blob: 7985fc0c639c15f97d9ac842d0be2b65ae86535d [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/statfs.h>
#include <sys/types.h>
#include <unistd.h>
#include <memory>
#include <string>
#include <android-base/strings.h>
#include "openssl/sha.h"
#include "applypatch.h"
#include "mtdutils/mtdutils.h"
#include "edify/expr.h"
#include "ota_io.h"
#include "print_sha1.h"
static int LoadPartitionContents(const char* filename, FileContents* file);
static ssize_t FileSink(const unsigned char* data, ssize_t len, void* token);
static int GenerateTarget(FileContents* source_file,
const Value* source_patch_value,
FileContents* copy_file,
const Value* copy_patch_value,
const char* source_filename,
const char* target_filename,
const uint8_t target_sha1[SHA_DIGEST_LENGTH],
size_t target_size,
const Value* bonus_data);
static bool mtd_partitions_scanned = false;
// Read a file into memory; store the file contents and associated
// metadata in *file.
//
// Return 0 on success.
int LoadFileContents(const char* filename, FileContents* file) {
// A special 'filename' beginning with "MTD:" or "EMMC:" means to
// load the contents of a partition.
if (strncmp(filename, "MTD:", 4) == 0 ||
strncmp(filename, "EMMC:", 5) == 0) {
return LoadPartitionContents(filename, file);
}
if (stat(filename, &file->st) != 0) {
printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
return -1;
}
std::vector<unsigned char> data(file->st.st_size);
FILE* f = ota_fopen(filename, "rb");
if (f == NULL) {
printf("failed to open \"%s\": %s\n", filename, strerror(errno));
return -1;
}
size_t bytes_read = ota_fread(data.data(), 1, data.size(), f);
if (bytes_read != data.size()) {
printf("short read of \"%s\" (%zu bytes of %zd)\n", filename, bytes_read, data.size());
ota_fclose(f);
return -1;
}
ota_fclose(f);
file->data = std::move(data);
SHA1(file->data.data(), file->data.size(), file->sha1);
return 0;
}
// Load the contents of an MTD or EMMC partition into the provided
// FileContents. filename should be a string of the form
// "MTD:<partition_name>:<size_1>:<sha1_1>:<size_2>:<sha1_2>:..." (or
// "EMMC:<partition_device>:..."). The smallest size_n bytes for
// which that prefix of the partition contents has the corresponding
// sha1 hash will be loaded. It is acceptable for a size value to be
// repeated with different sha1s. Will return 0 on success.
//
// This complexity is needed because if an OTA installation is
// interrupted, the partition might contain either the source or the
// target data, which might be of different lengths. We need to know
// the length in order to read from a partition (there is no
// "end-of-file" marker), so the caller must specify the possible
// lengths and the hash of the data, and we'll do the load expecting
// to find one of those hashes.
enum PartitionType { MTD, EMMC };
static int LoadPartitionContents(const char* filename, FileContents* file) {
std::string copy(filename);
std::vector<std::string> pieces = android::base::Split(copy, ":");
if (pieces.size() < 4 || pieces.size() % 2 != 0) {
printf("LoadPartitionContents called with bad filename (%s)\n", filename);
return -1;
}
enum PartitionType type;
if (pieces[0] == "MTD") {
type = MTD;
} else if (pieces[0] == "EMMC") {
type = EMMC;
} else {
printf("LoadPartitionContents called with bad filename (%s)\n", filename);
return -1;
}
const char* partition = pieces[1].c_str();
size_t pairs = (pieces.size() - 2) / 2; // # of (size, sha1) pairs in filename
std::vector<size_t> index(pairs);
std::vector<size_t> size(pairs);
std::vector<std::string> sha1sum(pairs);
for (size_t i = 0; i < pairs; ++i) {
size[i] = strtol(pieces[i*2+2].c_str(), NULL, 10);
if (size[i] == 0) {
printf("LoadPartitionContents called with bad size (%s)\n", filename);
return -1;
}
sha1sum[i] = pieces[i*2+3].c_str();
index[i] = i;
}
// Sort the index[] array so it indexes the pairs in order of increasing size.
sort(index.begin(), index.end(),
[&](const size_t& i, const size_t& j) {
return (size[i] < size[j]);
}
);
MtdReadContext* ctx = NULL;
FILE* dev = NULL;
switch (type) {
case MTD: {
if (!mtd_partitions_scanned) {
mtd_scan_partitions();
mtd_partitions_scanned = true;
}
const MtdPartition* mtd = mtd_find_partition_by_name(partition);
if (mtd == NULL) {
printf("mtd partition \"%s\" not found (loading %s)\n", partition, filename);
return -1;
}
ctx = mtd_read_partition(mtd);
if (ctx == NULL) {
printf("failed to initialize read of mtd partition \"%s\"\n", partition);
return -1;
}
break;
}
case EMMC:
dev = ota_fopen(partition, "rb");
if (dev == NULL) {
printf("failed to open emmc partition \"%s\": %s\n", partition, strerror(errno));
return -1;
}
}
SHA_CTX sha_ctx;
SHA1_Init(&sha_ctx);
uint8_t parsed_sha[SHA_DIGEST_LENGTH];
// Allocate enough memory to hold the largest size.
std::vector<unsigned char> data(size[index[pairs-1]]);
char* p = reinterpret_cast<char*>(data.data());
size_t data_size = 0; // # bytes read so far
bool found = false;
for (size_t i = 0; i < pairs; ++i) {
// Read enough additional bytes to get us up to the next size. (Again,
// we're trying the possibilities in order of increasing size).
size_t next = size[index[i]] - data_size;
if (next > 0) {
size_t read = 0;
switch (type) {
case MTD:
read = mtd_read_data(ctx, p, next);
break;
case EMMC:
read = ota_fread(p, 1, next, dev);
break;
}
if (next != read) {
printf("short read (%zu bytes of %zu) for partition \"%s\"\n",
read, next, partition);
return -1;
}
SHA1_Update(&sha_ctx, p, read);
data_size += read;
p += read;
}
// Duplicate the SHA context and finalize the duplicate so we can
// check it against this pair's expected hash.
SHA_CTX temp_ctx;
memcpy(&temp_ctx, &sha_ctx, sizeof(SHA_CTX));
uint8_t sha_so_far[SHA_DIGEST_LENGTH];
SHA1_Final(sha_so_far, &temp_ctx);
if (ParseSha1(sha1sum[index[i]].c_str(), parsed_sha) != 0) {
printf("failed to parse sha1 %s in %s\n", sha1sum[index[i]].c_str(), filename);
return -1;
}
if (memcmp(sha_so_far, parsed_sha, SHA_DIGEST_LENGTH) == 0) {
// we have a match. stop reading the partition; we'll return
// the data we've read so far.
printf("partition read matched size %zu sha %s\n",
size[index[i]], sha1sum[index[i]].c_str());
found = true;
break;
}
}
switch (type) {
case MTD:
mtd_read_close(ctx);
break;
case EMMC:
ota_fclose(dev);
break;
}
if (!found) {
// Ran off the end of the list of (size,sha1) pairs without finding a match.
printf("contents of partition \"%s\" didn't match %s\n", partition, filename);
return -1;
}
SHA1_Final(file->sha1, &sha_ctx);
data.resize(data_size);
file->data = std::move(data);
// Fake some stat() info.
file->st.st_mode = 0644;
file->st.st_uid = 0;
file->st.st_gid = 0;
return 0;
}
// Save the contents of the given FileContents object under the given
// filename. Return 0 on success.
int SaveFileContents(const char* filename, const FileContents* file) {
int fd = ota_open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_SYNC, S_IRUSR | S_IWUSR);
if (fd < 0) {
printf("failed to open \"%s\" for write: %s\n", filename, strerror(errno));
return -1;
}
ssize_t bytes_written = FileSink(file->data.data(), file->data.size(), &fd);
if (bytes_written != static_cast<ssize_t>(file->data.size())) {
printf("short write of \"%s\" (%zd bytes of %zu) (%s)\n",
filename, bytes_written, file->data.size(), strerror(errno));
ota_close(fd);
return -1;
}
if (ota_fsync(fd) != 0) {
printf("fsync of \"%s\" failed: %s\n", filename, strerror(errno));
return -1;
}
if (ota_close(fd) != 0) {
printf("close of \"%s\" failed: %s\n", filename, strerror(errno));
return -1;
}
if (chmod(filename, file->st.st_mode) != 0) {
printf("chmod of \"%s\" failed: %s\n", filename, strerror(errno));
return -1;
}
if (chown(filename, file->st.st_uid, file->st.st_gid) != 0) {
printf("chown of \"%s\" failed: %s\n", filename, strerror(errno));
return -1;
}
return 0;
}
// Write a memory buffer to 'target' partition, a string of the form
// "MTD:<partition>[:...]" or "EMMC:<partition_device>[:...]". The target name
// might contain multiple colons, but WriteToPartition() only uses the first
// two and ignores the rest. Return 0 on success.
int WriteToPartition(const unsigned char* data, size_t len, const char* target) {
std::string copy(target);
std::vector<std::string> pieces = android::base::Split(copy, ":");
if (pieces.size() < 2) {
printf("WriteToPartition called with bad target (%s)\n", target);
return -1;
}
enum PartitionType type;
if (pieces[0] == "MTD") {
type = MTD;
} else if (pieces[0] == "EMMC") {
type = EMMC;
} else {
printf("WriteToPartition called with bad target (%s)\n", target);
return -1;
}
const char* partition = pieces[1].c_str();
switch (type) {
case MTD: {
if (!mtd_partitions_scanned) {
mtd_scan_partitions();
mtd_partitions_scanned = true;
}
const MtdPartition* mtd = mtd_find_partition_by_name(partition);
if (mtd == NULL) {
printf("mtd partition \"%s\" not found for writing\n", partition);
return -1;
}
MtdWriteContext* ctx = mtd_write_partition(mtd);
if (ctx == NULL) {
printf("failed to init mtd partition \"%s\" for writing\n", partition);
return -1;
}
size_t written = mtd_write_data(ctx, reinterpret_cast<const char*>(data), len);
if (written != len) {
printf("only wrote %zu of %zu bytes to MTD %s\n", written, len, partition);
mtd_write_close(ctx);
return -1;
}
if (mtd_erase_blocks(ctx, -1) < 0) {
printf("error finishing mtd write of %s\n", partition);
mtd_write_close(ctx);
return -1;
}
if (mtd_write_close(ctx)) {
printf("error closing mtd write of %s\n", partition);
return -1;
}
break;
}
case EMMC: {
size_t start = 0;
bool success = false;
int fd = ota_open(partition, O_RDWR | O_SYNC);
if (fd < 0) {
printf("failed to open %s: %s\n", partition, strerror(errno));
return -1;
}
for (size_t attempt = 0; attempt < 2; ++attempt) {
if (TEMP_FAILURE_RETRY(lseek(fd, start, SEEK_SET)) == -1) {
printf("failed seek on %s: %s\n", partition, strerror(errno));
return -1;
}
while (start < len) {
size_t to_write = len - start;
if (to_write > 1<<20) to_write = 1<<20;
ssize_t written = TEMP_FAILURE_RETRY(ota_write(fd, data+start, to_write));
if (written == -1) {
printf("failed write writing to %s: %s\n", partition, strerror(errno));
return -1;
}
start += written;
}
if (ota_fsync(fd) != 0) {
printf("failed to sync to %s (%s)\n", partition, strerror(errno));
return -1;
}
if (ota_close(fd) != 0) {
printf("failed to close %s (%s)\n", partition, strerror(errno));
return -1;
}
fd = ota_open(partition, O_RDONLY);
if (fd < 0) {
printf("failed to reopen %s for verify (%s)\n", partition, strerror(errno));
return -1;
}
// Drop caches so our subsequent verification read
// won't just be reading the cache.
sync();
int dc = ota_open("/proc/sys/vm/drop_caches", O_WRONLY);
if (TEMP_FAILURE_RETRY(ota_write(dc, "3\n", 2)) == -1) {
printf("write to /proc/sys/vm/drop_caches failed: %s\n", strerror(errno));
} else {
printf(" caches dropped\n");
}
ota_close(dc);
sleep(1);
// verify
if (TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)) == -1) {
printf("failed to seek back to beginning of %s: %s\n",
partition, strerror(errno));
return -1;
}
unsigned char buffer[4096];
start = len;
for (size_t p = 0; p < len; p += sizeof(buffer)) {
size_t to_read = len - p;
if (to_read > sizeof(buffer)) {
to_read = sizeof(buffer);
}
size_t so_far = 0;
while (so_far < to_read) {
ssize_t read_count =
TEMP_FAILURE_RETRY(ota_read(fd, buffer+so_far, to_read-so_far));
if (read_count == -1) {
printf("verify read error %s at %zu: %s\n",
partition, p, strerror(errno));
return -1;
}
if (static_cast<size_t>(read_count) < to_read) {
printf("short verify read %s at %zu: %zd %zu %s\n",
partition, p, read_count, to_read, strerror(errno));
}
so_far += read_count;
}
if (memcmp(buffer, data+p, to_read) != 0) {
printf("verification failed starting at %zu\n", p);
start = p;
break;
}
}
if (start == len) {
printf("verification read succeeded (attempt %zu)\n", attempt+1);
success = true;
break;
}
}
if (!success) {
printf("failed to verify after all attempts\n");
return -1;
}
if (ota_close(fd) != 0) {
printf("error closing %s (%s)\n", partition, strerror(errno));
return -1;
}
sync();
break;
}
}
return 0;
}
// Take a string 'str' of 40 hex digits and parse it into the 20
// byte array 'digest'. 'str' may contain only the digest or be of
// the form "<digest>:<anything>". Return 0 on success, -1 on any
// error.
int ParseSha1(const char* str, uint8_t* digest) {
const char* ps = str;
uint8_t* pd = digest;
for (int i = 0; i < SHA_DIGEST_LENGTH * 2; ++i, ++ps) {
int digit;
if (*ps >= '0' && *ps <= '9') {
digit = *ps - '0';
} else if (*ps >= 'a' && *ps <= 'f') {
digit = *ps - 'a' + 10;
} else if (*ps >= 'A' && *ps <= 'F') {
digit = *ps - 'A' + 10;
} else {
return -1;
}
if (i % 2 == 0) {
*pd = digit << 4;
} else {
*pd |= digit;
++pd;
}
}
if (*ps != '\0') return -1;
return 0;
}
// Search an array of sha1 strings for one matching the given sha1.
// Return the index of the match on success, or -1 if no match is
// found.
int FindMatchingPatch(uint8_t* sha1, char* const * const patch_sha1_str,
int num_patches) {
uint8_t patch_sha1[SHA_DIGEST_LENGTH];
for (int i = 0; i < num_patches; ++i) {
if (ParseSha1(patch_sha1_str[i], patch_sha1) == 0 &&
memcmp(patch_sha1, sha1, SHA_DIGEST_LENGTH) == 0) {
return i;
}
}
return -1;
}
// Returns 0 if the contents of the file (argv[2]) or the cached file
// match any of the sha1's on the command line (argv[3:]). Returns
// nonzero otherwise.
int applypatch_check(const char* filename, int num_patches,
char** const patch_sha1_str) {
FileContents file;
// It's okay to specify no sha1s; the check will pass if the
// LoadFileContents is successful. (Useful for reading
// partitions, where the filename encodes the sha1s; no need to
// check them twice.)
if (LoadFileContents(filename, &file) != 0 ||
(num_patches > 0 &&
FindMatchingPatch(file.sha1, patch_sha1_str, num_patches) < 0)) {
printf("file \"%s\" doesn't have any of expected "
"sha1 sums; checking cache\n", filename);
// If the source file is missing or corrupted, it might be because
// we were killed in the middle of patching it. A copy of it
// should have been made in CACHE_TEMP_SOURCE. If that file
// exists and matches the sha1 we're looking for, the check still
// passes.
if (LoadFileContents(CACHE_TEMP_SOURCE, &file) != 0) {
printf("failed to load cache file\n");
return 1;
}
if (FindMatchingPatch(file.sha1, patch_sha1_str, num_patches) < 0) {
printf("cache bits don't match any sha1 for \"%s\"\n", filename);
return 1;
}
}
return 0;
}
int ShowLicenses() {
ShowBSDiffLicense();
return 0;
}
ssize_t FileSink(const unsigned char* data, ssize_t len, void* token) {
int fd = *static_cast<int*>(token);
ssize_t done = 0;
ssize_t wrote;
while (done < len) {
wrote = TEMP_FAILURE_RETRY(ota_write(fd, data+done, len-done));
if (wrote == -1) {
printf("error writing %zd bytes: %s\n", (len-done), strerror(errno));
return done;
}
done += wrote;
}
return done;
}
ssize_t MemorySink(const unsigned char* data, ssize_t len, void* token) {
std::string* s = static_cast<std::string*>(token);
s->append(reinterpret_cast<const char*>(data), len);
return len;
}
// Return the amount of free space (in bytes) on the filesystem
// containing filename. filename must exist. Return -1 on error.
size_t FreeSpaceForFile(const char* filename) {
struct statfs sf;
if (statfs(filename, &sf) != 0) {
printf("failed to statfs %s: %s\n", filename, strerror(errno));
return -1;
}
return sf.f_bsize * sf.f_bavail;
}
int CacheSizeCheck(size_t bytes) {
if (MakeFreeSpaceOnCache(bytes) < 0) {
printf("unable to make %ld bytes available on /cache\n", (long)bytes);
return 1;
} else {
return 0;
}
}
// This function applies binary patches to files in a way that is safe
// (the original file is not touched until we have the desired
// replacement for it) and idempotent (it's okay to run this program
// multiple times).
//
// - if the sha1 hash of <target_filename> is <target_sha1_string>,
// does nothing and exits successfully.
//
// - otherwise, if the sha1 hash of <source_filename> is one of the
// entries in <patch_sha1_str>, the corresponding patch from
// <patch_data> (which must be a VAL_BLOB) is applied to produce a
// new file (the type of patch is automatically detected from the
// blob data). If that new file has sha1 hash <target_sha1_str>,
// moves it to replace <target_filename>, and exits successfully.
// Note that if <source_filename> and <target_filename> are not the
// same, <source_filename> is NOT deleted on success.
// <target_filename> may be the string "-" to mean "the same as
// source_filename".
//
// - otherwise, or if any error is encountered, exits with non-zero
// status.
//
// <source_filename> may refer to a partition to read the source data.
// See the comments for the LoadPartitionContents() function above
// for the format of such a filename.
int applypatch(const char* source_filename,
const char* target_filename,
const char* target_sha1_str,
size_t target_size,
int num_patches,
char** const patch_sha1_str,
Value** patch_data,
Value* bonus_data) {
printf("patch %s: ", source_filename);
if (target_filename[0] == '-' && target_filename[1] == '\0') {
target_filename = source_filename;
}
uint8_t target_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(target_sha1_str, target_sha1) != 0) {
printf("failed to parse tgt-sha1 \"%s\"\n", target_sha1_str);
return 1;
}
FileContents copy_file;
FileContents source_file;
const Value* source_patch_value = NULL;
const Value* copy_patch_value = NULL;
// We try to load the target file into the source_file object.
if (LoadFileContents(target_filename, &source_file) == 0) {
if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) {
// The early-exit case: the patch was already applied, this file
// has the desired hash, nothing for us to do.
printf("already %s\n", short_sha1(target_sha1).c_str());
return 0;
}
}
if (source_file.data.empty() ||
(target_filename != source_filename &&
strcmp(target_filename, source_filename) != 0)) {
// Need to load the source file: either we failed to load the
// target file, or we did but it's different from the source file.
source_file.data.clear();
LoadFileContents(source_filename, &source_file);
}
if (!source_file.data.empty()) {
int to_use = FindMatchingPatch(source_file.sha1, patch_sha1_str, num_patches);
if (to_use >= 0) {
source_patch_value = patch_data[to_use];
}
}
if (source_patch_value == NULL) {
source_file.data.clear();
printf("source file is bad; trying copy\n");
if (LoadFileContents(CACHE_TEMP_SOURCE, &copy_file) < 0) {
// fail.
printf("failed to read copy file\n");
return 1;
}
int to_use = FindMatchingPatch(copy_file.sha1, patch_sha1_str, num_patches);
if (to_use >= 0) {
copy_patch_value = patch_data[to_use];
}
if (copy_patch_value == NULL) {
// fail.
printf("copy file doesn't match source SHA-1s either\n");
return 1;
}
}
return GenerateTarget(&source_file, source_patch_value,
&copy_file, copy_patch_value,
source_filename, target_filename,
target_sha1, target_size, bonus_data);
}
/*
* This function flashes a given image to the target partition. It verifies
* the target cheksum first, and will return if target has the desired hash.
* It checks the checksum of the given source image before flashing, and
* verifies the target partition afterwards. The function is idempotent.
* Returns zero on success.
*/
int applypatch_flash(const char* source_filename, const char* target_filename,
const char* target_sha1_str, size_t target_size) {
printf("flash %s: ", target_filename);
uint8_t target_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(target_sha1_str, target_sha1) != 0) {
printf("failed to parse tgt-sha1 \"%s\"\n", target_sha1_str);
return 1;
}
FileContents source_file;
std::string target_str(target_filename);
std::vector<std::string> pieces = android::base::Split(target_str, ":");
if (pieces.size() != 2 || (pieces[0] != "MTD" && pieces[0] != "EMMC")) {
printf("invalid target name \"%s\"", target_filename);
return 1;
}
// Load the target into the source_file object to see if already applied.
pieces.push_back(std::to_string(target_size));
pieces.push_back(target_sha1_str);
std::string fullname = android::base::Join(pieces, ':');
if (LoadPartitionContents(fullname.c_str(), &source_file) == 0 &&
memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) {
// The early-exit case: the image was already applied, this partition
// has the desired hash, nothing for us to do.
printf("already %s\n", short_sha1(target_sha1).c_str());
return 0;
}
if (LoadFileContents(source_filename, &source_file) == 0) {
if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) {
// The source doesn't have desired checksum.
printf("source \"%s\" doesn't have expected sha1 sum\n", source_filename);
printf("expected: %s, found: %s\n", short_sha1(target_sha1).c_str(),
short_sha1(source_file.sha1).c_str());
return 1;
}
}
if (WriteToPartition(source_file.data.data(), target_size, target_filename) != 0) {
printf("write of copied data to %s failed\n", target_filename);
return 1;
}
return 0;
}
static int GenerateTarget(FileContents* source_file,
const Value* source_patch_value,
FileContents* copy_file,
const Value* copy_patch_value,
const char* source_filename,
const char* target_filename,
const uint8_t target_sha1[SHA_DIGEST_LENGTH],
size_t target_size,
const Value* bonus_data) {
int retry = 1;
SHA_CTX ctx;
std::string memory_sink_str;
FileContents* source_to_use;
int made_copy = 0;
bool target_is_partition = (strncmp(target_filename, "MTD:", 4) == 0 ||
strncmp(target_filename, "EMMC:", 5) == 0);
const std::string tmp_target_filename = std::string(target_filename) + ".patch";
// assume that target_filename (eg "/system/app/Foo.apk") is located
// on the same filesystem as its top-level directory ("/system").
// We need something that exists for calling statfs().
std::string target_fs = target_filename;
auto slash_pos = target_fs.find('/', 1);
if (slash_pos != std::string::npos) {
target_fs.resize(slash_pos);
}
const Value* patch;
if (source_patch_value != NULL) {
source_to_use = source_file;
patch = source_patch_value;
} else {
source_to_use = copy_file;
patch = copy_patch_value;
}
if (patch->type != VAL_BLOB) {
printf("patch is not a blob\n");
return 1;
}
char* header = patch->data;
ssize_t header_bytes_read = patch->size;
bool use_bsdiff = false;
if (header_bytes_read >= 8 && memcmp(header, "BSDIFF40", 8) == 0) {
use_bsdiff = true;
} else if (header_bytes_read >= 8 && memcmp(header, "IMGDIFF2", 8) == 0) {
use_bsdiff = false;
} else {
printf("Unknown patch file format\n");
return 1;
}
do {
// Is there enough room in the target filesystem to hold the patched
// file?
if (target_is_partition) {
// If the target is a partition, we're actually going to
// write the output to /tmp and then copy it to the
// partition. statfs() always returns 0 blocks free for
// /tmp, so instead we'll just assume that /tmp has enough
// space to hold the file.
// We still write the original source to cache, in case
// the partition write is interrupted.
if (MakeFreeSpaceOnCache(source_file->data.size()) < 0) {
printf("not enough free space on /cache\n");
return 1;
}
if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) {
printf("failed to back up source file\n");
return 1;
}
made_copy = 1;
retry = 0;
} else {
int enough_space = 0;
if (retry > 0) {
size_t free_space = FreeSpaceForFile(target_fs.c_str());
enough_space =
(free_space > (256 << 10)) && // 256k (two-block) minimum
(free_space > (target_size * 3 / 2)); // 50% margin of error
if (!enough_space) {
printf("target %zu bytes; free space %zu bytes; retry %d; enough %d\n",
target_size, free_space, retry, enough_space);
}
}
if (!enough_space) {
retry = 0;
}
if (!enough_space && source_patch_value != NULL) {
// Using the original source, but not enough free space. First
// copy the source file to cache, then delete it from the original
// location.
if (strncmp(source_filename, "MTD:", 4) == 0 ||
strncmp(source_filename, "EMMC:", 5) == 0) {
// It's impossible to free space on the target filesystem by
// deleting the source if the source is a partition. If
// we're ever in a state where we need to do this, fail.
printf("not enough free space for target but source is partition\n");
return 1;
}
if (MakeFreeSpaceOnCache(source_file->data.size()) < 0) {
printf("not enough free space on /cache\n");
return 1;
}
if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) {
printf("failed to back up source file\n");
return 1;
}
made_copy = 1;
unlink(source_filename);
size_t free_space = FreeSpaceForFile(target_fs.c_str());
printf("(now %zu bytes free for target) ", free_space);
}
}
SinkFn sink = NULL;
void* token = NULL;
int output_fd = -1;
if (target_is_partition) {
// We store the decoded output in memory.
sink = MemorySink;
token = &memory_sink_str;
} else {
// We write the decoded output to "<tgt-file>.patch".
output_fd = ota_open(tmp_target_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_SYNC,
S_IRUSR | S_IWUSR);
if (output_fd < 0) {
printf("failed to open output file %s: %s\n", tmp_target_filename.c_str(),
strerror(errno));
return 1;
}
sink = FileSink;
token = &output_fd;
}
SHA1_Init(&ctx);
int result;
if (use_bsdiff) {
result = ApplyBSDiffPatch(source_to_use->data.data(), source_to_use->data.size(),
patch, 0, sink, token, &ctx);
} else {
result = ApplyImagePatch(source_to_use->data.data(), source_to_use->data.size(),
patch, sink, token, &ctx, bonus_data);
}
if (!target_is_partition) {
if (ota_fsync(output_fd) != 0) {
printf("failed to fsync file \"%s\" (%s)\n", tmp_target_filename.c_str(),
strerror(errno));
result = 1;
}
if (ota_close(output_fd) != 0) {
printf("failed to close file \"%s\" (%s)\n", tmp_target_filename.c_str(),
strerror(errno));
result = 1;
}
}
if (result != 0) {
if (retry == 0) {
printf("applying patch failed\n");
return result != 0;
} else {
printf("applying patch failed; retrying\n");
}
if (!target_is_partition) {
unlink(tmp_target_filename.c_str());
}
} else {
// succeeded; no need to retry
break;
}
} while (retry-- > 0);
uint8_t current_target_sha1[SHA_DIGEST_LENGTH];
SHA1_Final(current_target_sha1, &ctx);
if (memcmp(current_target_sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) {
printf("patch did not produce expected sha1\n");
return 1;
} else {
printf("now %s\n", short_sha1(target_sha1).c_str());
}
if (target_is_partition) {
// Copy the temp file to the partition.
if (WriteToPartition(reinterpret_cast<const unsigned char*>(memory_sink_str.c_str()),
memory_sink_str.size(), target_filename) != 0) {
printf("write of patched data to %s failed\n", target_filename);
return 1;
}
} else {
// Give the .patch file the same owner, group, and mode of the
// original source file.
if (chmod(tmp_target_filename.c_str(), source_to_use->st.st_mode) != 0) {
printf("chmod of \"%s\" failed: %s\n", tmp_target_filename.c_str(), strerror(errno));
return 1;
}
if (chown(tmp_target_filename.c_str(), source_to_use->st.st_uid, source_to_use->st.st_gid) != 0) {
printf("chown of \"%s\" failed: %s\n", tmp_target_filename.c_str(), strerror(errno));
return 1;
}
// Finally, rename the .patch file to replace the target file.
if (rename(tmp_target_filename.c_str(), target_filename) != 0) {
printf("rename of .patch to \"%s\" failed: %s\n", target_filename, strerror(errno));
return 1;
}
}
// If this run of applypatch created the copy, and we're here, we
// can delete it.
if (made_copy) {
unlink(CACHE_TEMP_SOURCE);
}
// Success!
return 0;
}