data,_ = self.__read_response_from_socket()
vals = data['strValue'].split()
if data['tag'] == 'aeResult':
ae_sens, ae_exp = [int(i) for i in vals]
elif data['tag'] == 'afResult':
af_dist = float(vals[0])
elif data['tag'] == 'awbResult':
awb_gains = [float(f) for f in vals[:4]]
awb_transform = [float(f) for f in vals[4:]]
elif data['tag'] == '3aConverged':
converged = True
elif data['tag'] == '3aDone':
break
else:
raise its.error.Error('Invalid command response')
if converged and not get_results:
return None,None,None,None,None
if (do_ae and ae_sens == None or do_awb and awb_gains == None
or do_af and af_dist == None or not converged):
raise its.error.Error('3A failed to converge')
return ae_sens, ae_exp, awb_gains, awb_transform, af_dist
def do_capture(self, cap_request, out_surfaces=None, reprocess_format=None):
"""Issue capture request(s), and read back the image(s) and metadata.
The main top-level function for capturing one or more images using the
device. Captures a single image if cap_request is a single object, and
captures a burst if it is a list of objects.
The out_surfaces field can specify the width(s), height(s), and
format(s) of the captured image. The formats may be "yuv", "jpeg",
"dng", "raw", "raw10", "raw12", or "rawStats". The default is a YUV420
frame ("yuv") corresponding to a full sensor frame.
Note that one or more surfaces can be specified, allowing a capture to
request images back in multiple formats (e.g.) raw+yuv, raw+jpeg,
yuv+jpeg, raw+yuv+jpeg. If the size is omitted for a surface, the
default is the largest resolution available for the format of that
surface. At most one output surface can be specified for a given format,
and raw+dng, raw10+dng, and raw+raw10 are not supported as combinations.
If reprocess_format is not None, for each request, an intermediate
buffer of the given reprocess_format will be captured from camera and
the intermediate buffer will be reprocessed to the output surfaces. The
following settings will be turned off when capturing the intermediate
buffer and will be applied when reprocessing the intermediate buffer.
1. android.noiseReduction.mode
2. android.edge.mode
3. android.reprocess.effectiveExposureFactor
Supported reprocess format are "yuv" and "private". Supported output
surface formats when reprocessing is enabled are "yuv" and "jpeg".
Example of a single capture request:
{
"android.sensor.exposureTime": 100*1000*1000,
"android.sensor.sensitivity": 100
}
Example of a list of capture requests:
[
{
"android.sensor.exposureTime": 100*1000*1000,
"android.sensor.sensitivity": 100
},
{
"android.sensor.exposureTime": 100*1000*1000,
"android.sensor.sensitivity": 200
}
]
Examples of output surface specifications:
{
"width": 640,
"height": 480,
"format": "yuv"
}
[
{
"format": "jpeg"
},
{
"format": "raw"
}
]
The following variables defined in this class are shortcuts for
specifying one or more formats where each output is the full size for
that format; they can be used as values for the out_surfaces arguments:
CAP_RAW
CAP_DNG
CAP_YUV
CAP_JPEG
CAP_RAW_YUV
CAP_DNG_YUV
CAP_RAW_JPEG
CAP_DNG_JPEG
CAP_YUV_JPEG
CAP_RAW_YUV_JPEG
CAP_DNG_YUV_JPEG
If multiple formats are specified, then this function returns multiple
capture objects, one for each requested format. If multiple formats and
multiple captures (i.e. a burst) are specified, then this function
returns multiple lists of capture objects. In both cases, the order of
the returned objects matches the order of the requested formats in the
out_surfaces parameter. For example:
yuv_cap = do_capture( req1 )
yuv_cap = do_capture( req1, yuv_fmt )
yuv_cap, raw_cap = do_capture( req1, [yuv_fmt,raw_fmt] )
yuv_caps = do_capture( [req1,req2], yuv_fmt )
yuv_caps, raw_caps = do_capture( [req1,req2], [yuv_fmt,raw_fmt] )
The "rawStats" format processes the raw image and returns a new image
of statistics from the raw image. The format takes additional keys,
"gridWidth" and "gridHeight" which are size of grid cells in a 2D grid
of the raw image. For each grid cell, the mean and variance of each raw
channel is computed, and the do_capture call returns two 4-element float
images of dimensions (rawWidth / gridWidth, rawHeight / gridHeight),
concatenated back-to-back, where the first iamge contains the 4-channel
means and the second contains the 4-channel variances.
For the rawStats format, if the gridWidth is not provided then the raw
image width is used as the default, and similarly for gridHeight. With
this, the following is an example of a output description that computes
the mean and variance across each image row:
{
"gridHeight": 1,
"format": "rawStats"
}
Args:
cap_request: The Python dict/list specifying the capture(s), which
will be converted to JSON and sent to the device.
out_surfaces: (Optional) specifications of the output image formats
and sizes to use for each capture.
reprocess_format: (Optional) The reprocessing format. If not None,
reprocessing will be enabled.
Returns:
An object, list of objects, or list of lists of objects, where each
object contains the following fields:
* data: the image data as a numpy array of bytes.
* width: the width of the captured image.
* height: the height of the captured image.
* format: image the format, in [
"yuv","jpeg","raw","raw10","raw12","rawStats","dng"].
* metadata: the capture result object (Python dictionary).
"""
cmd = {}
if reprocess_format != None:
cmd["cmdName"] = "doReprocessCapture"
cmd["reprocessFormat"] = reprocess_format
else:
cmd["cmdName"] = "doCapture"
if not isinstance(cap_request, list):
cmd["captureRequests"] = [cap_request]
else:
cmd["captureRequests"] = cap_request
if out_surfaces is not None:
if not isinstance(out_surfaces, list):
cmd["outputSurfaces"] = [out_surfaces]
else:
cmd["outputSurfaces"] = out_surfaces
formats = [c["format"] if c.has_key("format") else "yuv"
for c in cmd["outputSurfaces"]]
formats = [s if s != "jpg" else "jpeg" for s in formats]
else:
formats = ['yuv']
ncap = len(cmd["captureRequests"])
nsurf = 1 if out_surfaces is None else len(cmd["outputSurfaces"])
if len(formats) > len(set(formats)):
raise its.error.Error('Duplicate format requested')
raw_formats = 0;
raw_formats += 1 if "dng" in formats else 0
raw_formats += 1 if "raw" in formats else 0
raw_formats += 1 if "raw10" in formats else 0
raw_formats += 1 if "raw12" in formats else 0
raw_formats += 1 if "rawStats" in formats else 0
if raw_formats > 1:
raise its.error.Error('Different raw formats not supported')
# Detect long exposure time and set timeout accordingly
longest_exp_time = 0
for req in cmd["captureRequests"]:
if "android.sensor.exposureTime" in req and \
req["android.sensor.exposureTime"] > longest_exp_time:
longest_exp_time = req["android.sensor.exposureTime"]
extended_timeout = longest_exp_time / self.SEC_TO_NSEC + \
self.SOCK_TIMEOUT
self.sock.settimeout(extended_timeout)
print "Capturing %d frame%s with %d format%s [%s]" % (
ncap, "s" if ncap>1 else "", nsurf, "s" if nsurf>1 else "",
",".join(formats))
self.sock.send(json.dumps(cmd) + "\n")
# Wait for ncap*nsurf images and ncap metadata responses.
# Assume that captures come out in the same order as requested in
# the burst, however individual images of different formats can come
# out in any order for that capture.
nbufs = 0
bufs = {"yuv":[], "raw":[], "raw10":[], "raw12":[],
"rawStats":[], "dng":[], "jpeg":[]}
mds = []
widths = None
heights = None
while nbufs < ncap*nsurf or len(mds) < ncap:
jsonObj,buf = self.__read_response_from_socket()
if jsonObj['tag'] in ['jpegImage', 'yuvImage', 'rawImage', \
'raw10Image', 'raw12Image', 'rawStatsImage', 'dngImage'] \
and buf is not None:
fmt = jsonObj['tag'][:-5]
bufs[fmt].append(buf)
nbufs += 1
elif jsonObj['tag'] == 'captureResults':
mds.append(jsonObj['objValue']['captureResult'])
outputs = jsonObj['objValue']['outputs']
widths = [out['width'] for out in outputs]
heights = [out['height'] for out in outputs]
else:
# Just ignore other tags
None
rets = []
for j,fmt in enumerate(formats):
objs = []
for i in range(ncap):
obj = {}
obj["data"] = bufs[fmt][i]
obj["width"] = widths[j]
obj["height"] = heights[j]
obj["format"] = fmt
obj["metadata"] = mds[i]
objs.append(obj)
rets.append(objs if ncap>1 else objs[0])
self.sock.settimeout(self.SOCK_TIMEOUT)
return rets if len(rets)>1 else rets[0]
def get_device_id():
""" Return the ID of the device that the test is running on.
Return the device ID provided in the command line if it's connected. If no
device ID is provided in the command line and there is only one device
connected, return the device ID by parsing the result of "adb devices".
Raise an exception if no device is connected; or the device ID provided in
the command line is not connected; or no device ID is provided in the
command line and there are more than 1 device connected.
Returns:
Device ID string.
"""
device_id = None
for s in sys.argv[1:]:
if s[:7] == "device=" and len(s) > 7:
device_id = str(s[7:])
# Get a list of connected devices
devices = []
command = "adb devices"
proc = subprocess.Popen(command.split(), stdout=subprocess.PIPE)
output, error = proc.communicate()
for line in output.split(os.linesep):
device_info = line.split()
if len(device_info) == 2 and device_info[1] == "device":
devices.append(device_info[0])
if len(devices) == 0:
raise its.error.Error("No device is connected!")
elif device_id is not None and device_id not in devices:
raise its.error.Error(device_id + " is not connected!")
elif device_id is None and len(devices) >= 2:
raise its.error.Error("More than 1 device are connected. " +
"Use device=<device_id> to specify a device to test.")
elif len(devices) == 1:
device_id = devices[0]
return device_id
def report_result(device_id, camera_id, success, summary_path=None):
"""Send a pass/fail result to the device, via an intent.
Args:
device_id: The ID string of the device to report the results to.
camera_id: The ID string of the camera for which to report pass/fail.
success: Boolean, indicating if the result was pass or fail.
summary_path: (Optional) path to ITS summary file on host PC
Returns:
Nothing.
"""
adb = "adb -s " + device_id
device_summary_path = "/sdcard/camera_" + camera_id + "_its_summary.txt"
if summary_path is not None:
_run("%s push %s %s" % (
adb, summary_path, device_summary_path))
_run("%s shell am broadcast -a %s --es %s %s --es %s %s --es %s %s" % (
adb, ItsSession.ACTION_ITS_RESULT,
ItsSession.EXTRA_CAMERA_ID, camera_id,
ItsSession.EXTRA_SUCCESS, 'True' if success else 'False',
ItsSession.EXTRA_SUMMARY, device_summary_path))
else:
_run("%s shell am broadcast -a %s --es %s %s --es %s %s --es %s %s" % (
adb, ItsSession.ACTION_ITS_RESULT,
ItsSession.EXTRA_CAMERA_ID, camera_id,
ItsSession.EXTRA_SUCCESS, 'True' if success else 'False',
ItsSession.EXTRA_SUMMARY, "null"))
def _run(cmd):
"""Replacement for os.system, with hiding of stdout+stderr messages.
"""
with open(os.devnull, 'wb') as devnull:
subprocess.check_call(
cmd.split(), stdout=devnull, stderr=subprocess.STDOUT)
class __UnitTest(unittest.TestCase):
"""Run a suite of unit tests on this module.
"""
# TODO: Add some unit tests.
None
if __name__ == '__main__':
unittest.main()