blob: fa0cf794c4c2b706cf03feb870f02e958557d1f4 [file] [log] [blame]
#include "runtime.h"
#include "stl_util.h"
#include "thread.h"
#include "thread_pool.h"
namespace art {
ThreadPoolWorker::ThreadPoolWorker(ThreadPool* thread_pool, const std::string& name,
size_t stack_size)
: thread_pool_(thread_pool),
name_(name),
stack_size_(stack_size) {
const char* reason = "new thread pool worker thread";
CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason);
CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), reason);
CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason);
CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason);
}
ThreadPoolWorker::~ThreadPoolWorker() {
CHECK_PTHREAD_CALL(pthread_join, (pthread_, NULL), "thread pool worker shutdown");
}
void ThreadPoolWorker::Run() {
Thread* self = Thread::Current();
Closure* task = NULL;
while ((task = thread_pool_->GetTask(self)) != NULL) {
task->Run(self);
}
}
void* ThreadPoolWorker::Callback(void* arg) {
ThreadPoolWorker* worker = reinterpret_cast<ThreadPoolWorker*>(arg);
Runtime* runtime = Runtime::Current();
CHECK(runtime->AttachCurrentThread(worker->name_.c_str(), true, NULL));
// Do work until its time to shut down.
worker->Run();
runtime->DetachCurrentThread();
return NULL;
}
void ThreadPool::AddTask(Thread* self, Closure* task){
MutexLock mu(self, task_queue_lock_);
tasks_.push_back(task);
// If we have any waiters, signal one.
if (waiting_count_ != 0) {
task_queue_condition_.Signal(self);
}
}
void ThreadPool::AddThread(size_t stack_size) {
threads_.push_back(
new ThreadPoolWorker(
this,
StringPrintf("Thread pool worker %d", static_cast<int>(GetThreadCount())),
stack_size));
}
ThreadPool::ThreadPool(size_t num_threads)
: task_queue_lock_("task queue lock"),
task_queue_condition_("task queue condition", task_queue_lock_),
completion_condition_("task completion condition", task_queue_lock_),
started_(false),
shutting_down_(false),
waiting_count_(0) {
while (GetThreadCount() < num_threads) {
AddThread(ThreadPoolWorker::kDefaultStackSize);
}
}
ThreadPool::~ThreadPool() {
// Tell any remaining workers to shut down.
shutting_down_ = true;
android_memory_barrier();
// Broadcast to everyone waiting.
task_queue_condition_.Broadcast(Thread::Current());
// Wait for the threads to finish.
STLDeleteElements(&threads_);
}
void ThreadPool::StartWorkers(Thread* self) {
MutexLock mu(self, task_queue_lock_);
started_ = true;
android_memory_barrier();
task_queue_condition_.Broadcast(self);
}
void ThreadPool::StopWorkers(Thread* self) {
MutexLock mu(self, task_queue_lock_);
started_ = false;
android_memory_barrier();
}
Closure* ThreadPool::GetTask(Thread* self) {
MutexLock mu(self, task_queue_lock_);
while (!shutting_down_) {
if (started_ && !tasks_.empty()) {
Closure* task = tasks_.front();
tasks_.pop_front();
return task;
}
waiting_count_++;
if (waiting_count_ == GetThreadCount() && tasks_.empty()) {
// We may be done, lets broadcast to the completion condition.
completion_condition_.Broadcast(self);
}
task_queue_condition_.Wait(self);
waiting_count_--;
}
// We are shutting down, return NULL to tell the worker thread to stop looping.
return NULL;
}
void ThreadPool::Wait(Thread* self) {
MutexLock mu(self, task_queue_lock_);
// Wait until each thread is waiting and the task list is empty.
while (waiting_count_ != GetThreadCount() || !tasks_.empty()) {
completion_condition_.Wait(self);
}
}
} // namespace art