commit | 5e62b34c0d6fa545b487b9b64fb4a04a0589bc13 | [log] [tgz] |
---|---|---|
author | Elliott Hughes <enh@google.com> | Thu Oct 25 11:00:00 2018 -0700 |
committer | Elliott Hughes <enh@google.com> | Thu Oct 25 11:00:00 2018 -0700 |
tree | e08ee44067b3b636ace11b21ec8d63a08d4d2a19 | |
parent | c89a3971e94c30611c885e4c440eae2fd9937948 [diff] |
Clean up bionic_macros.h a bit. Use <android-base/macros.h> instead where possible, and move the bionic macros out of the way of the libbase ones. Yes, there are folks who manage to end up with both included at once (thanks OpenGL!), and cleaning that up doesn't seem nearly as practical as just making this change. Bug: N/A Test: builds Change-Id: I23fc544f39d5addf81dc61471771a5438778895b
bionic is Android's C library, math library, and dynamic linker.
See the user documentation.
This documentation is about making changes to bionic itself.
The C library. Stuff like fopen(3)
and kill(2)
.
The math library. Traditionally Unix systems kept stuff like sin(3)
and cos(3)
in a separate library to save space in the days before shared libraries.
The dynamic linker interface library. This is actually just a bunch of stubs that the dynamic linker replaces with pointers to its own implementation at runtime. This is where stuff like dlopen(3)
lives.
The C++ ABI support functions. The C++ compiler doesn't know how to implement thread-safe static initialization and the like, so it just calls functions that are supplied by the system. Stuff like __cxa_guard_acquire
and __cxa_pure_virtual
live here.
The dynamic linker. When you run a dynamically-linked executable, its ELF file has a DT_INTERP
entry that says “use the following program to start me”. On Android, that‘s either linker
or linker64
(depending on whether it’s a 32-bit or 64-bit executable). It's responsible for loading the ELF executable into memory and resolving references to symbols (so that when your code tries to jump to fopen(3)
, say, it lands in the right place).
The tests/
directory contains unit tests. Roughly arranged as one file per publicly-exported header file.
The benchmarks/
directory contains benchmarks, with its own documentation.
libc/ arch-arm/ arch-arm64/ arch-common/ arch-mips/ arch-mips64/ arch-x86/ arch-x86_64/ # Each architecture has its own subdirectory for stuff that isn't shared # because it's architecture-specific. There will be a .mk file in here that # drags in all the architecture-specific files. bionic/ # Every architecture needs a handful of machine-specific assembler files. # They live here. string/ # Most architectures have a handful of optional assembler files # implementing optimized versions of various routines. The <string.h> # functions are particular favorites. syscalls/ # The syscalls directories contain script-generated assembler files. # See 'Adding system calls' later. include/ # The public header files on everyone's include path. These are a mixture of # files written by us and files taken from BSD. kernel/ # The kernel uapi header files. These are scrubbed copies of the originals # in external/kernel-headers/. These files must not be edited directly. The # generate_uapi_headers.sh script should be used to go from a kernel tree to # external/kernel-headers/ --- this takes care of the architecture-specific # details. The update_all.py script should be used to regenerate bionic's # scrubbed headers from external/kernel-headers/. private/ # These are private header files meant for use within bionic itself. dns/ # Contains the DNS resolver (originates from NetBSD code). upstream-freebsd/ upstream-netbsd/ upstream-openbsd/ # These directories contain unmolested upstream source. Any time we can # just use a BSD implementation of something unmodified, we should. # The structure under these directories mimics the upstream tree, # but there's also... android/ include/ # This is where we keep the hacks necessary to build BSD source # in our world. The *-compat.h files are automatically included # using -include, but we also provide equivalents for missing # header/source files needed by the BSD implementation. bionic/ # This is the biggest mess. The C++ files are files we own, typically # because the Linux kernel interface is sufficiently different that we # can't use any of the BSD implementations. The C files are usually # legacy mess that needs to be sorted out, either by replacing it with # current upstream source in one of the upstream directories or by # switching the file to C++ and cleaning it up. malloc_debug/ # The code that implements the functionality to enable debugging of # native allocation problems. stdio/ # These are legacy files of dubious provenance. We're working to clean # this mess up, and this directory should disappear. tools/ # Various tools used to maintain bionic. tzcode/ # A modified superset of the IANA tzcode. Most of the modifications relate # to Android's use of a single file (with corresponding index) to contain # time zone data. zoneinfo/ # Android-format time zone data. # See 'Updating tzdata' later.
The first question you should ask is “should I add a libc wrapper for this system call?”. The answer is usually “no”.
The answer is “yes” if the system call is part of the POSIX standard.
The answer is probably “yes” if the system call has a wrapper in at least one other C library.
The answer may be “yes” if the system call has three/four distinct users in different projects, and there isn't a more specific library that would make more sense as the place to add the wrapper.
In all other cases, you should use syscall(3) instead.
Adding a system call usually involves:
__INTRODUCED_IN()
../libc/tools/genversion-scripts.py
.As mentioned above, this is currently a two-step process:
Note that if you‘re actually just trying to expose device-specific headers to build your device drivers, you shouldn’t modify bionic. Instead use TARGET_DEVICE_KERNEL_HEADERS
and friends described in config.mk.
This is fully automated (and these days handled by the libcore team, because they own icu, and that needs to be updated in sync with bionic):
If you make a change that is likely to have a wide effect on the tree (such as a libc header change), you should run make checkbuild
. A regular make
will not build the entire tree; just the minimum number of projects that are required for the device. Tests, additional developer tools, and various other modules will not be built. Note that make checkbuild
will not be complete either, as make tests
covers a few additional modules, but generally speaking make checkbuild
is enough.
The tests are all built from the tests/ directory.
$ mma # In $ANDROID_ROOT/bionic. $ adb root && adb remount && adb sync $ adb shell /data/nativetest/bionic-unit-tests/bionic-unit-tests $ adb shell \ /data/nativetest/bionic-unit-tests-static/bionic-unit-tests-static # Only for 64-bit targets $ adb shell /data/nativetest64/bionic-unit-tests/bionic-unit-tests $ adb shell \ /data/nativetest64/bionic-unit-tests-static/bionic-unit-tests-static
Note that we use our own custom gtest runner that offers a superset of the options documented at https://github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md#running-test-programs-advanced-options, in particular for test isolation and parallelism (both on by default).
Most of the unit tests are executed by CTS. By default, CTS runs as a non-root user, so the unit tests must also pass when not run as root. Some tests cannot do any useful work unless run as root. In this case, the test should check getuid() == 0
and do nothing otherwise (typically we log in this case to prevent accidents!). Obviously, if the test can be rewritten to not require root, that's an even better solution.
Currently, the list of bionic CTS tests is generated at build time by running a host version of the test executable and dumping the list of all tests. In order for this to continue to work, all architectures must have the same number of tests, and the host version of the executable must also have the same number of tests.
Running the gtests directly is orders of magnitude faster than using CTS, but in cases where you really have to run CTS:
$ make cts # In $ANDROID_ROOT. $ adb unroot # Because real CTS doesn't run as root. # This will sync any *test* changes, but not *code* changes: $ cts-tradefed \ run singleCommand cts --skip-preconditions -m CtsBionicTestCases
The host tests require that you have lunch
ed either an x86 or x86_64 target. Note that due to ABI limitations (specifically, the size of pthread_mutex_t), 32-bit bionic requires PIDs less than 65536. To enforce this, set /proc/sys/kernel/pid_max to 65536.
$ ./tests/run-on-host.sh 32 $ ./tests/run-on-host.sh 64 # For x86_64-bit *targets* only.
You can supply gtest flags as extra arguments to this script.
As a way to check that our tests do in fact test the correct behavior (and not just the behavior we think is correct), it is possible to run the tests against the host's glibc.
$ ./tests/run-on-host.sh glibc
For either host or target coverage, you must first:
$ export NATIVE_COVERAGE=true
bionic_coverage=true
in libc/Android.mk
and libm/Android.mk
.$ mma $ adb sync $ adb shell \ GCOV_PREFIX=/data/local/tmp/gcov \ GCOV_PREFIX_STRIP=`echo $ANDROID_BUILD_TOP | grep -o / | wc -l` \ /data/nativetest/bionic-unit-tests/bionic-unit-tests $ acov
acov
will pull all coverage information from the device, push it to the right directories, run lcov
, and open the coverage report in your browser.
First, build and run the host tests as usual (see above).
$ croot $ lcov -c -d $ANDROID_PRODUCT_OUT -o coverage.info $ genhtml -o covreport coverage.info # or lcov --list coverage.info
The coverage report is now available at covreport/index.html
.
Bionic's test runner will run each test in its own process by default to prevent tests failures from impacting other tests. This also has the added benefit of running them in parallel, so they are much faster.
However, this also makes it difficult to run the tests under GDB. To prevent each test from being forked, run the tests with the flag --no-isolate
.
See 32-bit ABI bugs.