blob: 80e8b087dd858bbf8d6b1715ac7e132f76ef23a9 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "private/bionic_allocator.h"
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/prctl.h>
#include <unistd.h>
#include <new>
#include <async_safe/log.h>
#include <async_safe/CHECK.h>
#include "platform/bionic/page.h"
#include "platform/bionic/macros.h"
//
// BionicAllocator is a general purpose allocator designed to provide the same
// functionality as the malloc/free/realloc/memalign libc functions.
//
// On alloc:
// If size is > 1k allocator proxies malloc call directly to mmap.
// If size <= 1k allocator uses BionicSmallObjectAllocator for the size
// rounded up to the nearest power of two.
//
// On free:
//
// For a pointer allocated using proxy-to-mmap allocator unmaps
// the memory.
//
// For a pointer allocated using BionicSmallObjectAllocator it adds
// the block to free_blocks_list in the corresponding page. If the number of
// free pages reaches 2, BionicSmallObjectAllocator munmaps one of the pages
// keeping the other one in reserve.
// Memory management for large objects is fairly straightforward, but for small
// objects it is more complicated. If you are changing this code, one simple
// way to evaluate the memory usage change is by running 'dd' and examine the
// memory usage by 'showmap $(pidof dd)'. 'dd' is nice in that:
// 1. It links in quite a few libraries, so you get some linker memory use.
// 2. When run with no arguments, it sits waiting for input, so it is easy to
// examine its memory usage with showmap.
// 3. Since it does nothing while waiting for input, the memory usage is
// determinisitic.
static const char kSignature[4] = {'L', 'M', 'A', 1};
static const size_t kSmallObjectMaxSize = 1 << kSmallObjectMaxSizeLog2;
// This type is used for large allocations (with size >1k)
static const uint32_t kLargeObject = 111;
// Allocated pointers must be at least 16-byte aligned. Round up the size of
// page_info to multiple of 16.
static constexpr size_t kPageInfoSize = __BIONIC_ALIGN(sizeof(page_info), 16);
static inline uint16_t log2(size_t number) {
uint16_t result = 0;
number--;
while (number != 0) {
result++;
number >>= 1;
}
return result;
}
BionicSmallObjectAllocator::BionicSmallObjectAllocator(uint32_t type, size_t block_size)
: type_(type),
block_size_(block_size),
blocks_per_page_((page_size() - sizeof(small_object_page_info)) / block_size),
free_pages_cnt_(0),
page_list_(nullptr) {}
void* BionicSmallObjectAllocator::alloc() {
CHECK(block_size_ != 0);
if (page_list_ == nullptr) {
alloc_page();
}
// Fully allocated pages are de-managed and removed from the page list, so
// every page from the page list must be useable. Let's just take the first
// one.
small_object_page_info* page = page_list_;
CHECK(page->free_block_list != nullptr);
small_object_block_record* const block_record = page->free_block_list;
if (block_record->free_blocks_cnt > 1) {
small_object_block_record* next_free =
reinterpret_cast<small_object_block_record*>(
reinterpret_cast<uint8_t*>(block_record) + block_size_);
next_free->next = block_record->next;
next_free->free_blocks_cnt = block_record->free_blocks_cnt - 1;
page->free_block_list = next_free;
} else {
page->free_block_list = block_record->next;
}
if (page->free_blocks_cnt == blocks_per_page_) {
free_pages_cnt_--;
}
page->free_blocks_cnt--;
memset(block_record, 0, block_size_);
if (page->free_blocks_cnt == 0) {
// De-manage fully allocated pages. These pages will be managed again if
// a block is freed.
remove_from_page_list(page);
}
return block_record;
}
void BionicSmallObjectAllocator::free_page(small_object_page_info* page) {
CHECK(page->free_blocks_cnt == blocks_per_page_);
if (page->prev_page) {
page->prev_page->next_page = page->next_page;
}
if (page->next_page) {
page->next_page->prev_page = page->prev_page;
}
if (page_list_ == page) {
page_list_ = page->next_page;
}
munmap(page, page_size());
free_pages_cnt_--;
}
void BionicSmallObjectAllocator::free(void* ptr) {
small_object_page_info* const page =
reinterpret_cast<small_object_page_info*>(page_start(reinterpret_cast<uintptr_t>(ptr)));
if (reinterpret_cast<uintptr_t>(ptr) % block_size_ != 0) {
async_safe_fatal("invalid pointer: %p (block_size=%zd)", ptr, block_size_);
}
memset(ptr, 0, block_size_);
small_object_block_record* const block_record =
reinterpret_cast<small_object_block_record*>(ptr);
block_record->next = page->free_block_list;
block_record->free_blocks_cnt = 1;
page->free_block_list = block_record;
page->free_blocks_cnt++;
if (page->free_blocks_cnt == blocks_per_page_) {
if (++free_pages_cnt_ > 1) {
// if we already have a free page - unmap this one.
free_page(page);
}
} else if (page->free_blocks_cnt == 1) {
// We just freed from a full page. Add this page back to the list.
add_to_page_list(page);
}
}
void BionicSmallObjectAllocator::alloc_page() {
void* const map_ptr =
mmap(nullptr, page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (map_ptr == MAP_FAILED) {
async_safe_fatal("mmap failed: %m");
}
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, page_size(), "bionic_alloc_small_objects");
small_object_page_info* const page =
reinterpret_cast<small_object_page_info*>(map_ptr);
memcpy(page->info.signature, kSignature, sizeof(kSignature));
page->info.type = type_;
page->info.allocator_addr = this;
page->free_blocks_cnt = blocks_per_page_;
// Align the first block to block_size_.
const uintptr_t first_block_addr =
__BIONIC_ALIGN(reinterpret_cast<uintptr_t>(page + 1), block_size_);
small_object_block_record* const first_block =
reinterpret_cast<small_object_block_record*>(first_block_addr);
first_block->next = nullptr;
first_block->free_blocks_cnt = blocks_per_page_;
page->free_block_list = first_block;
add_to_page_list(page);
free_pages_cnt_++;
}
void BionicSmallObjectAllocator::add_to_page_list(small_object_page_info* page) {
page->next_page = page_list_;
page->prev_page = nullptr;
if (page_list_) {
page_list_->prev_page = page;
}
page_list_ = page;
}
void BionicSmallObjectAllocator::remove_from_page_list(
small_object_page_info* page) {
if (page->prev_page) {
page->prev_page->next_page = page->next_page;
}
if (page->next_page) {
page->next_page->prev_page = page->prev_page;
}
if (page_list_ == page) {
page_list_ = page->next_page;
}
page->prev_page = nullptr;
page->next_page = nullptr;
}
void BionicAllocator::initialize_allocators() {
if (allocators_ != nullptr) {
return;
}
BionicSmallObjectAllocator* allocators =
reinterpret_cast<BionicSmallObjectAllocator*>(allocators_buf_);
for (size_t i = 0; i < kSmallObjectAllocatorsCount; ++i) {
uint32_t type = i + kSmallObjectMinSizeLog2;
new (allocators + i) BionicSmallObjectAllocator(type, 1 << type);
}
allocators_ = allocators;
}
void* BionicAllocator::alloc_mmap(size_t align, size_t size) {
size_t header_size = __BIONIC_ALIGN(kPageInfoSize, align);
size_t allocated_size;
if (__builtin_add_overflow(header_size, size, &allocated_size) ||
page_end(allocated_size) < allocated_size) {
async_safe_fatal("overflow trying to alloc %zu bytes", size);
}
allocated_size = page_end(allocated_size);
void* map_ptr = mmap(nullptr, allocated_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
-1, 0);
if (map_ptr == MAP_FAILED) {
async_safe_fatal("mmap failed: %m");
}
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, allocated_size, "bionic_alloc_lob");
void* result = static_cast<char*>(map_ptr) + header_size;
page_info* info = get_page_info_unchecked(result);
memcpy(info->signature, kSignature, sizeof(kSignature));
info->type = kLargeObject;
info->allocated_size = allocated_size;
return result;
}
inline void* BionicAllocator::alloc_impl(size_t align, size_t size) {
if (size > kSmallObjectMaxSize) {
return alloc_mmap(align, size);
}
uint16_t log2_size = log2(size);
if (log2_size < kSmallObjectMinSizeLog2) {
log2_size = kSmallObjectMinSizeLog2;
}
return get_small_object_allocator(log2_size)->alloc();
}
void* BionicAllocator::alloc(size_t size) {
// treat alloc(0) as alloc(1)
if (size == 0) {
size = 1;
}
return alloc_impl(16, size);
}
void* BionicAllocator::memalign(size_t align, size_t size) {
// The Bionic allocator only supports alignment up to one page, which is good
// enough for ELF TLS.
align = MIN(align, page_size());
align = MAX(align, 16);
if (!powerof2(align)) {
align = BIONIC_ROUND_UP_POWER_OF_2(align);
}
size = MAX(size, align);
return alloc_impl(align, size);
}
inline page_info* BionicAllocator::get_page_info_unchecked(void* ptr) {
uintptr_t header_page = page_start(reinterpret_cast<size_t>(ptr) - kPageInfoSize);
return reinterpret_cast<page_info*>(header_page);
}
inline page_info* BionicAllocator::get_page_info(void* ptr) {
page_info* info = get_page_info_unchecked(ptr);
if (memcmp(info->signature, kSignature, sizeof(kSignature)) != 0) {
async_safe_fatal("invalid pointer %p (page signature mismatch)", ptr);
}
return info;
}
void* BionicAllocator::realloc(void* ptr, size_t size) {
if (ptr == nullptr) {
return alloc(size);
}
if (size == 0) {
free(ptr);
return nullptr;
}
page_info* info = get_page_info(ptr);
size_t old_size = 0;
if (info->type == kLargeObject) {
old_size = info->allocated_size - (static_cast<char*>(ptr) - reinterpret_cast<char*>(info));
} else {
BionicSmallObjectAllocator* allocator = get_small_object_allocator(info->type);
if (allocator != info->allocator_addr) {
async_safe_fatal("invalid pointer %p (page signature mismatch)", ptr);
}
old_size = allocator->get_block_size();
}
if (old_size < size) {
void *result = alloc(size);
memcpy(result, ptr, old_size);
free(ptr);
return result;
}
return ptr;
}
void BionicAllocator::free(void* ptr) {
if (ptr == nullptr) {
return;
}
page_info* info = get_page_info(ptr);
if (info->type == kLargeObject) {
munmap(info, info->allocated_size);
} else {
BionicSmallObjectAllocator* allocator = get_small_object_allocator(info->type);
if (allocator != info->allocator_addr) {
async_safe_fatal("invalid pointer %p (invalid allocator address for the page)", ptr);
}
allocator->free(ptr);
}
}
size_t BionicAllocator::get_chunk_size(void* ptr) {
if (ptr == nullptr) return 0;
page_info* info = get_page_info_unchecked(ptr);
if (memcmp(info->signature, kSignature, sizeof(kSignature)) != 0) {
// Invalid pointer (mismatched signature)
return 0;
}
if (info->type == kLargeObject) {
return info->allocated_size - (static_cast<char*>(ptr) - reinterpret_cast<char*>(info));
}
BionicSmallObjectAllocator* allocator = get_small_object_allocator(info->type);
if (allocator != info->allocator_addr) {
// Invalid pointer.
return 0;
}
return allocator->get_block_size();
}
BionicSmallObjectAllocator* BionicAllocator::get_small_object_allocator(uint32_t type) {
if (type < kSmallObjectMinSizeLog2 || type > kSmallObjectMaxSizeLog2) {
async_safe_fatal("invalid type: %u", type);
}
initialize_allocators();
return &allocators_[type - kSmallObjectMinSizeLog2];
}