blob: ae7da2fb64a59bfbc9bca4873c8a7adfd9f5be9e [file] [log] [blame]
# Copyright (C) 2008 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import base64
import collections
import copy
import errno
import fnmatch
import getopt
import getpass
import gzip
import imp
import json
import logging
import logging.config
import os
import platform
import re
import shlex
import shutil
import subprocess
import sys
import tempfile
import threading
import time
import zipfile
from hashlib import sha1, sha256
import images
import sparse_img
from blockimgdiff import BlockImageDiff
logger = logging.getLogger(__name__)
class Options(object):
def __init__(self):
# Set up search path, in order to find framework/ and lib64/. At the time of
# running this function, user-supplied search path (`--path`) hasn't been
# available. So the value set here is the default, which might be overridden
# by commandline flag later.
exec_path = sys.argv[0]
if exec_path.endswith('.py'):
script_name = os.path.basename(exec_path)
# logger hasn't been initialized yet at this point. Use print to output
# warnings.
print(
'Warning: releasetools script should be invoked as hermetic Python '
'executable -- build and run `{}` directly.'.format(script_name[:-3]),
file=sys.stderr)
self.search_path = os.path.realpath(os.path.join(os.path.dirname(exec_path), '..'))
self.signapk_path = "framework/signapk.jar" # Relative to search_path
self.signapk_shared_library_path = "lib64" # Relative to search_path
self.extra_signapk_args = []
self.java_path = "java" # Use the one on the path by default.
self.java_args = ["-Xmx2048m"] # The default JVM args.
self.android_jar_path = None
self.public_key_suffix = ".x509.pem"
self.private_key_suffix = ".pk8"
# use otatools built boot_signer by default
self.boot_signer_path = "boot_signer"
self.boot_signer_args = []
self.verity_signer_path = None
self.verity_signer_args = []
self.aftl_server = None
self.aftl_key_path = None
self.aftl_manufacturer_key_path = None
self.aftl_signer_helper = None
self.verbose = False
self.tempfiles = []
self.device_specific = None
self.extras = {}
self.info_dict = None
self.source_info_dict = None
self.target_info_dict = None
self.worker_threads = None
# Stash size cannot exceed cache_size * threshold.
self.cache_size = None
self.stash_threshold = 0.8
self.logfile = None
OPTIONS = Options()
# The block size that's used across the releasetools scripts.
BLOCK_SIZE = 4096
# Values for "certificate" in apkcerts that mean special things.
SPECIAL_CERT_STRINGS = ("PRESIGNED", "EXTERNAL")
# The partitions allowed to be signed by AVB (Android Verified Boot 2.0). Note
# that system_other is not in the list because we don't want to include its
# descriptor into vbmeta.img.
AVB_PARTITIONS = ('boot', 'dtbo', 'odm', 'product', 'recovery', 'system',
'system_ext', 'vendor', 'vendor_boot')
# Chained VBMeta partitions.
AVB_VBMETA_PARTITIONS = ('vbmeta_system', 'vbmeta_vendor')
# Partitions that should have their care_map added to META/care_map.pb
PARTITIONS_WITH_CARE_MAP = ('system', 'vendor', 'product', 'system_ext', 'odm')
class ErrorCode(object):
"""Define error_codes for failures that happen during the actual
update package installation.
Error codes 0-999 are reserved for failures before the package
installation (i.e. low battery, package verification failure).
Detailed code in 'bootable/recovery/error_code.h' """
SYSTEM_VERIFICATION_FAILURE = 1000
SYSTEM_UPDATE_FAILURE = 1001
SYSTEM_UNEXPECTED_CONTENTS = 1002
SYSTEM_NONZERO_CONTENTS = 1003
SYSTEM_RECOVER_FAILURE = 1004
VENDOR_VERIFICATION_FAILURE = 2000
VENDOR_UPDATE_FAILURE = 2001
VENDOR_UNEXPECTED_CONTENTS = 2002
VENDOR_NONZERO_CONTENTS = 2003
VENDOR_RECOVER_FAILURE = 2004
OEM_PROP_MISMATCH = 3000
FINGERPRINT_MISMATCH = 3001
THUMBPRINT_MISMATCH = 3002
OLDER_BUILD = 3003
DEVICE_MISMATCH = 3004
BAD_PATCH_FILE = 3005
INSUFFICIENT_CACHE_SPACE = 3006
TUNE_PARTITION_FAILURE = 3007
APPLY_PATCH_FAILURE = 3008
class ExternalError(RuntimeError):
pass
def InitLogging():
DEFAULT_LOGGING_CONFIG = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format':
'%(asctime)s - %(filename)s - %(levelname)-8s: %(message)s',
'datefmt': '%Y-%m-%d %H:%M:%S',
},
},
'handlers': {
'default': {
'class': 'logging.StreamHandler',
'formatter': 'standard',
'level': 'WARNING',
},
},
'loggers': {
'': {
'handlers': ['default'],
'propagate': True,
'level': 'INFO',
}
}
}
env_config = os.getenv('LOGGING_CONFIG')
if env_config:
with open(env_config) as f:
config = json.load(f)
else:
config = DEFAULT_LOGGING_CONFIG
# Increase the logging level for verbose mode.
if OPTIONS.verbose:
config = copy.deepcopy(config)
config['handlers']['default']['level'] = 'INFO'
if OPTIONS.logfile:
config = copy.deepcopy(config)
config['handlers']['logfile'] = {
'class': 'logging.FileHandler',
'formatter': 'standard',
'level': 'INFO',
'mode': 'w',
'filename': OPTIONS.logfile,
}
config['loggers']['']['handlers'].append('logfile')
logging.config.dictConfig(config)
def Run(args, verbose=None, **kwargs):
"""Creates and returns a subprocess.Popen object.
Args:
args: The command represented as a list of strings.
verbose: Whether the commands should be shown. Default to the global
verbosity if unspecified.
kwargs: Any additional args to be passed to subprocess.Popen(), such as env,
stdin, etc. stdout and stderr will default to subprocess.PIPE and
subprocess.STDOUT respectively unless caller specifies any of them.
universal_newlines will default to True, as most of the users in
releasetools expect string output.
Returns:
A subprocess.Popen object.
"""
if 'stdout' not in kwargs and 'stderr' not in kwargs:
kwargs['stdout'] = subprocess.PIPE
kwargs['stderr'] = subprocess.STDOUT
if 'universal_newlines' not in kwargs:
kwargs['universal_newlines'] = True
# Don't log any if caller explicitly says so.
if verbose != False:
logger.info(" Running: \"%s\"", " ".join(args))
return subprocess.Popen(args, **kwargs)
def RunAndWait(args, verbose=None, **kwargs):
"""Runs the given command waiting for it to complete.
Args:
args: The command represented as a list of strings.
verbose: Whether the commands should be shown. Default to the global
verbosity if unspecified.
kwargs: Any additional args to be passed to subprocess.Popen(), such as env,
stdin, etc. stdout and stderr will default to subprocess.PIPE and
subprocess.STDOUT respectively unless caller specifies any of them.
Raises:
ExternalError: On non-zero exit from the command.
"""
proc = Run(args, verbose=verbose, **kwargs)
proc.wait()
if proc.returncode != 0:
raise ExternalError(
"Failed to run command '{}' (exit code {})".format(
args, proc.returncode))
def RunAndCheckOutput(args, verbose=None, **kwargs):
"""Runs the given command and returns the output.
Args:
args: The command represented as a list of strings.
verbose: Whether the commands should be shown. Default to the global
verbosity if unspecified.
kwargs: Any additional args to be passed to subprocess.Popen(), such as env,
stdin, etc. stdout and stderr will default to subprocess.PIPE and
subprocess.STDOUT respectively unless caller specifies any of them.
Returns:
The output string.
Raises:
ExternalError: On non-zero exit from the command.
"""
proc = Run(args, verbose=verbose, **kwargs)
output, _ = proc.communicate()
if output is None:
output = ""
# Don't log any if caller explicitly says so.
if verbose != False:
logger.info("%s", output.rstrip())
if proc.returncode != 0:
raise ExternalError(
"Failed to run command '{}' (exit code {}):\n{}".format(
args, proc.returncode, output))
return output
def RoundUpTo4K(value):
rounded_up = value + 4095
return rounded_up - (rounded_up % 4096)
def CloseInheritedPipes():
""" Gmake in MAC OS has file descriptor (PIPE) leak. We close those fds
before doing other work."""
if platform.system() != "Darwin":
return
for d in range(3, 1025):
try:
stat = os.fstat(d)
if stat is not None:
pipebit = stat[0] & 0x1000
if pipebit != 0:
os.close(d)
except OSError:
pass
class BuildInfo(object):
"""A class that holds the information for a given build.
This class wraps up the property querying for a given source or target build.
It abstracts away the logic of handling OEM-specific properties, and caches
the commonly used properties such as fingerprint.
There are two types of info dicts: a) build-time info dict, which is generated
at build time (i.e. included in a target_files zip); b) OEM info dict that is
specified at package generation time (via command line argument
'--oem_settings'). If a build doesn't use OEM-specific properties (i.e. not
having "oem_fingerprint_properties" in build-time info dict), all the queries
would be answered based on build-time info dict only. Otherwise if using
OEM-specific properties, some of them will be calculated from two info dicts.
Users can query properties similarly as using a dict() (e.g. info['fstab']),
or to query build properties via GetBuildProp() or GetPartitionBuildProp().
Attributes:
info_dict: The build-time info dict.
is_ab: Whether it's a build that uses A/B OTA.
oem_dicts: A list of OEM dicts.
oem_props: A list of OEM properties that should be read from OEM dicts; None
if the build doesn't use any OEM-specific property.
fingerprint: The fingerprint of the build, which would be calculated based
on OEM properties if applicable.
device: The device name, which could come from OEM dicts if applicable.
"""
_RO_PRODUCT_RESOLVE_PROPS = ["ro.product.brand", "ro.product.device",
"ro.product.manufacturer", "ro.product.model",
"ro.product.name"]
_RO_PRODUCT_PROPS_DEFAULT_SOURCE_ORDER_CURRENT = [
"product", "odm", "vendor", "system_ext", "system"]
_RO_PRODUCT_PROPS_DEFAULT_SOURCE_ORDER_ANDROID_10 = [
"product", "product_services", "odm", "vendor", "system"]
_RO_PRODUCT_PROPS_DEFAULT_SOURCE_ORDER_LEGACY = []
def __init__(self, info_dict, oem_dicts=None):
"""Initializes a BuildInfo instance with the given dicts.
Note that it only wraps up the given dicts, without making copies.
Arguments:
info_dict: The build-time info dict.
oem_dicts: A list of OEM dicts (which is parsed from --oem_settings). Note
that it always uses the first dict to calculate the fingerprint or the
device name. The rest would be used for asserting OEM properties only
(e.g. one package can be installed on one of these devices).
Raises:
ValueError: On invalid inputs.
"""
self.info_dict = info_dict
self.oem_dicts = oem_dicts
self._is_ab = info_dict.get("ab_update") == "true"
# Skip _oem_props if oem_dicts is None to use BuildInfo in
# sign_target_files_apks
if self.oem_dicts:
self._oem_props = info_dict.get("oem_fingerprint_properties")
else:
self._oem_props = None
def check_fingerprint(fingerprint):
if (" " in fingerprint or any(ord(ch) > 127 for ch in fingerprint)):
raise ValueError(
'Invalid build fingerprint: "{}". See the requirement in Android CDD '
"3.2.2. Build Parameters.".format(fingerprint))
self._partition_fingerprints = {}
for partition in PARTITIONS_WITH_CARE_MAP:
try:
fingerprint = self.CalculatePartitionFingerprint(partition)
check_fingerprint(fingerprint)
self._partition_fingerprints[partition] = fingerprint
except ExternalError:
continue
if "system" in self._partition_fingerprints:
# system_other is not included in PARTITIONS_WITH_CARE_MAP, but does
# need a fingerprint when creating the image.
self._partition_fingerprints[
"system_other"] = self._partition_fingerprints["system"]
# These two should be computed only after setting self._oem_props.
self._device = self.GetOemProperty("ro.product.device")
self._fingerprint = self.CalculateFingerprint()
check_fingerprint(self._fingerprint)
@property
def is_ab(self):
return self._is_ab
@property
def device(self):
return self._device
@property
def fingerprint(self):
return self._fingerprint
@property
def oem_props(self):
return self._oem_props
def __getitem__(self, key):
return self.info_dict[key]
def __setitem__(self, key, value):
self.info_dict[key] = value
def get(self, key, default=None):
return self.info_dict.get(key, default)
def items(self):
return self.info_dict.items()
def _GetRawBuildProp(self, prop, partition):
prop_file = '{}.build.prop'.format(
partition) if partition else 'build.prop'
partition_props = self.info_dict.get(prop_file)
if not partition_props:
return None
return partition_props.GetProp(prop)
def GetPartitionBuildProp(self, prop, partition):
"""Returns the inquired build property for the provided partition."""
# If provided a partition for this property, only look within that
# partition's build.prop.
if prop in BuildInfo._RO_PRODUCT_RESOLVE_PROPS:
prop = prop.replace("ro.product", "ro.product.{}".format(partition))
else:
prop = prop.replace("ro.", "ro.{}.".format(partition))
prop_val = self._GetRawBuildProp(prop, partition)
if prop_val is not None:
return prop_val
raise ExternalError("couldn't find %s in %s.build.prop" %
(prop, partition))
def GetBuildProp(self, prop):
"""Returns the inquired build property from the standard build.prop file."""
if prop in BuildInfo._RO_PRODUCT_RESOLVE_PROPS:
return self._ResolveRoProductBuildProp(prop)
prop_val = self._GetRawBuildProp(prop, None)
if prop_val is not None:
return prop_val
raise ExternalError("couldn't find %s in build.prop" % (prop,))
def _ResolveRoProductBuildProp(self, prop):
"""Resolves the inquired ro.product.* build property"""
prop_val = self._GetRawBuildProp(prop, None)
if prop_val:
return prop_val
default_source_order = self._GetRoProductPropsDefaultSourceOrder()
source_order_val = self._GetRawBuildProp(
"ro.product.property_source_order", None)
if source_order_val:
source_order = source_order_val.split(",")
else:
source_order = default_source_order
# Check that all sources in ro.product.property_source_order are valid
if any([x not in default_source_order for x in source_order]):
raise ExternalError(
"Invalid ro.product.property_source_order '{}'".format(source_order))
for source_partition in source_order:
source_prop = prop.replace(
"ro.product", "ro.product.{}".format(source_partition), 1)
prop_val = self._GetRawBuildProp(source_prop, source_partition)
if prop_val:
return prop_val
raise ExternalError("couldn't resolve {}".format(prop))
def _GetRoProductPropsDefaultSourceOrder(self):
# NOTE: refer to CDDs and android.os.Build.VERSION for the definition and
# values of these properties for each Android release.
android_codename = self._GetRawBuildProp("ro.build.version.codename", None)
if android_codename == "REL":
android_version = self._GetRawBuildProp("ro.build.version.release", None)
if android_version == "10":
return BuildInfo._RO_PRODUCT_PROPS_DEFAULT_SOURCE_ORDER_ANDROID_10
# NOTE: float() conversion of android_version will have rounding error.
# We are checking for "9" or less, and using "< 10" is well outside of
# possible floating point rounding.
try:
android_version_val = float(android_version)
except ValueError:
android_version_val = 0
if android_version_val < 10:
return BuildInfo._RO_PRODUCT_PROPS_DEFAULT_SOURCE_ORDER_LEGACY
return BuildInfo._RO_PRODUCT_PROPS_DEFAULT_SOURCE_ORDER_CURRENT
def GetOemProperty(self, key):
if self.oem_props is not None and key in self.oem_props:
return self.oem_dicts[0][key]
return self.GetBuildProp(key)
def GetPartitionFingerprint(self, partition):
return self._partition_fingerprints.get(partition, None)
def CalculatePartitionFingerprint(self, partition):
try:
return self.GetPartitionBuildProp("ro.build.fingerprint", partition)
except ExternalError:
return "{}/{}/{}:{}/{}/{}:{}/{}".format(
self.GetPartitionBuildProp("ro.product.brand", partition),
self.GetPartitionBuildProp("ro.product.name", partition),
self.GetPartitionBuildProp("ro.product.device", partition),
self.GetPartitionBuildProp("ro.build.version.release", partition),
self.GetPartitionBuildProp("ro.build.id", partition),
self.GetPartitionBuildProp("ro.build.version.incremental", partition),
self.GetPartitionBuildProp("ro.build.type", partition),
self.GetPartitionBuildProp("ro.build.tags", partition))
def CalculateFingerprint(self):
if self.oem_props is None:
try:
return self.GetBuildProp("ro.build.fingerprint")
except ExternalError:
return "{}/{}/{}:{}/{}/{}:{}/{}".format(
self.GetBuildProp("ro.product.brand"),
self.GetBuildProp("ro.product.name"),
self.GetBuildProp("ro.product.device"),
self.GetBuildProp("ro.build.version.release"),
self.GetBuildProp("ro.build.id"),
self.GetBuildProp("ro.build.version.incremental"),
self.GetBuildProp("ro.build.type"),
self.GetBuildProp("ro.build.tags"))
return "%s/%s/%s:%s" % (
self.GetOemProperty("ro.product.brand"),
self.GetOemProperty("ro.product.name"),
self.GetOemProperty("ro.product.device"),
self.GetBuildProp("ro.build.thumbprint"))
def WriteMountOemScript(self, script):
assert self.oem_props is not None
recovery_mount_options = self.info_dict.get("recovery_mount_options")
script.Mount("/oem", recovery_mount_options)
def WriteDeviceAssertions(self, script, oem_no_mount):
# Read the property directly if not using OEM properties.
if not self.oem_props:
script.AssertDevice(self.device)
return
# Otherwise assert OEM properties.
if not self.oem_dicts:
raise ExternalError(
"No OEM file provided to answer expected assertions")
for prop in self.oem_props.split():
values = []
for oem_dict in self.oem_dicts:
if prop in oem_dict:
values.append(oem_dict[prop])
if not values:
raise ExternalError(
"The OEM file is missing the property %s" % (prop,))
script.AssertOemProperty(prop, values, oem_no_mount)
def ReadFromInputFile(input_file, fn):
"""Reads the contents of fn from input zipfile or directory."""
if isinstance(input_file, zipfile.ZipFile):
return input_file.read(fn).decode()
else:
path = os.path.join(input_file, *fn.split("/"))
try:
with open(path) as f:
return f.read()
except IOError as e:
if e.errno == errno.ENOENT:
raise KeyError(fn)
def LoadInfoDict(input_file, repacking=False):
"""Loads the key/value pairs from the given input target_files.
It reads `META/misc_info.txt` file in the target_files input, does sanity
checks and returns the parsed key/value pairs for to the given build. It's
usually called early when working on input target_files files, e.g. when
generating OTAs, or signing builds. Note that the function may be called
against an old target_files file (i.e. from past dessert releases). So the
property parsing needs to be backward compatible.
In a `META/misc_info.txt`, a few properties are stored as links to the files
in the PRODUCT_OUT directory. It works fine with the build system. However,
they are no longer available when (re)generating images from target_files zip.
When `repacking` is True, redirect these properties to the actual files in the
unzipped directory.
Args:
input_file: The input target_files file, which could be an open
zipfile.ZipFile instance, or a str for the dir that contains the files
unzipped from a target_files file.
repacking: Whether it's trying repack an target_files file after loading the
info dict (default: False). If so, it will rewrite a few loaded
properties (e.g. selinux_fc, root_dir) to point to the actual files in
target_files file. When doing repacking, `input_file` must be a dir.
Returns:
A dict that contains the parsed key/value pairs.
Raises:
AssertionError: On invalid input arguments.
ValueError: On malformed input values.
"""
if repacking:
assert isinstance(input_file, str), \
"input_file must be a path str when doing repacking"
def read_helper(fn):
return ReadFromInputFile(input_file, fn)
try:
d = LoadDictionaryFromLines(read_helper("META/misc_info.txt").split("\n"))
except KeyError:
raise ValueError("Failed to find META/misc_info.txt in input target-files")
if "recovery_api_version" not in d:
raise ValueError("Failed to find 'recovery_api_version'")
if "fstab_version" not in d:
raise ValueError("Failed to find 'fstab_version'")
if repacking:
# "selinux_fc" properties should point to the file_contexts files
# (file_contexts.bin) under META/.
for key in d:
if key.endswith("selinux_fc"):
fc_basename = os.path.basename(d[key])
fc_config = os.path.join(input_file, "META", fc_basename)
assert os.path.exists(fc_config)
d[key] = fc_config
# Similarly we need to redirect "root_dir", and "root_fs_config".
d["root_dir"] = os.path.join(input_file, "ROOT")
d["root_fs_config"] = os.path.join(
input_file, "META", "root_filesystem_config.txt")
# Redirect {partition}_base_fs_file for each of the named partitions.
for part_name in ["system", "vendor", "system_ext", "product", "odm"]:
key_name = part_name + "_base_fs_file"
if key_name not in d:
continue
basename = os.path.basename(d[key_name])
base_fs_file = os.path.join(input_file, "META", basename)
if os.path.exists(base_fs_file):
d[key_name] = base_fs_file
else:
logger.warning(
"Failed to find %s base fs file: %s", part_name, base_fs_file)
del d[key_name]
def makeint(key):
if key in d:
d[key] = int(d[key], 0)
makeint("recovery_api_version")
makeint("blocksize")
makeint("system_size")
makeint("vendor_size")
makeint("userdata_size")
makeint("cache_size")
makeint("recovery_size")
makeint("fstab_version")
boot_images = "boot.img"
if "boot_images" in d:
boot_images = d["boot_images"]
for b in boot_images.split():
makeint(b.replace(".img","_size"))
# Load recovery fstab if applicable.
d["fstab"] = _FindAndLoadRecoveryFstab(d, input_file, read_helper)
# Tries to load the build props for all partitions with care_map, including
# system and vendor.
for partition in PARTITIONS_WITH_CARE_MAP:
partition_prop = "{}.build.prop".format(partition)
d[partition_prop] = PartitionBuildProps.FromInputFile(
input_file, partition)
d["build.prop"] = d["system.build.prop"]
# Set up the salt (based on fingerprint) that will be used when adding AVB
# hash / hashtree footers.
if d.get("avb_enable") == "true":
build_info = BuildInfo(d)
for partition in PARTITIONS_WITH_CARE_MAP:
fingerprint = build_info.GetPartitionFingerprint(partition)
if fingerprint:
d["avb_{}_salt".format(partition)] = sha256(fingerprint).hexdigest()
return d
def LoadListFromFile(file_path):
with open(file_path) as f:
return f.read().splitlines()
def LoadDictionaryFromFile(file_path):
lines = LoadListFromFile(file_path)
return LoadDictionaryFromLines(lines)
def LoadDictionaryFromLines(lines):
d = {}
for line in lines:
line = line.strip()
if not line or line.startswith("#"):
continue
if "=" in line:
name, value = line.split("=", 1)
d[name] = value
return d
class PartitionBuildProps(object):
"""The class holds the build prop of a particular partition.
This class loads the build.prop and holds the build properties for a given
partition. It also partially recognizes the 'import' statement in the
build.prop; and calculates alternative values of some specific build
properties during runtime.
Attributes:
input_file: a zipped target-file or an unzipped target-file directory.
partition: name of the partition.
props_allow_override: a list of build properties to search for the
alternative values during runtime.
build_props: a dict of build properties for the given partition.
prop_overrides: a set of props that are overridden by import.
placeholder_values: A dict of runtime variables' values to replace the
placeholders in the build.prop file. We expect exactly one value for
each of the variables.
"""
def __init__(self, input_file, name, placeholder_values=None):
self.input_file = input_file
self.partition = name
self.props_allow_override = [props.format(name) for props in [
'ro.product.{}.brand', 'ro.product.{}.name', 'ro.product.{}.device']]
self.build_props = {}
self.prop_overrides = set()
self.placeholder_values = {}
if placeholder_values:
self.placeholder_values = copy.deepcopy(placeholder_values)
@staticmethod
def FromDictionary(name, build_props):
"""Constructs an instance from a build prop dictionary."""
props = PartitionBuildProps("unknown", name)
props.build_props = build_props.copy()
return props
@staticmethod
def FromInputFile(input_file, name, placeholder_values=None):
"""Loads the build.prop file and builds the attributes."""
data = ''
for prop_file in ['{}/etc/build.prop'.format(name.upper()),
'{}/build.prop'.format(name.upper())]:
try:
data = ReadFromInputFile(input_file, prop_file)
break
except KeyError:
logger.warning('Failed to read %s', prop_file)
props = PartitionBuildProps(input_file, name, placeholder_values)
props._LoadBuildProp(data)
return props
def _LoadBuildProp(self, data):
for line in data.split('\n'):
line = line.strip()
if not line or line.startswith("#"):
continue
if line.startswith("import"):
overrides = self._ImportParser(line)
duplicates = self.prop_overrides.intersection(overrides.keys())
if duplicates:
raise ValueError('prop {} is overridden multiple times'.format(
','.join(duplicates)))
self.prop_overrides = self.prop_overrides.union(overrides.keys())
self.build_props.update(overrides)
elif "=" in line:
name, value = line.split("=", 1)
if name in self.prop_overrides:
raise ValueError('prop {} is set again after overridden by import '
'statement'.format(name))
self.build_props[name] = value
def _ImportParser(self, line):
"""Parses the build prop in a given import statement."""
tokens = line.split()
if tokens[0] != 'import' or (len(tokens) != 2 and len(tokens) != 3) :
raise ValueError('Unrecognized import statement {}'.format(line))
if len(tokens) == 3:
logger.info("Import %s from %s, skip", tokens[2], tokens[1])
return {}
import_path = tokens[1]
if not re.match(r'^/{}/.*\.prop$'.format(self.partition), import_path):
raise ValueError('Unrecognized import path {}'.format(line))
# We only recognize a subset of import statement that the init process
# supports. And we can loose the restriction based on how the dynamic
# fingerprint is used in practice. The placeholder format should be
# ${placeholder}, and its value should be provided by the caller through
# the placeholder_values.
for prop, value in self.placeholder_values.items():
prop_place_holder = '${{{}}}'.format(prop)
if prop_place_holder in import_path:
import_path = import_path.replace(prop_place_holder, value)
if '$' in import_path:
logger.info('Unresolved place holder in import path %s', import_path)
return {}
import_path = import_path.replace('/{}'.format(self.partition),
self.partition.upper())
logger.info('Parsing build props override from %s', import_path)
lines = ReadFromInputFile(self.input_file, import_path).split('\n')
d = LoadDictionaryFromLines(lines)
return {key: val for key, val in d.items()
if key in self.props_allow_override}
def GetProp(self, prop):
return self.build_props.get(prop)
def LoadRecoveryFSTab(read_helper, fstab_version, recovery_fstab_path,
system_root_image=False):
class Partition(object):
def __init__(self, mount_point, fs_type, device, length, context, slotselect):
self.mount_point = mount_point
self.fs_type = fs_type
self.device = device
self.length = length
self.context = context
self.slotselect = slotselect
try:
data = read_helper(recovery_fstab_path)
except KeyError:
logger.warning("Failed to find %s", recovery_fstab_path)
data = ""
assert fstab_version == 2
d = {}
for line in data.split("\n"):
line = line.strip()
if not line or line.startswith("#"):
continue
# <src> <mnt_point> <type> <mnt_flags and options> <fs_mgr_flags>
pieces = line.split()
if len(pieces) != 5:
raise ValueError("malformed recovery.fstab line: \"%s\"" % (line,))
# Ignore entries that are managed by vold.
options = pieces[4]
if "voldmanaged=" in options:
continue
# It's a good line, parse it.
length = 0
slotselect = False
options = options.split(",")
for i in options:
if i.startswith("length="):
length = int(i[7:])
elif i == "slotselect":
slotselect = True
else:
# Ignore all unknown options in the unified fstab.
continue
mount_flags = pieces[3]
# Honor the SELinux context if present.
context = None
for i in mount_flags.split(","):
if i.startswith("context="):
context = i
mount_point = pieces[1]
d[mount_point] = Partition(mount_point=mount_point, fs_type=pieces[2],
device=pieces[0], length=length, context=context,
slotselect=slotselect)
# / is used for the system mount point when the root directory is included in
# system. Other areas assume system is always at "/system" so point /system
# at /.
if system_root_image:
assert '/system' not in d and '/' in d
d["/system"] = d["/"]
return d
def _FindAndLoadRecoveryFstab(info_dict, input_file, read_helper):
"""Finds the path to recovery fstab and loads its contents."""
# recovery fstab is only meaningful when installing an update via recovery
# (i.e. non-A/B OTA). Skip loading fstab if device used A/B OTA.
if info_dict.get('ab_update') == 'true' and \
info_dict.get("allow_non_ab") != "true":
return None
# We changed recovery.fstab path in Q, from ../RAMDISK/etc/recovery.fstab to
# ../RAMDISK/system/etc/recovery.fstab. This function has to handle both
# cases, since it may load the info_dict from an old build (e.g. when
# generating incremental OTAs from that build).
system_root_image = info_dict.get('system_root_image') == 'true'
if info_dict.get('no_recovery') != 'true':
recovery_fstab_path = 'RECOVERY/RAMDISK/system/etc/recovery.fstab'
if isinstance(input_file, zipfile.ZipFile):
if recovery_fstab_path not in input_file.namelist():
recovery_fstab_path = 'RECOVERY/RAMDISK/etc/recovery.fstab'
else:
path = os.path.join(input_file, *recovery_fstab_path.split('/'))
if not os.path.exists(path):
recovery_fstab_path = 'RECOVERY/RAMDISK/etc/recovery.fstab'
return LoadRecoveryFSTab(
read_helper, info_dict['fstab_version'], recovery_fstab_path,
system_root_image)
if info_dict.get('recovery_as_boot') == 'true':
recovery_fstab_path = 'BOOT/RAMDISK/system/etc/recovery.fstab'
if isinstance(input_file, zipfile.ZipFile):
if recovery_fstab_path not in input_file.namelist():
recovery_fstab_path = 'BOOT/RAMDISK/etc/recovery.fstab'
else:
path = os.path.join(input_file, *recovery_fstab_path.split('/'))
if not os.path.exists(path):
recovery_fstab_path = 'BOOT/RAMDISK/etc/recovery.fstab'
return LoadRecoveryFSTab(
read_helper, info_dict['fstab_version'], recovery_fstab_path,
system_root_image)
return None
def DumpInfoDict(d):
for k, v in sorted(d.items()):
logger.info("%-25s = (%s) %s", k, type(v).__name__, v)
def MergeDynamicPartitionInfoDicts(framework_dict, vendor_dict):
"""Merges dynamic partition info variables.
Args:
framework_dict: The dictionary of dynamic partition info variables from the
partial framework target files.
vendor_dict: The dictionary of dynamic partition info variables from the
partial vendor target files.
Returns:
The merged dynamic partition info dictionary.
"""
merged_dict = {}
# Partition groups and group sizes are defined by the vendor dict because
# these values may vary for each board that uses a shared system image.
merged_dict["super_partition_groups"] = vendor_dict["super_partition_groups"]
framework_dynamic_partition_list = framework_dict.get(
"dynamic_partition_list", "")
vendor_dynamic_partition_list = vendor_dict.get("dynamic_partition_list", "")
merged_dict["dynamic_partition_list"] = ("%s %s" % (
framework_dynamic_partition_list, vendor_dynamic_partition_list)).strip()
for partition_group in merged_dict["super_partition_groups"].split(" "):
# Set the partition group's size using the value from the vendor dict.
key = "super_%s_group_size" % partition_group
if key not in vendor_dict:
raise ValueError("Vendor dict does not contain required key %s." % key)
merged_dict[key] = vendor_dict[key]
# Set the partition group's partition list using a concatenation of the
# framework and vendor partition lists.
key = "super_%s_partition_list" % partition_group
merged_dict[key] = (
"%s %s" %
(framework_dict.get(key, ""), vendor_dict.get(key, ""))).strip()
# Pick virtual ab related flags from vendor dict, if defined.
if "virtual_ab" in vendor_dict.keys():
merged_dict["virtual_ab"] = vendor_dict["virtual_ab"]
if "virtual_ab_retrofit" in vendor_dict.keys():
merged_dict["virtual_ab_retrofit"] = vendor_dict["virtual_ab_retrofit"]
return merged_dict
def AppendAVBSigningArgs(cmd, partition):
"""Append signing arguments for avbtool."""
# e.g., "--key path/to/signing_key --algorithm SHA256_RSA4096"
key_path = OPTIONS.info_dict.get("avb_" + partition + "_key_path")
if key_path and not os.path.exists(key_path) and OPTIONS.search_path:
new_key_path = os.path.join(OPTIONS.search_path, key_path)
if os.path.exists(new_key_path):
key_path = new_key_path
algorithm = OPTIONS.info_dict.get("avb_" + partition + "_algorithm")
if key_path and algorithm:
cmd.extend(["--key", key_path, "--algorithm", algorithm])
avb_salt = OPTIONS.info_dict.get("avb_salt")
# make_vbmeta_image doesn't like "--salt" (and it's not needed).
if avb_salt and not partition.startswith("vbmeta"):
cmd.extend(["--salt", avb_salt])
def GetAvbPartitionArg(partition, image, info_dict=None):
"""Returns the VBMeta arguments for partition.
It sets up the VBMeta argument by including the partition descriptor from the
given 'image', or by configuring the partition as a chained partition.
Args:
partition: The name of the partition (e.g. "system").
image: The path to the partition image.
info_dict: A dict returned by common.LoadInfoDict(). Will use
OPTIONS.info_dict if None has been given.
Returns:
A list of VBMeta arguments.
"""
if info_dict is None:
info_dict = OPTIONS.info_dict
# Check if chain partition is used.
key_path = info_dict.get("avb_" + partition + "_key_path")
if not key_path:
return ["--include_descriptors_from_image", image]
# For a non-A/B device, we don't chain /recovery nor include its descriptor
# into vbmeta.img. The recovery image will be configured on an independent
# boot chain, to be verified with AVB_SLOT_VERIFY_FLAGS_NO_VBMETA_PARTITION.
# See details at
# https://android.googlesource.com/platform/external/avb/+/master/README.md#booting-into-recovery.
if info_dict.get("ab_update") != "true" and partition == "recovery":
return []
# Otherwise chain the partition into vbmeta.
chained_partition_arg = GetAvbChainedPartitionArg(partition, info_dict)
return ["--chain_partition", chained_partition_arg]
def GetAvbChainedPartitionArg(partition, info_dict, key=None):
"""Constructs and returns the arg to build or verify a chained partition.
Args:
partition: The partition name.
info_dict: The info dict to look up the key info and rollback index
location.
key: The key to be used for building or verifying the partition. Defaults to
the key listed in info_dict.
Returns:
A string of form "partition:rollback_index_location:key" that can be used to
build or verify vbmeta image.
"""
if key is None:
key = info_dict["avb_" + partition + "_key_path"]
if key and not os.path.exists(key) and OPTIONS.search_path:
new_key_path = os.path.join(OPTIONS.search_path, key)
if os.path.exists(new_key_path):
key = new_key_path
pubkey_path = ExtractAvbPublicKey(info_dict["avb_avbtool"], key)
rollback_index_location = info_dict[
"avb_" + partition + "_rollback_index_location"]
return "{}:{}:{}".format(partition, rollback_index_location, pubkey_path)
def BuildVBMeta(image_path, partitions, name, needed_partitions):
"""Creates a VBMeta image.
It generates the requested VBMeta image. The requested image could be for
top-level or chained VBMeta image, which is determined based on the name.
Args:
image_path: The output path for the new VBMeta image.
partitions: A dict that's keyed by partition names with image paths as
values. Only valid partition names are accepted, as partitions listed
in common.AVB_PARTITIONS and custom partitions listed in
OPTIONS.info_dict.get("avb_custom_images_partition_list")
name: Name of the VBMeta partition, e.g. 'vbmeta', 'vbmeta_system'.
needed_partitions: Partitions whose descriptors should be included into the
generated VBMeta image.
Raises:
AssertionError: On invalid input args.
"""
avbtool = OPTIONS.info_dict["avb_avbtool"]
cmd = [avbtool, "make_vbmeta_image", "--output", image_path]
AppendAVBSigningArgs(cmd, name)
custom_partitions = OPTIONS.info_dict.get(
"avb_custom_images_partition_list", "").strip().split()
for partition, path in partitions.items():
if partition not in needed_partitions:
continue
assert (partition in AVB_PARTITIONS or
partition in AVB_VBMETA_PARTITIONS or
partition in custom_partitions), \
'Unknown partition: {}'.format(partition)
assert os.path.exists(path), \
'Failed to find {} for {}'.format(path, partition)
cmd.extend(GetAvbPartitionArg(partition, path))
args = OPTIONS.info_dict.get("avb_{}_args".format(name))
if args and args.strip():
split_args = shlex.split(args)
for index, arg in enumerate(split_args[:-1]):
# Sanity check that the image file exists. Some images might be defined
# as a path relative to source tree, which may not be available at the
# same location when running this script (we have the input target_files
# zip only). For such cases, we additionally scan other locations (e.g.
# IMAGES/, RADIO/, etc) before bailing out.
if arg == '--include_descriptors_from_image':
image_path = split_args[index + 1]
if os.path.exists(image_path):
continue
found = False
for dir_name in ['IMAGES', 'RADIO', 'PREBUILT_IMAGES']:
alt_path = os.path.join(
OPTIONS.input_tmp, dir_name, os.path.basename(image_path))
if os.path.exists(alt_path):
split_args[index + 1] = alt_path
found = True
break
assert found, 'Failed to find {}'.format(image_path)
cmd.extend(split_args)
RunAndCheckOutput(cmd)
if OPTIONS.aftl_server is not None:
# Ensure the other AFTL parameters are set as well.
assert OPTIONS.aftl_key_path is not None, 'No AFTL key provided.'
assert OPTIONS.aftl_manufacturer_key_path is not None, 'No AFTL manufacturer key provided.'
assert OPTIONS.aftl_signer_helper is not None, 'No AFTL signer helper provided.'
# AFTL inclusion proof generation code will go here.
def _MakeRamdisk(sourcedir, fs_config_file=None, lz4_ramdisks=False):
ramdisk_img = tempfile.NamedTemporaryFile()
if fs_config_file is not None and os.access(fs_config_file, os.F_OK):
cmd = ["mkbootfs", "-f", fs_config_file,
os.path.join(sourcedir, "RAMDISK")]
else:
cmd = ["mkbootfs", os.path.join(sourcedir, "RAMDISK")]
p1 = Run(cmd, stdout=subprocess.PIPE)
if lz4_ramdisks:
p2 = Run(["lz4", "-l", "-12" , "--favor-decSpeed"], stdin=p1.stdout,
stdout=ramdisk_img.file.fileno())
else:
p2 = Run(["minigzip"], stdin=p1.stdout, stdout=ramdisk_img.file.fileno())
p2.wait()
p1.wait()
assert p1.returncode == 0, "mkbootfs of %s ramdisk failed" % (sourcedir,)
assert p2.returncode == 0, "compression of %s ramdisk failed" % (sourcedir,)
return ramdisk_img
def _BuildBootableImage(image_name, sourcedir, fs_config_file, info_dict=None,
has_ramdisk=False, two_step_image=False):
"""Build a bootable image from the specified sourcedir.
Take a kernel, cmdline, and optionally a ramdisk directory from the input (in
'sourcedir'), and turn them into a boot image. 'two_step_image' indicates if
we are building a two-step special image (i.e. building a recovery image to
be loaded into /boot in two-step OTAs).
Return the image data, or None if sourcedir does not appear to contains files
for building the requested image.
"""
# "boot" or "recovery", without extension.
partition_name = os.path.basename(sourcedir).lower()
if partition_name == "recovery":
kernel = "kernel"
else:
kernel = image_name.replace("boot", "kernel")
kernel = kernel.replace(".img","")
if not os.access(os.path.join(sourcedir, kernel), os.F_OK):
return None
if has_ramdisk and not os.access(os.path.join(sourcedir, "RAMDISK"), os.F_OK):
return None
if info_dict is None:
info_dict = OPTIONS.info_dict
img = tempfile.NamedTemporaryFile()
if has_ramdisk:
use_lz4 = info_dict.get("lz4_ramdisks") == 'true'
ramdisk_img = _MakeRamdisk(sourcedir, fs_config_file, lz4_ramdisks=use_lz4)
# use MKBOOTIMG from environ, or "mkbootimg" if empty or not set
mkbootimg = os.getenv('MKBOOTIMG') or "mkbootimg"
cmd = [mkbootimg, "--kernel", os.path.join(sourcedir, kernel)]
fn = os.path.join(sourcedir, "second")
if os.access(fn, os.F_OK):
cmd.append("--second")
cmd.append(fn)
fn = os.path.join(sourcedir, "dtb")
if os.access(fn, os.F_OK):
cmd.append("--dtb")
cmd.append(fn)
fn = os.path.join(sourcedir, "cmdline")
if os.access(fn, os.F_OK):
cmd.append("--cmdline")
cmd.append(open(fn).read().rstrip("\n"))
fn = os.path.join(sourcedir, "base")
if os.access(fn, os.F_OK):
cmd.append("--base")
cmd.append(open(fn).read().rstrip("\n"))
fn = os.path.join(sourcedir, "pagesize")
if os.access(fn, os.F_OK):
cmd.append("--pagesize")
cmd.append(open(fn).read().rstrip("\n"))
if partition_name == "recovery":
args = info_dict.get("recovery_mkbootimg_args")
if not args:
# Fall back to "mkbootimg_args" for recovery image
# in case "recovery_mkbootimg_args" is not set.
args = info_dict.get("mkbootimg_args")
else:
args = info_dict.get("mkbootimg_args")
if args and args.strip():
cmd.extend(shlex.split(args))
args = info_dict.get("mkbootimg_version_args")
if args and args.strip():
cmd.extend(shlex.split(args))
if has_ramdisk:
cmd.extend(["--ramdisk", ramdisk_img.name])
img_unsigned = None
if info_dict.get("vboot"):
img_unsigned = tempfile.NamedTemporaryFile()
cmd.extend(["--output", img_unsigned.name])
else:
cmd.extend(["--output", img.name])
if partition_name == "recovery":
if info_dict.get("include_recovery_dtbo") == "true":
fn = os.path.join(sourcedir, "recovery_dtbo")
cmd.extend(["--recovery_dtbo", fn])
if info_dict.get("include_recovery_acpio") == "true":
fn = os.path.join(sourcedir, "recovery_acpio")
cmd.extend(["--recovery_acpio", fn])
RunAndCheckOutput(cmd)
if (info_dict.get("boot_signer") == "true" and
info_dict.get("verity_key")):
# Hard-code the path as "/boot" for two-step special recovery image (which
# will be loaded into /boot during the two-step OTA).
if two_step_image:
path = "/boot"
else:
path = "/" + partition_name
cmd = [OPTIONS.boot_signer_path]
cmd.extend(OPTIONS.boot_signer_args)
cmd.extend([path, img.name,
info_dict["verity_key"] + ".pk8",
info_dict["verity_key"] + ".x509.pem", img.name])
RunAndCheckOutput(cmd)
# Sign the image if vboot is non-empty.
elif info_dict.get("vboot"):
path = "/" + partition_name
img_keyblock = tempfile.NamedTemporaryFile()
# We have switched from the prebuilt futility binary to using the tool
# (futility-host) built from the source. Override the setting in the old
# TF.zip.
futility = info_dict["futility"]
if futility.startswith("prebuilts/"):
futility = "futility-host"
cmd = [info_dict["vboot_signer_cmd"], futility,
img_unsigned.name, info_dict["vboot_key"] + ".vbpubk",
info_dict["vboot_key"] + ".vbprivk",
info_dict["vboot_subkey"] + ".vbprivk",
img_keyblock.name,
img.name]
RunAndCheckOutput(cmd)
# Clean up the temp files.
img_unsigned.close()
img_keyblock.close()
# AVB: if enabled, calculate and add hash to boot.img or recovery.img.
if info_dict.get("avb_enable") == "true":
avbtool = info_dict["avb_avbtool"]
if partition_name == "recovery":
part_size = info_dict["recovery_size"]
else:
part_size = info_dict[image_name.replace(".img","_size")]
cmd = [avbtool, "add_hash_footer", "--image", img.name,
"--partition_size", str(part_size), "--partition_name",
partition_name]
AppendAVBSigningArgs(cmd, partition_name)
args = info_dict.get("avb_" + partition_name + "_add_hash_footer_args")
if args and args.strip():
cmd.extend(shlex.split(args))
RunAndCheckOutput(cmd)
img.seek(os.SEEK_SET, 0)
data = img.read()
if has_ramdisk:
ramdisk_img.close()
img.close()
return data
def GetBootableImage(name, prebuilt_name, unpack_dir, tree_subdir,
info_dict=None, two_step_image=False):
"""Return a File object with the desired bootable image.
Look for it in 'unpack_dir'/BOOTABLE_IMAGES under the name 'prebuilt_name',
otherwise look for it under 'unpack_dir'/IMAGES, otherwise construct it from
the source files in 'unpack_dir'/'tree_subdir'."""
prebuilt_path = os.path.join(unpack_dir, "BOOTABLE_IMAGES", prebuilt_name)
if os.path.exists(prebuilt_path):
logger.info("using prebuilt %s from BOOTABLE_IMAGES...", prebuilt_name)
return File.FromLocalFile(name, prebuilt_path)
prebuilt_path = os.path.join(unpack_dir, "IMAGES", prebuilt_name)
if os.path.exists(prebuilt_path):
logger.info("using prebuilt %s from IMAGES...", prebuilt_name)
return File.FromLocalFile(name, prebuilt_path)
logger.info("building image from target_files %s...", tree_subdir)
if info_dict is None:
info_dict = OPTIONS.info_dict
# With system_root_image == "true", we don't pack ramdisk into the boot image.
# Unless "recovery_as_boot" is specified, in which case we carry the ramdisk
# for recovery.
has_ramdisk = (info_dict.get("system_root_image") != "true" or
prebuilt_name != "boot.img" or
info_dict.get("recovery_as_boot") == "true")
fs_config = "META/" + tree_subdir.lower() + "_filesystem_config.txt"
data = _BuildBootableImage(prebuilt_name, os.path.join(unpack_dir, tree_subdir),
os.path.join(unpack_dir, fs_config),
info_dict, has_ramdisk, two_step_image)
if data:
return File(name, data)
return None
def _BuildVendorBootImage(sourcedir, info_dict=None):
"""Build a vendor boot image from the specified sourcedir.
Take a ramdisk, dtb, and vendor_cmdline from the input (in 'sourcedir'), and
turn them into a vendor boot image.
Return the image data, or None if sourcedir does not appear to contains files
for building the requested image.
"""
if info_dict is None:
info_dict = OPTIONS.info_dict
img = tempfile.NamedTemporaryFile()
use_lz4 = info_dict.get("lz4_ramdisks") == 'true'
ramdisk_img = _MakeRamdisk(sourcedir, lz4_ramdisks=use_lz4)
# use MKBOOTIMG from environ, or "mkbootimg" if empty or not set
mkbootimg = os.getenv('MKBOOTIMG') or "mkbootimg"
cmd = [mkbootimg]
fn = os.path.join(sourcedir, "dtb")
if os.access(fn, os.F_OK):
cmd.append("--dtb")
cmd.append(fn)
fn = os.path.join(sourcedir, "vendor_cmdline")
if os.access(fn, os.F_OK):
cmd.append("--vendor_cmdline")
cmd.append(open(fn).read().rstrip("\n"))
fn = os.path.join(sourcedir, "base")
if os.access(fn, os.F_OK):
cmd.append("--base")
cmd.append(open(fn).read().rstrip("\n"))
fn = os.path.join(sourcedir, "pagesize")
if os.access(fn, os.F_OK):
cmd.append("--pagesize")
cmd.append(open(fn).read().rstrip("\n"))
args = info_dict.get("mkbootimg_args")
if args and args.strip():
cmd.extend(shlex.split(args))
args = info_dict.get("mkbootimg_version_args")
if args and args.strip():
cmd.extend(shlex.split(args))
cmd.extend(["--vendor_ramdisk", ramdisk_img.name])
cmd.extend(["--vendor_boot", img.name])
RunAndCheckOutput(cmd)
# AVB: if enabled, calculate and add hash.
if info_dict.get("avb_enable") == "true":
avbtool = info_dict["avb_avbtool"]
part_size = info_dict["vendor_boot_size"]
cmd = [avbtool, "add_hash_footer", "--image", img.name,
"--partition_size", str(part_size), "--partition_name", "vendor_boot"]
AppendAVBSigningArgs(cmd, "vendor_boot")
args = info_dict.get("avb_vendor_boot_add_hash_footer_args")
if args and args.strip():
cmd.extend(shlex.split(args))
RunAndCheckOutput(cmd)
img.seek(os.SEEK_SET, 0)
data = img.read()
ramdisk_img.close()
img.close()
return data
def GetVendorBootImage(name, prebuilt_name, unpack_dir, tree_subdir,
info_dict=None):
"""Return a File object with the desired vendor boot image.
Look for it under 'unpack_dir'/IMAGES, otherwise construct it from
the source files in 'unpack_dir'/'tree_subdir'."""
prebuilt_path = os.path.join(unpack_dir, "IMAGES", prebuilt_name)
if os.path.exists(prebuilt_path):
logger.info("using prebuilt %s from IMAGES...", prebuilt_name)
return File.FromLocalFile(name, prebuilt_path)
logger.info("building image from target_files %s...", tree_subdir)
if info_dict is None:
info_dict = OPTIONS.info_dict
data = _BuildVendorBootImage(os.path.join(unpack_dir, tree_subdir), info_dict)
if data:
return File(name, data)
return None
def Gunzip(in_filename, out_filename):
"""Gunzips the given gzip compressed file to a given output file."""
with gzip.open(in_filename, "rb") as in_file, \
open(out_filename, "wb") as out_file:
shutil.copyfileobj(in_file, out_file)
def UnzipToDir(filename, dirname, patterns=None):
"""Unzips the archive to the given directory.
Args:
filename: The name of the zip file to unzip.
dirname: Where the unziped files will land.
patterns: Files to unzip from the archive. If omitted, will unzip the entire
archvie. Non-matching patterns will be filtered out. If there's no match
after the filtering, no file will be unzipped.
"""
cmd = ["unzip", "-o", "-q", filename, "-d", dirname]
if patterns is not None:
# Filter out non-matching patterns. unzip will complain otherwise.
with zipfile.ZipFile(filename) as input_zip:
names = input_zip.namelist()
filtered = [
pattern for pattern in patterns if fnmatch.filter(names, pattern)]
# There isn't any matching files. Don't unzip anything.
if not filtered:
return
cmd.extend(filtered)
RunAndCheckOutput(cmd)
def UnzipTemp(filename, pattern=None):
"""Unzips the given archive into a temporary directory and returns the name.
Args:
filename: If filename is of the form "foo.zip+bar.zip", unzip foo.zip into
a temp dir, then unzip bar.zip into that_dir/BOOTABLE_IMAGES.
pattern: Files to unzip from the archive. If omitted, will unzip the entire
archvie.
Returns:
The name of the temporary directory.
"""
tmp = MakeTempDir(prefix="targetfiles-")
m = re.match(r"^(.*[.]zip)\+(.*[.]zip)$", filename, re.IGNORECASE)
if m:
UnzipToDir(m.group(1), tmp, pattern)
UnzipToDir(m.group(2), os.path.join(tmp, "BOOTABLE_IMAGES"), pattern)
filename = m.group(1)
else:
UnzipToDir(filename, tmp, pattern)
return tmp
def GetUserImage(which, tmpdir, input_zip,
info_dict=None,
allow_shared_blocks=None,
hashtree_info_generator=None,
reset_file_map=False):
"""Returns an Image object suitable for passing to BlockImageDiff.
This function loads the specified image from the given path. If the specified
image is sparse, it also performs additional processing for OTA purpose. For
example, it always adds block 0 to clobbered blocks list. It also detects
files that cannot be reconstructed from the block list, for whom we should
avoid applying imgdiff.
Args:
which: The partition name.
tmpdir: The directory that contains the prebuilt image and block map file.
input_zip: The target-files ZIP archive.
info_dict: The dict to be looked up for relevant info.
allow_shared_blocks: If image is sparse, whether having shared blocks is
allowed. If none, it is looked up from info_dict.
hashtree_info_generator: If present and image is sparse, generates the
hashtree_info for this sparse image.
reset_file_map: If true and image is sparse, reset file map before returning
the image.
Returns:
A Image object. If it is a sparse image and reset_file_map is False, the
image will have file_map info loaded.
"""
if info_dict is None:
info_dict = LoadInfoDict(input_zip)
is_sparse = info_dict.get("extfs_sparse_flag")
# When target uses 'BOARD_EXT4_SHARE_DUP_BLOCKS := true', images may contain
# shared blocks (i.e. some blocks will show up in multiple files' block
# list). We can only allocate such shared blocks to the first "owner", and
# disable imgdiff for all later occurrences.
if allow_shared_blocks is None:
allow_shared_blocks = info_dict.get("ext4_share_dup_blocks") == "true"
if is_sparse:
img = GetSparseImage(which, tmpdir, input_zip, allow_shared_blocks,
hashtree_info_generator)
if reset_file_map:
img.ResetFileMap()
return img
else:
return GetNonSparseImage(which, tmpdir, hashtree_info_generator)
def GetNonSparseImage(which, tmpdir, hashtree_info_generator=None):
"""Returns a Image object suitable for passing to BlockImageDiff.
This function loads the specified non-sparse image from the given path.
Args:
which: The partition name.
tmpdir: The directory that contains the prebuilt image and block map file.
Returns:
A Image object.
"""
path = os.path.join(tmpdir, "IMAGES", which + ".img")
mappath = os.path.join(tmpdir, "IMAGES", which + ".map")
# The image and map files must have been created prior to calling
# ota_from_target_files.py (since LMP).
assert os.path.exists(path) and os.path.exists(mappath)
return images.FileImage(path, hashtree_info_generator=hashtree_info_generator)
def GetSparseImage(which, tmpdir, input_zip, allow_shared_blocks,
hashtree_info_generator=None):
"""Returns a SparseImage object suitable for passing to BlockImageDiff.
This function loads the specified sparse image from the given path, and
performs additional processing for OTA purpose. For example, it always adds
block 0 to clobbered blocks list. It also detects files that cannot be
reconstructed from the block list, for whom we should avoid applying imgdiff.
Args:
which: The partition name, e.g. "system", "vendor".
tmpdir: The directory that contains the prebuilt image and block map file.
input_zip: The target-files ZIP archive.
allow_shared_blocks: Whether having shared blocks is allowed.
hashtree_info_generator: If present, generates the hashtree_info for this
sparse image.
Returns:
A SparseImage object, with file_map info loaded.
"""
path = os.path.join(tmpdir, "IMAGES", which + ".img")
mappath = os.path.join(tmpdir, "IMAGES", which + ".map")
# The image and map files must have been created prior to calling
# ota_from_target_files.py (since LMP).
assert os.path.exists(path) and os.path.exists(mappath)
# In ext4 filesystems, block 0 might be changed even being mounted R/O. We add
# it to clobbered_blocks so that it will be written to the target
# unconditionally. Note that they are still part of care_map. (Bug: 20939131)
clobbered_blocks = "0"
image = sparse_img.SparseImage(
path, mappath, clobbered_blocks, allow_shared_blocks=allow_shared_blocks,
hashtree_info_generator=hashtree_info_generator)
# block.map may contain less blocks, because mke2fs may skip allocating blocks
# if they contain all zeros. We can't reconstruct such a file from its block
# list. Tag such entries accordingly. (Bug: 65213616)
for entry in image.file_map:
# Skip artificial names, such as "__ZERO", "__NONZERO-1".
if not entry.startswith('/'):
continue
# "/system/framework/am.jar" => "SYSTEM/framework/am.jar". Note that the
# filename listed in system.map may contain an additional leading slash
# (i.e. "//system/framework/am.jar"). Using lstrip to get consistent
# results.
arcname = entry.replace(which, which.upper(), 1).lstrip('/')
# Special handling another case, where files not under /system
# (e.g. "/sbin/charger") are packed under ROOT/ in a target_files.zip.
if which == 'system' and not arcname.startswith('SYSTEM'):
arcname = 'ROOT/' + arcname
assert arcname in input_zip.namelist(), \
"Failed to find the ZIP entry for {}".format(entry)
info = input_zip.getinfo(arcname)
ranges = image.file_map[entry]
# If a RangeSet has been tagged as using shared blocks while loading the
# image, check the original block list to determine its completeness. Note
# that the 'incomplete' flag would be tagged to the original RangeSet only.
if ranges.extra.get('uses_shared_blocks'):
ranges = ranges.extra['uses_shared_blocks']
if RoundUpTo4K(info.file_size) > ranges.size() * 4096:
ranges.extra['incomplete'] = True
return image
def GetKeyPasswords(keylist):
"""Given a list of keys, prompt the user to enter passwords for
those which require them. Return a {key: password} dict. password
will be None if the key has no password."""
no_passwords = []
need_passwords = []
key_passwords = {}
devnull = open("/dev/null", "w+b")
for k in sorted(keylist):
# We don't need a password for things that aren't really keys.
if k in SPECIAL_CERT_STRINGS:
no_passwords.append(k)
continue
p = Run(["openssl", "pkcs8", "-in", k+OPTIONS.private_key_suffix,
"-inform", "DER", "-nocrypt"],
stdin=devnull.fileno(),
stdout=devnull.fileno(),
stderr=subprocess.STDOUT)
p.communicate()
if p.returncode == 0:
# Definitely an unencrypted key.
no_passwords.append(k)
else:
p = Run(["openssl", "pkcs8", "-in", k+OPTIONS.private_key_suffix,
"-inform", "DER", "-passin", "pass:"],
stdin=devnull.fileno(),
stdout=devnull.fileno(),
stderr=subprocess.PIPE)
_, stderr = p.communicate()
if p.returncode == 0:
# Encrypted key with empty string as password.
key_passwords[k] = ''
elif stderr.startswith('Error decrypting key'):
# Definitely encrypted key.
# It would have said "Error reading key" if it didn't parse correctly.
need_passwords.append(k)
else:
# Potentially, a type of key that openssl doesn't understand.
# We'll let the routines in signapk.jar handle it.
no_passwords.append(k)
devnull.close()
key_passwords.update(PasswordManager().GetPasswords(need_passwords))
key_passwords.update(dict.fromkeys(no_passwords))
return key_passwords
def GetMinSdkVersion(apk_name):
"""Gets the minSdkVersion declared in the APK.
It calls 'aapt2' to query the embedded minSdkVersion from the given APK file.
This can be both a decimal number (API Level) or a codename.
Args:
apk_name: The APK filename.
Returns:
The parsed SDK version string.
Raises:
ExternalError: On failing to obtain the min SDK version.
"""
proc = Run(
["aapt2", "dump", "badging", apk_name], stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
stdoutdata, stderrdata = proc.communicate()
if proc.returncode != 0:
raise ExternalError(
"Failed to obtain minSdkVersion: aapt2 return code {}:\n{}\n{}".format(
proc.returncode, stdoutdata, stderrdata))
for line in stdoutdata.split("\n"):
# Looking for lines such as sdkVersion:'23' or sdkVersion:'M'.
m = re.match(r'sdkVersion:\'([^\']*)\'', line)
if m:
return m.group(1)
raise ExternalError("No minSdkVersion returned by aapt2")
def GetMinSdkVersionInt(apk_name, codename_to_api_level_map):
"""Returns the minSdkVersion declared in the APK as a number (API Level).
If minSdkVersion is set to a codename, it is translated to a number using the
provided map.
Args:
apk_name: The APK filename.
Returns:
The parsed SDK version number.
Raises:
ExternalError: On failing to get the min SDK version number.
"""
version = GetMinSdkVersion(apk_name)
try:
return int(version)
except ValueError:
# Not a decimal number. Codename?
if version in codename_to_api_level_map:
return codename_to_api_level_map[version]
else:
raise ExternalError(
"Unknown minSdkVersion: '{}'. Known codenames: {}".format(
version, codename_to_api_level_map))
def SignFile(input_name, output_name, key, password, min_api_level=None,
codename_to_api_level_map=None, whole_file=False,
extra_signapk_args=None):
"""Sign the input_name zip/jar/apk, producing output_name. Use the
given key and password (the latter may be None if the key does not
have a password.
If whole_file is true, use the "-w" option to SignApk to embed a
signature that covers the whole file in the archive comment of the
zip file.
min_api_level is the API Level (int) of the oldest platform this file may end
up on. If not specified for an APK, the API Level is obtained by interpreting
the minSdkVersion attribute of the APK's AndroidManifest.xml.
codename_to_api_level_map is needed to translate the codename which may be
encountered as the APK's minSdkVersion.
Caller may optionally specify extra args to be passed to SignApk, which
defaults to OPTIONS.extra_signapk_args if omitted.
"""
if codename_to_api_level_map is None:
codename_to_api_level_map = {}
if extra_signapk_args is None:
extra_signapk_args = OPTIONS.extra_signapk_args
java_library_path = os.path.join(
OPTIONS.search_path, OPTIONS.signapk_shared_library_path)
cmd = ([OPTIONS.java_path] + OPTIONS.java_args +
["-Djava.library.path=" + java_library_path,
"-jar", os.path.join(OPTIONS.search_path, OPTIONS.signapk_path)] +
extra_signapk_args)
if whole_file:
cmd.append("-w")
min_sdk_version = min_api_level
if min_sdk_version is None:
if not whole_file:
min_sdk_version = GetMinSdkVersionInt(
input_name, codename_to_api_level_map)
if min_sdk_version is not None:
cmd.extend(["--min-sdk-version", str(min_sdk_version)])
cmd.extend([key + OPTIONS.public_key_suffix,
key + OPTIONS.private_key_suffix,
input_name, output_name])
proc = Run(cmd, stdin=subprocess.PIPE)
if password is not None:
password += "\n"
stdoutdata, _ = proc.communicate(password)
if proc.returncode != 0:
raise ExternalError(
"Failed to run signapk.jar: return code {}:\n{}".format(
proc.returncode, stdoutdata))
def CheckSize(data, target, info_dict):
"""Checks the data string passed against the max size limit.
For non-AVB images, raise exception if the data is too big. Print a warning
if the data is nearing the maximum size.
For AVB images, the actual image size should be identical to the limit.
Args:
data: A string that contains all the data for the partition.
target: The partition name. The ".img" suffix is optional.
info_dict: The dict to be looked up for relevant info.
"""
if target.endswith(".img"):
target = target[:-4]
mount_point = "/" + target
fs_type = None
limit = None
if info_dict["fstab"]:
if mount_point == "/userdata":
mount_point = "/data"
p = info_dict["fstab"][mount_point]
fs_type = p.fs_type
device = p.device
if "/" in device:
device = device[device.rfind("/")+1:]
limit = info_dict.get(device + "_size")
if not fs_type or not limit:
return
size = len(data)
# target could be 'userdata' or 'cache'. They should follow the non-AVB image
# path.
if info_dict.get("avb_enable") == "true" and target in AVB_PARTITIONS:
if size != limit:
raise ExternalError(
"Mismatching image size for %s: expected %d actual %d" % (
target, limit, size))
else:
pct = float(size) * 100.0 / limit
msg = "%s size (%d) is %.2f%% of limit (%d)" % (target, size, pct, limit)
if pct >= 99.0:
raise ExternalError(msg)
elif pct >= 95.0:
logger.warning("\n WARNING: %s\n", msg)
else:
logger.info(" %s", msg)
def ReadApkCerts(tf_zip):
"""Parses the APK certs info from a given target-files zip.
Given a target-files ZipFile, parses the META/apkcerts.txt entry and returns a
tuple with the following elements: (1) a dictionary that maps packages to
certs (based on the "certificate" and "private_key" attributes in the file;
(2) a string representing the extension of compressed APKs in the target files
(e.g ".gz", ".bro").
Args:
tf_zip: The input target_files ZipFile (already open).
Returns:
(certmap, ext): certmap is a dictionary that maps packages to certs; ext is
the extension string of compressed APKs (e.g. ".gz"), or None if there's
no compressed APKs.
"""
certmap = {}
compressed_extension = None
# META/apkcerts.txt contains the info for _all_ the packages known at build
# time. Filter out the ones that are not installed.
installed_files = set()
for name in tf_zip.namelist():
basename = os.path.basename(name)
if basename:
installed_files.add(basename)
for line in tf_zip.read('META/apkcerts.txt').decode().split('\n'):
line = line.strip()
if not line:
continue
m = re.match(
r'^name="(?P<NAME>.*)"\s+certificate="(?P<CERT>.*)"\s+'
r'private_key="(?P<PRIVKEY>.*?)"(\s+compressed="(?P<COMPRESSED>.*?)")?'
r'(\s+partition="(?P<PARTITION>.*?)")?$',
line)
if not m:
continue
matches = m.groupdict()
cert = matches["CERT"]
privkey = matches["PRIVKEY"]
name = matches["NAME"]
this_compressed_extension = matches["COMPRESSED"]
public_key_suffix_len = len(OPTIONS.public_key_suffix)
private_key_suffix_len = len(OPTIONS.private_key_suffix)
if cert in SPECIAL_CERT_STRINGS and not privkey:
certmap[name] = cert
elif (cert.endswith(OPTIONS.public_key_suffix) and
privkey.endswith(OPTIONS.private_key_suffix) and
cert[:-public_key_suffix_len] == privkey[:-private_key_suffix_len]):
certmap[name] = cert[:-public_key_suffix_len]
else:
raise ValueError("Failed to parse line from apkcerts.txt:\n" + line)
if not this_compressed_extension:
continue
# Only count the installed files.
filename = name + '.' + this_compressed_extension
if filename not in installed_files:
continue
# Make sure that all the values in the compression map have the same
# extension. We don't support multiple compression methods in the same
# system image.
if compressed_extension:
if this_compressed_extension != compressed_extension:
raise ValueError(
"Multiple compressed extensions: {} vs {}".format(
compressed_extension, this_compressed_extension))
else:
compressed_extension = this_compressed_extension
return (certmap,
("." + compressed_extension) if compressed_extension else None)
COMMON_DOCSTRING = """
Global options
-p (--path) <dir>
Prepend <dir>/bin to the list of places to search for binaries run by this
script, and expect to find jars in <dir>/framework.
-s (--device_specific) <file>
Path to the Python module containing device-specific releasetools code.
-x (--extra) <key=value>
Add a key/value pair to the 'extras' dict, which device-specific extension
code may look at.
-v (--verbose)
Show command lines being executed.
-h (--help)
Display this usage message and exit.
--logfile <file>
Put verbose logs to specified file (regardless of --verbose option.)
"""
def Usage(docstring):
print(docstring.rstrip("\n"))
print(COMMON_DOCSTRING)
def ParseOptions(argv,
docstring,
extra_opts="", extra_long_opts=(),
extra_option_handler=None):
"""Parse the options in argv and return any arguments that aren't
flags. docstring is the calling module's docstring, to be displayed
for errors and -h. extra_opts and extra_long_opts are for flags
defined by the caller, which are processed by passing them to
extra_option_handler."""
try:
opts, args = getopt.getopt(
argv, "hvp:s:x:" + extra_opts,
["help", "verbose", "path=", "signapk_path=",
"signapk_shared_library_path=", "extra_signapk_args=",
"java_path=", "java_args=", "android_jar_path=", "public_key_suffix=",
"private_key_suffix=", "boot_signer_path=", "boot_signer_args=",
"verity_signer_path=", "verity_signer_args=", "device_specific=",
"extra=", "logfile=", "aftl_server=", "aftl_key_path=",
"aftl_manufacturer_key_path=", "aftl_signer_helper="] +
list(extra_long_opts))
except getopt.GetoptError as err:
Usage(docstring)
print("**", str(err), "**")
sys.exit(2)
for o, a in opts:
if o in ("-h", "--help"):
Usage(docstring)
sys.exit()
elif o in ("-v", "--verbose"):
OPTIONS.verbose = True
elif o in ("-p", "--path"):
OPTIONS.search_path = a
elif o in ("--signapk_path",):
OPTIONS.signapk_path = a
elif o in ("--signapk_shared_library_path",):
OPTIONS.signapk_shared_library_path = a
elif o in ("--extra_signapk_args",):
OPTIONS.extra_signapk_args = shlex.split(a)
elif o in ("--java_path",):
OPTIONS.java_path = a
elif o in ("--java_args",):
OPTIONS.java_args = shlex.split(a)
elif o in ("--android_jar_path",):
OPTIONS.android_jar_path = a
elif o in ("--public_key_suffix",):
OPTIONS.public_key_suffix = a
elif o in ("--private_key_suffix",):
OPTIONS.private_key_suffix = a
elif o in ("--boot_signer_path",):
OPTIONS.boot_signer_path = a
elif o in ("--boot_signer_args",):
OPTIONS.boot_signer_args = shlex.split(a)
elif o in ("--verity_signer_path",):
OPTIONS.verity_signer_path = a
elif o in ("--verity_signer_args",):
OPTIONS.verity_signer_args = shlex.split(a)
elif o in ("--aftl_server",):
OPTIONS.aftl_server = a
elif o in ("--aftl_key_path",):
OPTIONS.aftl_key_path = a
elif o in ("--aftl_manufacturer_key_path",):
OPTIONS.aftl_manufacturer_key_path = a
elif o in ("--aftl_signer_helper",):
OPTIONS.aftl_signer_helper = a
elif o in ("-s", "--device_specific"):
OPTIONS.device_specific = a
elif o in ("-x", "--extra"):
key, value = a.split("=", 1)
OPTIONS.extras[key] = value
elif o in ("--logfile",):
OPTIONS.logfile = a
else:
if extra_option_handler is None or not extra_option_handler(o, a):
assert False, "unknown option \"%s\"" % (o,)
if OPTIONS.search_path:
os.environ["PATH"] = (os.path.join(OPTIONS.search_path, "bin") +
os.pathsep + os.environ["PATH"])
return args
def MakeTempFile(prefix='tmp', suffix=''):
"""Make a temp file and add it to the list of things to be deleted
when Cleanup() is called. Return the filename."""
fd, fn = tempfile.mkstemp(prefix=prefix, suffix=suffix)
os.close(fd)
OPTIONS.tempfiles.append(fn)
return fn
def MakeTempDir(prefix='tmp', suffix=''):
"""Makes a temporary dir that will be cleaned up with a call to Cleanup().
Returns:
The absolute pathname of the new directory.
"""
dir_name = tempfile.mkdtemp(suffix=suffix, prefix=prefix)
OPTIONS.tempfiles.append(dir_name)
return dir_name
def Cleanup():
for i in OPTIONS.tempfiles:
if os.path.isdir(i):
shutil.rmtree(i, ignore_errors=True)
else:
os.remove(i)
del OPTIONS.tempfiles[:]
class PasswordManager(object):
def __init__(self):
self.editor = os.getenv("EDITOR")
self.pwfile = os.getenv("ANDROID_PW_FILE")
def GetPasswords(self, items):
"""Get passwords corresponding to each string in 'items',
returning a dict. (The dict may have keys in addition to the
values in 'items'.)
Uses the passwords in $ANDROID_PW_FILE if available, letting the
user edit that file to add more needed passwords. If no editor is
available, or $ANDROID_PW_FILE isn't define, prompts the user
interactively in the ordinary way.
"""
current = self.ReadFile()
first = True
while True:
missing = []
for i in items:
if i not in current or not current[i]:
missing.append(i)
# Are all the passwords already in the file?
if not missing:
return current
for i in missing:
current[i] = ""
if not first:
print("key file %s still missing some passwords." % (self.pwfile,))
if sys.version_info[0] >= 3:
raw_input = input # pylint: disable=redefined-builtin
answer = raw_input("try to edit again? [y]> ").strip()
if answer and answer[0] not in 'yY':
raise RuntimeError("key passwords unavailable")
first = False
current = self.UpdateAndReadFile(current)
def PromptResult(self, current): # pylint: disable=no-self-use
"""Prompt the user to enter a value (password) for each key in
'current' whose value is fales. Returns a new dict with all the
values.
"""
result = {}
for k, v in sorted(current.items()):
if v:
result[k] = v
else:
while True:
result[k] = getpass.getpass(
"Enter password for %s key> " % k).strip()
if result[k]:
break
return result
def UpdateAndReadFile(self, current):
if not self.editor or not self.pwfile:
return self.PromptResult(current)
f = open(self.pwfile, "w")
os.chmod(self.pwfile, 0o600)
f.write("# Enter key passwords between the [[[ ]]] brackets.\n")
f.write("# (Additional spaces are harmless.)\n\n")
first_line = None
sorted_list = sorted([(not v, k, v) for (k, v) in current.items()])
for i, (_, k, v) in enumerate(sorted_list):
f.write("[[[ %s ]]] %s\n" % (v, k))
if not v and first_line is None:
# position cursor on first line with no password.
first_line = i + 4
f.close()
RunAndCheckOutput([self.editor, "+%d" % (first_line,), self.pwfile])
return self.ReadFile()
def ReadFile(self):
result = {}
if self.pwfile is None:
return result
try:
f = open(self.pwfile, "r")
for line in f:
line = line.strip()
if not line or line[0] == '#':
continue
m = re.match(r"^\[\[\[\s*(.*?)\s*\]\]\]\s*(\S+)$", line)
if not m:
logger.warning("Failed to parse password file: %s", line)
else:
result[m.group(2)] = m.group(1)
f.close()
except IOError as e:
if e.errno != errno.ENOENT:
logger.exception("Error reading password file:")
return result
def ZipWrite(zip_file, filename, arcname=None, perms=0o644,
compress_type=None):
import datetime
# http://b/18015246
# Python 2.7's zipfile implementation wrongly thinks that zip64 is required
# for files larger than 2GiB. We can work around this by adjusting their
# limit. Note that `zipfile.writestr()` will not work for strings larger than
# 2GiB. The Python interpreter sometimes rejects strings that large (though
# it isn't clear to me exactly what circumstances cause this).
# `zipfile.write()` must be used directly to work around this.
#
# This mess can be avoided if we port to python3.
saved_zip64_limit = zipfile.ZIP64_LIMIT
zipfile.ZIP64_LIMIT = (1 << 32) - 1
if compress_type is None:
compress_type = zip_file.compression
if arcname is None:
arcname = filename
saved_stat = os.stat(filename)
try:
# `zipfile.write()` doesn't allow us to pass ZipInfo, so just modify the
# file to be zipped and reset it when we're done.
os.chmod(filename, perms)
# Use a fixed timestamp so the output is repeatable.
# Note: Use of fromtimestamp rather than utcfromtimestamp here is
# intentional. zip stores datetimes in local time without a time zone
# attached, so we need "epoch" but in the local time zone to get 2009/01/01
# in the zip archive.
local_epoch = datetime.datetime.fromtimestamp(0)
timestamp = (datetime.datetime(2009, 1, 1) - local_epoch).total_seconds()
os.utime(filename, (timestamp, timestamp))
zip_file.write(filename, arcname=arcname, compress_type=compress_type)
finally:
os.chmod(filename, saved_stat.st_mode)
os.utime(filename, (saved_stat.st_atime, saved_stat.st_mtime))
zipfile.ZIP64_LIMIT = saved_zip64_limit
def ZipWriteStr(zip_file, zinfo_or_arcname, data, perms=None,
compress_type=None):
"""Wrap zipfile.writestr() function to work around the zip64 limit.
Even with the ZIP64_LIMIT workaround, it won't allow writing a string
longer than 2GiB. It gives 'OverflowError: size does not fit in an int'
when calling crc32(bytes).
But it still works fine to write a shorter string into a large zip file.
We should use ZipWrite() whenever possible, and only use ZipWriteStr()
when we know the string won't be too long.
"""
saved_zip64_limit = zipfile.ZIP64_LIMIT
zipfile.ZIP64_LIMIT = (1 << 32) - 1
if not isinstance(zinfo_or_arcname, zipfile.ZipInfo):
zinfo = zipfile.ZipInfo(filename=zinfo_or_arcname)
zinfo.compress_type = zip_file.compression
if perms is None:
perms = 0o100644
else:
zinfo = zinfo_or_arcname
# Python 2 and 3 behave differently when calling ZipFile.writestr() with
# zinfo.external_attr being 0. Python 3 uses `0o600 << 16` as the value for
# such a case (since
# https://github.com/python/cpython/commit/18ee29d0b870caddc0806916ca2c823254f1a1f9),
# which seems to make more sense. Otherwise the entry will have 0o000 as the
# permission bits. We follow the logic in Python 3 to get consistent
# behavior between using the two versions.
if not zinfo.external_attr:
zinfo.external_attr = 0o600 << 16
# If compress_type is given, it overrides the value in zinfo.
if compress_type is not None:
zinfo.compress_type = compress_type
# If perms is given, it has a priority.
if perms is not None:
# If perms doesn't set the file type, mark it as a regular file.
if perms & 0o770000 == 0:
perms |= 0o100000
zinfo.external_attr = perms << 16
# Use a fixed timestamp so the output is repeatable.
zinfo.date_time = (2009, 1, 1, 0, 0, 0)
zip_file.writestr(zinfo, data)
zipfile.ZIP64_LIMIT = saved_zip64_limit
def ZipDelete(zip_filename, entries):
"""Deletes entries from a ZIP file.
Since deleting entries from a ZIP file is not supported, it shells out to
'zip -d'.
Args:
zip_filename: The name of the ZIP file.
entries: The name of the entry, or the list of names to be deleted.
Raises:
AssertionError: In case of non-zero return from 'zip'.
"""
if isinstance(entries, str):
entries = [entries]
cmd = ["zip", "-d", zip_filename] + entries
RunAndCheckOutput(cmd)
def ZipClose(zip_file):
# http://b/18015246
# zipfile also refers to ZIP64_LIMIT during close() when it writes out the
# central directory.
saved_zip64_limit = zipfile.ZIP64_LIMIT
zipfile.ZIP64_LIMIT = (1 << 32) - 1
zip_file.close()
zipfile.ZIP64_LIMIT = saved_zip64_limit
class DeviceSpecificParams(object):
module = None
def __init__(self, **kwargs):
"""Keyword arguments to the constructor become attributes of this
object, which is passed to all functions in the device-specific
module."""
for k, v in kwargs.items():
setattr(self, k, v)
self.extras = OPTIONS.extras
if self.module is None:
path = OPTIONS.device_specific
if not path:
return
try:
if os.path.isdir(path):
info = imp.find_module("releasetools", [path])
else:
d, f = os.path.split(path)
b, x = os.path.splitext(f)
if x == ".py":
f = b
info = imp.find_module(f, [d])
logger.info("loaded device-specific extensions from %s", path)
self.module = imp.load_module("device_specific", *info)
except ImportError:
logger.info("unable to load device-specific module; assuming none")
def _DoCall(self, function_name, *args, **kwargs):
"""Call the named function in the device-specific module, passing
the given args and kwargs. The first argument to the call will be
the DeviceSpecific object itself. If there is no module, or the
module does not define the function, return the value of the
'default' kwarg (which itself defaults to None)."""
if self.module is None or not hasattr(self.module, function_name):
return kwargs.get("default")
return getattr(self.module, function_name)(*((self,) + args), **kwargs)
def FullOTA_Assertions(self):
"""Called after emitting the block of assertions at the top of a
full OTA package. Implementations can add whatever additional
assertions they like."""
return self._DoCall("FullOTA_Assertions")
def FullOTA_InstallBegin(self):
"""Called at the start of full OTA installation."""
return self._DoCall("FullOTA_InstallBegin")
def FullOTA_GetBlockDifferences(self):
"""Called during full OTA installation and verification.
Implementation should return a list of BlockDifference objects describing
the update on each additional partitions.
"""
return self._DoCall("FullOTA_GetBlockDifferences")
def FullOTA_InstallEnd(self):
"""Called at the end of full OTA installation; typically this is
used to install the image for the device's baseband processor."""
return self._DoCall("FullOTA_InstallEnd")
def IncrementalOTA_Assertions(self):
"""Called after emitting the block of assertions at the top of an
incremental OTA package. Implementations can add whatever
additional assertions they like."""
return self._DoCall("IncrementalOTA_Assertions")
def IncrementalOTA_VerifyBegin(self):
"""Called at the start of the verification phase of incremental
OTA installation; additional checks can be placed here to abort
the script before any changes are made."""
return self._DoCall("IncrementalOTA_VerifyBegin")
def IncrementalOTA_VerifyEnd(self):
"""Called at the end of the verification phase of incremental OTA
installation; additional checks can be placed here to abort the
script before any changes are made."""
return self._DoCall("IncrementalOTA_VerifyEnd")
def IncrementalOTA_InstallBegin(self):
"""Called at the start of incremental OTA installation (after
verification is complete)."""
return self._DoCall("IncrementalOTA_InstallBegin")
def IncrementalOTA_GetBlockDifferences(self):
"""Called during incremental OTA installation and verification.
Implementation should return a list of BlockDifference objects describing
the update on each additional partitions.
"""
return self._DoCall("IncrementalOTA_GetBlockDifferences")
def IncrementalOTA_InstallEnd(self):
"""Called at the end of incremental OTA installation; typically
this is used to install the image for the device's baseband
processor."""
return self._DoCall("IncrementalOTA_InstallEnd")
def VerifyOTA_Assertions(self):
return self._DoCall("VerifyOTA_Assertions")
class File(object):
def __init__(self, name, data, compress_size=None):
self.name = name
self.data = data
self.size = len(data)
self.compress_size = compress_size or self.size
self.sha1 = sha1(data).hexdigest()
@classmethod
def FromLocalFile(cls, name, diskname):
f = open(diskname, "rb")
data = f.read()
f.close()
return File(name, data)
def WriteToTemp(self):
t = tempfile.NamedTemporaryFile()
t.write(self.data)
t.flush()
return t
def WriteToDir(self, d):
with open(os.path.join(d, self.name), "wb") as fp:
fp.write(self.data)
def AddToZip(self, z, compression=None):
ZipWriteStr(z, self.name, self.data, compress_type=compression)
DIFF_PROGRAM_BY_EXT = {
".gz" : "imgdiff",
".zip" : ["imgdiff", "-z"],
".jar" : ["imgdiff", "-z"],
".apk" : ["imgdiff", "-z"],
".img" : "imgdiff",
}
class Difference(object):
def __init__(self, tf, sf, diff_program=None):
self.tf = tf
self.sf = sf
self.patch = None
self.diff_program = diff_program
def ComputePatch(self):
"""Compute the patch (as a string of data) needed to turn sf into
tf. Returns the same tuple as GetPatch()."""
tf = self.tf
sf = self.sf
if self.diff_program:
diff_program = self.diff_program
else:
ext = os.path.splitext(tf.name)[1]
diff_program = DIFF_PROGRAM_BY_EXT.get(ext, "bsdiff")
ttemp = tf.WriteToTemp()
stemp = sf.WriteToTemp()
ext = os.path.splitext(tf.name)[1]
try:
ptemp = tempfile.NamedTemporaryFile()
if isinstance(diff_program, list):
cmd = copy.copy(diff_program)
else:
cmd = [diff_program]
cmd.append(stemp.name)
cmd.append(ttemp.name)
cmd.append(ptemp.name)
p = Run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
err = []
def run():
_, e = p.communicate()
if e:
err.append(e)
th = threading.Thread(target=run)
th.start()
th.join(timeout=300) # 5 mins
if th.is_alive():
logger.warning("diff command timed out")
p.terminate()
th.join(5)
if th.is_alive():
p.kill()
th.join()
if p.returncode != 0:
logger.warning("Failure running %s:\n%s\n", diff_program, "".join(err))
self.patch = None
return None, None, None
diff = ptemp.read()
finally:
ptemp.close()
stemp.close()
ttemp.close()
self.patch = diff
return self.tf, self.sf, self.patch
def GetPatch(self):
"""Returns a tuple of (target_file, source_file, patch_data).
patch_data may be None if ComputePatch hasn't been called, or if
computing the patch failed.
"""
return self.tf, self.sf, self.patch
def ComputeDifferences(diffs):
"""Call ComputePatch on all the Difference objects in 'diffs'."""
logger.info("%d diffs to compute", len(diffs))
# Do the largest files first, to try and reduce the long-pole effect.
by_size = [(i.tf.size, i) for i in diffs]
by_size.sort(reverse=True)
by_size = [i[1] for i in by_size]
lock = threading.Lock()
diff_iter = iter(by_size) # accessed under lock
def worker():
try:
lock.acquire()
for d in diff_iter:
lock.release()
start = time.time()
d.ComputePatch()
dur = time.time() - start
lock.acquire()
tf, sf, patch = d.GetPatch()
if sf.name == tf.name:
name = tf.name
else:
name = "%s (%s)" % (tf.name, sf.name)
if patch is None:
logger.error("patching failed! %40s", name)
else:
logger.info(
"%8.2f sec %8d / %8d bytes (%6.2f%%) %s", dur, len(patch),
tf.size, 100.0 * len(patch) / tf.size, name)
lock.release()
except Exception:
logger.exception("Failed to compute diff from worker")
raise
# start worker threads; wait for them all to finish.
threads = [threading.Thread(target=worker)
for i in range(OPTIONS.worker_threads)]
for th in threads:
th.start()
while threads:
threads.pop().join()
class BlockDifference(object):
def __init__(self, partition, tgt, src=None, check_first_block=False,
version=None, disable_imgdiff=False):
self.tgt = tgt
self.src = src
self.partition = partition
self.check_first_block = check_first_block
self.disable_imgdiff = disable_imgdiff
if version is None:
version = max(
int(i) for i in
OPTIONS.info_dict.get("blockimgdiff_versions", "1").split(","))
assert version >= 3
self.version = version
b = BlockImageDiff(tgt, src, threads=OPTIONS.worker_threads,
version=self.version,
disable_imgdiff=self.disable_imgdiff)
self.path = os.path.join(MakeTempDir(), partition)
b.Compute(self.path)
self._required_cache = b.max_stashed_size
self.touched_src_ranges = b.touched_src_ranges
self.touched_src_sha1 = b.touched_src_sha1
# On devices with dynamic partitions, for new partitions,
# src is None but OPTIONS.source_info_dict is not.
if OPTIONS.source_info_dict is None:
is_dynamic_build = OPTIONS.info_dict.get(
"use_dynamic_partitions") == "true"
is_dynamic_source = False
else:
is_dynamic_build = OPTIONS.source_info_dict.get(
"use_dynamic_partitions") == "true"
is_dynamic_source = partition in shlex.split(
OPTIONS.source_info_dict.get("dynamic_partition_list", "").strip())
is_dynamic_target = partition in shlex.split(
OPTIONS.info_dict.get("dynamic_partition_list", "").strip())
# For dynamic partitions builds, check partition list in both source
# and target build because new partitions may be added, and existing
# partitions may be removed.
is_dynamic = is_dynamic_build and (is_dynamic_source or is_dynamic_target)
if is_dynamic:
self.device = 'map_partition("%s")' % partition
else:
if OPTIONS.source_info_dict is None:
_, device_expr = GetTypeAndDeviceExpr("/" + partition,
OPTIONS.info_dict)
else:
_, device_expr = GetTypeAndDeviceExpr("/" + partition,
OPTIONS.source_info_dict)
self.device = device_expr
@property
def required_cache(self):
return self._required_cache
def WriteScript(self, script, output_zip, progress=None,
write_verify_script=False):
if not self.src:
# write the output unconditionally
script.Print("Patching %s image unconditionally..." % (self.partition,))
else:
script.Print("Patching %s image after verification." % (self.partition,))
if progress:
script.ShowProgress(progress, 0)
self._WriteUpdate(script, output_zip)
if write_verify_script:
self.WritePostInstallVerifyScript(script)
def WriteStrictVerifyScript(self, script):
"""Verify all the blocks in the care_map, including clobbered blocks.
This differs from the WriteVerifyScript() function: a) it prints different
error messages; b) it doesn't allow half-way updated images to pass the
verification."""
partition = self.partition
script.Print("Verifying %s..." % (partition,))
ranges = self.tgt.care_map
ranges_str = ranges.to_string_raw()
script.AppendExtra(
'range_sha1(%s, "%s") == "%s" && ui_print(" Verified.") || '
'ui_print("%s has unexpected contents.");' % (
self.device, ranges_str,
self.tgt.TotalSha1(include_clobbered_blocks=True),
self.partition))
script.AppendExtra("")
def WriteVerifyScript(self, script, touched_blocks_only=False):
partition = self.partition
# full OTA
if not self.src:
script.Print("Image %s will be patched unconditionally." % (partition,))
# incremental OTA
else:
if touched_blocks_only:
ranges = self.touched_src_ranges
expected_sha1 = self.touched_src_sha1
else:
ranges = self.src.care_map.subtract(self.src.clobbered_blocks)
expected_sha1 = self.src.TotalSha1()
# No blocks to be checked, skipping.
if not ranges:
return
ranges_str = ranges.to_string_raw()
script.AppendExtra(
'if (range_sha1(%s, "%s") == "%s" || block_image_verify(%s, '
'package_extract_file("%s.transfer.list"), "%s.new.dat", '
'"%s.patch.dat")) then' % (
self.device, ranges_str, expected_sha1,
self.device, partition, partition, partition))
script.Print('Verified %s image...' % (partition,))
script.AppendExtra('else')
if self.version >= 4:
# Bug: 21124327
# When generating incrementals for the system and vendor partitions in
# version 4 or newer, explicitly check the first block (which contains
# the superblock) of the partition to see if it's what we expect. If
# this check fails, give an explicit log message about the partition
# having been remounted R/W (the most likely explanation).
if self.check_first_block:
script.AppendExtra('check_first_block(%s);' % (self.device,))
# If version >= 4, try block recovery before abort update
if partition == "system":
code = ErrorCode.SYSTEM_RECOVER_FAILURE
else:
code = ErrorCode.VENDOR_RECOVER_FAILURE
script.AppendExtra((
'ifelse (block_image_recover({device}, "{ranges}") && '
'block_image_verify({device}, '
'package_extract_file("{partition}.transfer.list"), '
'"{partition}.new.dat", "{partition}.patch.dat"), '
'ui_print("{partition} recovered successfully."), '
'abort("E{code}: {partition} partition fails to recover"));\n'
'endif;').format(device=self.device, ranges=ranges_str,
partition=partition, code=code))
# Abort the OTA update. Note that the incremental OTA cannot be applied
# even if it may match the checksum of the target partition.
# a) If version < 3, operations like move and erase will make changes
# unconditionally and damage the partition.
# b) If version >= 3, it won't even reach here.
else:
if partition == "system":
code = ErrorCode.SYSTEM_VERIFICATION_FAILURE
else:
code = ErrorCode.VENDOR_VERIFICATION_FAILURE
script.AppendExtra((
'abort("E%d: %s partition has unexpected contents");\n'
'endif;') % (code, partition))
def WritePostInstallVerifyScript(self, script):
partition = self.partition
script.Print('Verifying the updated %s image...' % (partition,))
# Unlike pre-install verification, clobbered_blocks should not be ignored.
ranges = self.tgt.care_map
ranges_str = ranges.to_string_raw()
script.AppendExtra(
'if range_sha1(%s, "%s") == "%s" then' % (
self.device, ranges_str,
self.tgt.TotalSha1(include_clobbered_blocks=True)))
# Bug: 20881595
# Verify that extended blocks are really zeroed out.
if self.tgt.extended:
ranges_str = self.tgt.extended.to_string_raw()
script.AppendExtra(
'if range_sha1(%s, "%s") == "%s" then' % (
self.device, ranges_str,
self._HashZeroBlocks(self.tgt.extended.size())))
script.Print('Verified the updated %s image.' % (partition,))
if partition == "system":
code = ErrorCode.SYSTEM_NONZERO_CONTENTS
else:
code = ErrorCode.VENDOR_NONZERO_CONTENTS
script.AppendExtra(
'else\n'
' abort("E%d: %s partition has unexpected non-zero contents after '
'OTA update");\n'
'endif;' % (code, partition))
else:
script.Print('Verified the updated %s image.' % (partition,))
if partition == "system":
code = ErrorCode.SYSTEM_UNEXPECTED_CONTENTS
else:
code = ErrorCode.VENDOR_UNEXPECTED_CONTENTS
script.AppendExtra(
'else\n'
' abort("E%d: %s partition has unexpected contents after OTA '
'update");\n'
'endif;' % (code, partition))
def _WriteUpdate(self, script, output_zip):
ZipWrite(output_zip,
'{}.transfer.list'.format(self.path),
'{}.transfer.list'.format(self.partition))
# For full OTA, compress the new.dat with brotli with quality 6 to reduce
# its size. Quailty 9 almost triples the compression time but doesn't
# further reduce the size too much. For a typical 1.8G system.new.dat
# zip | brotli(quality 6) | brotli(quality 9)
# compressed_size: 942M | 869M (~8% reduced) | 854M
# compression_time: 75s | 265s | 719s
# decompression_time: 15s | 25s | 25s
if not self.src:
brotli_cmd = ['brotli', '--quality=6',
'--output={}.new.dat.br'.format(self.path),
'{}.new.dat'.format(self.path)]
print("Compressing {}.new.dat with brotli".format(self.partition))
RunAndCheckOutput(brotli_cmd)
new_data_name = '{}.new.dat.br'.format(self.partition)
ZipWrite(output_zip,
'{}.new.dat.br'.format(self.path),
new_data_name,
compress_type=zipfile.ZIP_STORED)
else:
new_data_name = '{}.new.dat'.format(self.partition)
ZipWrite(output_zip, '{}.new.dat'.format(self.path), new_data_name)
ZipWrite(output_zip,
'{}.patch.dat'.format(self.path),
'{}.patch.dat'.format(self.partition),
compress_type=zipfile.ZIP_STORED)
if self.partition == "system":
code = ErrorCode.SYSTEM_UPDATE_FAILURE
else:
code = ErrorCode.VENDOR_UPDATE_FAILURE
call = ('block_image_update({device}, '
'package_extract_file("{partition}.transfer.list"), '
'"{new_data_name}", "{partition}.patch.dat") ||\n'
' abort("E{code}: Failed to update {partition} image.");'.format(
device=self.device, partition=self.partition,
new_data_name=new_data_name, code=code))
script.AppendExtra(script.WordWrap(call))
def _HashBlocks(self, source, ranges): # pylint: disable=no-self-use
data = source.ReadRangeSet(ranges)
ctx = sha1()
for p in data:
ctx.update(p)
return ctx.hexdigest()
def _HashZeroBlocks(self, num_blocks): # pylint: disable=no-self-use
"""Return the hash value for all zero blocks."""
zero_block = '\x00' * 4096
ctx = sha1()
for _ in range(num_blocks):
ctx.update(zero_block)
return ctx.hexdigest()
# Expose these two classes to support vendor-specific scripts
DataImage = images.DataImage
EmptyImage = images.EmptyImage
# map recovery.fstab's fs_types to mount/format "partition types"
PARTITION_TYPES = {
"ext4": "EMMC",
"emmc": "EMMC",
"f2fs": "EMMC",
"squashfs": "EMMC"
}
def GetTypeAndDevice(mount_point, info, check_no_slot=True):
"""
Use GetTypeAndDeviceExpr whenever possible. This function is kept for
backwards compatibility. It aborts if the fstab entry has slotselect option
(unless check_no_slot is explicitly set to False).
"""
fstab = info["fstab"]
if fstab:
if check_no_slot:
assert not fstab[mount_point].slotselect, \
"Use GetTypeAndDeviceExpr instead"
return (PARTITION_TYPES[fstab[mount_point].fs_type],
fstab[mount_point].device)
else:
raise KeyError
def GetTypeAndDeviceExpr(mount_point, info):
"""
Return the filesystem of the partition, and an edify expression that evaluates
to the device at runtime.
"""
fstab = info["fstab"]
if fstab:
p = fstab[mount_point]
device_expr = '"%s"' % fstab[mount_point].device
if p.slotselect:
device_expr = 'add_slot_suffix(%s)' % device_expr
return (PARTITION_TYPES[fstab[mount_point].fs_type], device_expr)
else:
raise KeyError
def GetEntryForDevice(fstab, device):
"""
Returns:
The first entry in fstab whose device is the given value.
"""
if not fstab:
return None
for mount_point in fstab:
if fstab[mount_point].device == device:
return fstab[mount_point]
return None
def ParseCertificate(data):
"""Parses and converts a PEM-encoded certificate into DER-encoded.
This gives the same result as `openssl x509 -in <filename> -outform DER`.
Returns:
The decoded certificate bytes.
"""
cert_buffer = []
save = False
for line in data.split("\n"):
if "--END CERTIFICATE--" in line:
break
if save:
cert_buffer.append(line)
if "--BEGIN CERTIFICATE--" in line:
save = True
cert = base64.b64decode("".join(cert_buffer))
return cert
def ExtractPublicKey(cert):
"""Extracts the public key (PEM-encoded) from the given certificate file.
Args:
cert: The certificate filename.
Returns:
The public key string.
Raises:
AssertionError: On non-zero return from 'openssl'.
"""
# The behavior with '-out' is different between openssl 1.1 and openssl 1.0.
# While openssl 1.1 writes the key into the given filename followed by '-out',
# openssl 1.0 (both of 1.0.1 and 1.0.2) doesn't. So we collect the output from
# stdout instead.
cmd = ['openssl', 'x509', '-pubkey', '-noout', '-in', cert]
proc = Run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
pubkey, stderrdata = proc.communicate()
assert proc.returncode == 0, \
'Failed to dump public key from certificate: %s\n%s' % (cert, stderrdata)
return pubkey
def ExtractAvbPublicKey(avbtool, key):
"""Extracts the AVB public key from the given public or private key.
Args:
avbtool: The AVB tool to use.
key: The input key file, which should be PEM-encoded public or private key.
Returns:
The path to the extracted AVB public key file.
"""
output = MakeTempFile(prefix='avb-', suffix='.avbpubkey')
RunAndCheckOutput(