blob: 5afa00baa46ba73148d1c7d03a9fb685274840a4 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <dirent.h>
#include <err.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#if defined(__linux__)
#include <sched.h>
#endif
#include <atomic>
#include <chrono>
#include <functional>
#include <iostream>
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <string_view>
#include <thread>
#include <unordered_map>
#include <vector>
#include <llvm/ADT/StringRef.h>
#include <android-base/file.h>
#include <android-base/macros.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include "Arch.h"
#include "DeclarationDatabase.h"
#include "Driver.h"
#include "Preprocessor.h"
#include "SymbolDatabase.h"
#include "Utils.h"
#include "VFS.h"
#include "versioner.h"
using namespace std::chrono_literals;
using namespace std::string_literals;
bool strict;
bool verbose;
bool add_include;
static int getCpuCount();
static int max_thread_count = getCpuCount();
static int getCpuCount() {
#if defined(__linux__)
cpu_set_t cpu_set;
int rc = sched_getaffinity(getpid(), sizeof(cpu_set), &cpu_set);
if (rc != 0) {
err(1, "sched_getaffinity failed");
}
return CPU_COUNT(&cpu_set);
#else
return 1;
#endif
}
namespace {
struct HeaderLocationInformation {
std::string header_path;
std::string dependency_dir;
// Absolute paths to ignore all children -- including subdirectories -- of.
std::unordered_set<std::string> ignored_directories;
};
}
static bool is_dir(const std::string& path) {
struct stat st;
return stat(path.c_str(), &st) == 0 && S_ISDIR(st.st_mode);
}
static CompilationRequirements collectRequirements(const Arch& arch,
const HeaderLocationInformation& location) {
std::vector<std::string> headers =
collectHeaders(location.header_path, location.ignored_directories);
std::vector<std::string> dependencies;
if (is_dir(location.header_path)) {
dependencies.emplace_back(location.header_path);
}
if (!location.dependency_dir.empty()) {
auto collect_children = [&dependencies](const std::string& dir_path) {
DIR* dir = opendir(dir_path.c_str());
if (!dir) {
err(1, "failed to open dependency directory '%s'", dir_path.c_str());
}
struct dirent* dent;
while ((dent = readdir(dir))) {
if (dent->d_name[0] == '.') {
continue;
}
// TODO: Resolve symlinks.
std::string dependency = dir_path + "/" + dent->d_name;
struct stat st;
if (stat(dependency.c_str(), &st) != 0) {
err(1, "failed to stat dependency '%s'", dependency.c_str());
}
if (!S_ISDIR(st.st_mode)) {
errx(1, "'%s' is not a directory", dependency.c_str());
}
dependencies.push_back(dependency);
}
closedir(dir);
};
collect_children(location.dependency_dir + "/common");
collect_children(location.dependency_dir + "/" + to_string(arch));
}
auto new_end = std::remove_if(headers.begin(), headers.end(), [&arch](llvm::StringRef header) {
for (const auto& it : ignored_headers) {
if (it.second.find(arch) == it.second.end()) {
continue;
}
if (header.endswith("/" + it.first)) {
return true;
}
}
return false;
});
headers.erase(new_end, headers.end());
CompilationRequirements result = { .headers = headers, .dependencies = dependencies };
return result;
}
static std::set<CompilationType> generateCompilationTypes(const std::set<Arch> selected_architectures,
const std::set<int>& selected_levels) {
std::set<CompilationType> result;
for (const auto& arch : selected_architectures) {
int min_api = arch_min_api[arch];
for (int api_level : selected_levels) {
if (api_level < min_api) {
continue;
}
for (int file_offset_bits : { 32, 64 }) {
for (bool cpp : { true, false }) {
CompilationType type = {
.arch = arch, .cpp = cpp, .api_level = api_level, .file_offset_bits = file_offset_bits
};
result.insert(type);
}
}
}
}
return result;
}
static std::unique_ptr<HeaderDatabase> compileHeaders(const std::set<CompilationType>& types,
const HeaderLocationInformation& location) {
if (types.empty()) {
errx(1, "compileHeaders received no CompilationTypes");
}
auto vfs = createCommonVFS(location.header_path, location.dependency_dir, add_include);
size_t thread_count = max_thread_count;
std::vector<std::thread> threads;
std::map<CompilationType, HeaderDatabase> header_databases;
std::unordered_map<Arch, CompilationRequirements> requirements;
auto result = std::make_unique<HeaderDatabase>();
for (const auto& type : types) {
if (requirements.count(type.arch) == 0) {
requirements[type.arch] = collectRequirements(type.arch, location);
}
}
initializeTargetCC1FlagCache(vfs, types, requirements);
std::vector<std::pair<CompilationType, const std::string&>> jobs;
std::atomic<size_t> job_index(0);
for (CompilationType type : types) {
CompilationRequirements& req = requirements[type.arch];
for (const std::string& header : req.headers) {
jobs.emplace_back(type, header);
}
}
// Dup an empty file to stdin, so that we can use `clang -include a.h -` instead of `clang a.h`,
// since some warnings don't get generated in files that are compiled directly.
FILE* empty_file = tmpfile();
if (!empty_file) {
err(1, "failed to create temporary file");
}
int empty_file_fd = fileno(empty_file);
if (empty_file_fd == -1) {
errx(1, "fileno failed on tmpfile");
}
dup2(empty_file_fd, STDIN_FILENO);
fclose(empty_file);
thread_count = std::min(thread_count, jobs.size());
if (thread_count == 1) {
for (const auto& job : jobs) {
compileHeader(vfs, result.get(), job.first, job.second);
}
} else {
// Spawn threads.
for (size_t i = 0; i < thread_count; ++i) {
threads.emplace_back([&jobs, &job_index, &result, vfs]() {
while (true) {
size_t idx = job_index++;
if (idx >= jobs.size()) {
return;
}
const auto& job = jobs[idx];
compileHeader(vfs, result.get(), job.first, job.second);
}
});
}
// Reap them.
for (auto& thread : threads) {
thread.join();
}
threads.clear();
}
return result;
}
static std::set<CompilationType> getCompilationTypes(const Declaration* decl) {
std::set<CompilationType> result;
for (const auto& it : decl->availability) {
result.insert(it.first);
}
return result;
}
template<typename T>
static std::vector<T> Intersection(const std::set<T>& a, const std::set<T>& b) {
std::vector<T> intersection;
std::set_intersection(a.begin(), a.end(), b.begin(), b.end(), std::back_inserter(intersection));
return intersection;
}
// Perform a validity check on a symbol's declarations, enforcing the following invariants:
// 1. At most one inline definition of the function exists (overloaded inline functions for
// _FORTIFY_SOURCE do not count because they are usually introduced to intercept the original
// functions or usually have enable_if attributes).
// 2. All of the availability declarations for a symbol are compatible.
// If a function is declared as an inline before a certain version, the inline definition
// should have no version tag.
// 3. Each availability type must only be present globally or on a per-arch basis.
// (e.g. __INTRODUCED_IN_32(21) __INTRODUCED_IN_64(22) __DEPRECATED_IN(23) is fine,
// but not __INTRODUCED_IN(9) __INTRODUCED_IN_32(10))
static bool checkSymbol(const Symbol& symbol) {
std::string cwd = getWorkingDir() + "/";
std::unordered_map<const Declaration*, std::set<CompilationType>> inline_definitions;
for (const auto& decl_it : symbol.declarations) {
const Declaration* decl = &decl_it.second;
if (decl->is_definition && !decl->fortify_inline) {
std::set<CompilationType> compilation_types = getCompilationTypes(decl);
for (const auto& inline_def_it : inline_definitions) {
auto intersection = Intersection(compilation_types, inline_def_it.second);
if (!intersection.empty()) {
fprintf(stderr, "versioner: conflicting inline definitions for symbol %s:\n",
symbol.name.c_str());
fprintf(stderr, " declarations visible in: %s\n", Join(intersection, ", ").c_str());
decl->dump(cwd, stderr, 4);
inline_def_it.first->dump(cwd, stderr, 4);
return false;
}
}
inline_definitions[decl] = std::move(compilation_types);
}
DeclarationAvailability availability;
if (!decl->calculateAvailability(&availability)) {
fprintf(stderr, "versioner: failed to calculate availability for declaration:\n");
decl->dump(cwd, stderr, 2);
return false;
}
if (decl->is_definition && !availability.empty()) {
fprintf(stderr, "versioner: inline definition has non-empty versioning information:\n");
decl->dump(cwd, stderr, 2);
return false;
}
}
DeclarationAvailability availability;
if (!symbol.calculateAvailability(&availability)) {
fprintf(stderr, "versioner: inconsistent availability for symbol '%s'\n", symbol.name.c_str());
symbol.dump(cwd);
return false;
}
// TODO: Check invariant #3.
return true;
}
static bool validityCheck(const HeaderDatabase* database) {
bool error = false;
std::string cwd = getWorkingDir() + "/";
for (const auto& symbol_it : database->symbols) {
if (!checkSymbol(symbol_it.second)) {
error = true;
}
}
return !error;
}
// Check that our symbol availability declarations match the actual NDK
// platform symbol availability.
static bool checkVersions(const std::set<CompilationType>& types,
const HeaderDatabase* header_database,
const NdkSymbolDatabase& symbol_database) {
std::string cwd = getWorkingDir() + "/";
bool failed = false;
std::map<Arch, std::set<CompilationType>> arch_types;
for (const CompilationType& type : types) {
arch_types[type.arch].insert(type);
}
std::set<std::string> completely_unavailable;
std::map<std::string, std::set<CompilationType>> missing_availability;
std::map<std::string, std::set<CompilationType>> extra_availability;
for (const auto& symbol_it : header_database->symbols) {
const auto& symbol_name = symbol_it.first;
DeclarationAvailability symbol_availability;
if (!symbol_it.second.calculateAvailability(&symbol_availability)) {
errx(1, "failed to calculate symbol availability");
}
const auto platform_availability_it = symbol_database.find(symbol_name);
if (platform_availability_it == symbol_database.end()) {
completely_unavailable.insert(symbol_name);
continue;
}
const auto& platform_availability = platform_availability_it->second;
for (const CompilationType& type : types) {
bool should_be_available = true;
const auto& global_availability = symbol_availability.global_availability;
const auto& arch_availability = symbol_availability.arch_availability[type.arch];
if (global_availability.introduced != 0 && global_availability.introduced > type.api_level) {
should_be_available = false;
}
if (arch_availability.introduced != 0 && arch_availability.introduced > type.api_level) {
should_be_available = false;
}
if (global_availability.obsoleted != 0 && global_availability.obsoleted <= type.api_level) {
should_be_available = false;
}
if (arch_availability.obsoleted != 0 && arch_availability.obsoleted <= type.api_level) {
should_be_available = false;
}
// The function declaration might be (validly) missing for the given CompilationType.
if (!symbol_it.second.hasDeclaration(type)) {
should_be_available = false;
}
bool is_available = platform_availability.count(type);
if (should_be_available != is_available) {
if (is_available) {
extra_availability[symbol_name].insert(type);
} else {
missing_availability[symbol_name].insert(type);
}
}
}
}
for (const auto& it : symbol_database) {
const std::string& symbol_name = it.first;
bool symbol_error = false;
if (auto missing_it = missing_availability.find(symbol_name);
missing_it != missing_availability.end()) {
printf("%s: declaration marked available but symbol missing in [%s]\n", symbol_name.c_str(),
Join(missing_it->second, ", ").c_str());
symbol_error = true;
failed = true;
}
if (strict) {
if (auto extra_it = extra_availability.find(symbol_name);
extra_it != extra_availability.end()) {
printf("%s: declaration marked unavailable but symbol available in [%s]\n",
symbol_name.c_str(), Join(extra_it->second, ", ").c_str());
symbol_error = true;
failed = true;
}
}
if (symbol_error) {
if (auto symbol_it = header_database->symbols.find(symbol_name);
symbol_it != header_database->symbols.end()) {
symbol_it->second.dump(cwd);
} else {
errx(1, "failed to find symbol in header database");
}
}
}
// TODO: Verify that function/variable declarations are actually function/variable symbols.
return !failed;
}
static void usage(bool help = false) {
fprintf(stderr, "Usage: versioner [OPTION]... [HEADER_PATH] [DEPS_PATH]\n");
if (!help) {
printf("Try 'versioner -h' for more information.\n");
exit(1);
} else {
fprintf(stderr, "Version headers at HEADER_PATH, with DEPS_PATH/ARCH/* on the include path\n");
fprintf(stderr, "Autodetects paths if HEADER_PATH and DEPS_PATH are not specified\n");
fprintf(stderr, "\n");
fprintf(stderr, "Target specification (defaults to all):\n");
fprintf(stderr, " -a API_LEVEL\tbuild with specified API level (can be repeated)\n");
fprintf(stderr, " \t\tdefaults to %s\n", Join(default_levels).c_str());
fprintf(stderr, " -r ARCH\tbuild with specified architecture (can be repeated)\n");
fprintf(stderr, " \t\tvalid architectures are %s\n", Join(supported_archs).c_str());
fprintf(stderr, "\n");
fprintf(stderr, "Validation:\n");
fprintf(stderr, " -p PATH\tcompare against NDK platform at PATH\n");
fprintf(stderr, " -s\t\tenable strict warnings\n");
fprintf(stderr, "\n");
fprintf(stderr, "Preprocessing:\n");
fprintf(stderr, " -o PATH\tpreprocess header files and emit them at PATH\n");
fprintf(stderr, " -f\t\tpreprocess header files even if validation fails\n");
fprintf(stderr, "\n");
fprintf(stderr, "Miscellaneous:\n");
fprintf(stderr, " -F\t\tdo not ignore FORTIFY headers by default\n");
fprintf(stderr, " -d\t\tdump function availability\n");
fprintf(stderr, " -j THREADS\tmaximum number of threads to use\n");
fprintf(stderr, " -v\t\tenable verbose logging\n");
fprintf(stderr, " -h\t\tdisplay this message\n");
exit(0);
}
}
// versioner uses a prebuilt version of clang, which is not up-to-date wrt/
// container annotations. So disable container overflow checking. b/37775238
extern "C" const char* __asan_default_options() {
return "detect_container_overflow=0";
}
int main(int argc, char** argv) {
std::string cwd = getWorkingDir() + "/";
std::string platform_dir;
std::set<Arch> selected_architectures;
std::set<int> selected_levels;
std::string preprocessor_output_path;
bool force = false;
bool dump = false;
bool ignore_fortify_headers = true;
int c;
while ((c = getopt(argc, argv, "a:r:p:so:fdj:vhFi")) != -1) {
switch (c) {
case 'a': {
char* end;
int api_level = strtol(optarg, &end, 10);
if (end == optarg || strlen(end) > 0) {
usage();
}
selected_levels.insert(api_level);
break;
}
case 'r': {
std::optional<Arch> arch = arch_from_string(optarg);
if (!arch) {
errx(1, "unknown architecture '%s'", optarg);
}
selected_architectures.insert(*arch);
break;
}
case 'p': {
if (!platform_dir.empty()) {
usage();
}
platform_dir = optarg;
if (platform_dir.empty()) {
usage();
}
struct stat st;
if (stat(platform_dir.c_str(), &st) != 0) {
err(1, "failed to stat platform directory '%s'", platform_dir.c_str());
}
if (!S_ISDIR(st.st_mode) && !S_ISREG(st.st_mode)) {
errx(1, "'%s' is not a file or directory", optarg);
}
break;
}
case 's':
strict = true;
break;
case 'o':
if (!preprocessor_output_path.empty()) {
usage();
}
preprocessor_output_path = optarg;
if (preprocessor_output_path.empty()) {
usage();
}
break;
case 'f':
force = true;
break;
case 'd':
dump = true;
break;
case 'j':
if (!android::base::ParseInt<int>(optarg, &max_thread_count, 1)) {
usage();
}
break;
case 'v':
verbose = true;
break;
case 'h':
usage(true);
break;
case 'i':
// Secret option for tests to -include <android/versioning.h>.
add_include = true;
break;
case 'F':
ignore_fortify_headers = false;
break;
default:
usage();
break;
}
}
if (argc - optind > 2 || optind > argc) {
usage();
}
HeaderLocationInformation location;
const char* top = getenv("ANDROID_BUILD_TOP");
if (!top && (optind == argc || add_include)) {
fprintf(stderr, "versioner: failed to autodetect bionic paths. Is ANDROID_BUILD_TOP set?\n");
usage();
}
if (optind == argc) {
// Neither HEADER_PATH nor DEPS_PATH were specified, so try to figure them out.
std::string versioner_dir = to_string(top) + "/bionic/tools/versioner";
location.header_path = versioner_dir + "/current";
location.dependency_dir = versioner_dir + "/dependencies";
if (platform_dir.empty()) {
platform_dir = versioner_dir + "/platforms";
}
} else {
if (!android::base::Realpath(argv[optind], &location.header_path)) {
err(1, "failed to get realpath for path '%s'", argv[optind]);
}
if (argc - optind == 2) {
location.dependency_dir = argv[optind + 1];
}
}
// Every file that lives in bits/fortify is logically a part of a header outside of bits/fortify.
// This makes the files there impossible to build on their own.
if (ignore_fortify_headers) {
std::string fortify_path = location.header_path;
if (!android::base::EndsWith(location.header_path, "/")) {
fortify_path += '/';
}
fortify_path += "bits/fortify";
location.ignored_directories.insert(std::move(fortify_path));
}
if (selected_levels.empty()) {
selected_levels = default_levels;
}
if (selected_architectures.empty()) {
selected_architectures = supported_archs;
}
struct stat st;
if (const char *path = location.header_path.c_str(); stat(path, &st) != 0) {
err(1, "failed to stat '%s'", path);
}
std::set<CompilationType> compilation_types;
std::optional<NdkSymbolDatabase> symbol_database;
compilation_types = generateCompilationTypes(selected_architectures, selected_levels);
// Do this before compiling so that we can early exit if the platforms don't match what we
// expect.
if (!platform_dir.empty()) {
symbol_database = parsePlatforms(compilation_types, platform_dir);
}
auto start = std::chrono::high_resolution_clock::now();
std::unique_ptr<HeaderDatabase> declaration_database =
compileHeaders(compilation_types, location);
auto end = std::chrono::high_resolution_clock::now();
if (verbose) {
auto diff = (end - start) / 1.0ms;
printf("Compiled headers for %zu targets in %0.2LFms\n", compilation_types.size(), diff);
}
bool failed = false;
if (dump) {
declaration_database->dump(location.header_path + "/");
} else {
if (!validityCheck(declaration_database.get())) {
printf("versioner: validity check failed\n");
failed = true;
}
if (symbol_database) {
if (!checkVersions(compilation_types, declaration_database.get(), *symbol_database)) {
printf("versioner: version check failed\n");
failed = true;
}
}
}
if (!preprocessor_output_path.empty() && (force || !failed)) {
failed = !preprocessHeaders(preprocessor_output_path, location.header_path,
declaration_database.get());
}
return failed;
}