blob: bbc07a63b947e2ec352566c0245052c35407d253 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include "class_linker.h"
#include "class_loader.h"
#include "compiler.h"
#include "file.h"
#include "image_writer.h"
#include "leb128.h"
#include "oat_writer.h"
#include "object_utils.h"
#include "os.h"
#include "runtime.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "sirt_ref.h"
#include "stl_util.h"
#include "stringpiece.h"
#include "timing_logger.h"
#include "well_known_classes.h"
#include "zip_archive.h"
namespace art {
static void UsageErrorV(const char* fmt, va_list ap) {
std::string error;
StringAppendV(&error, fmt, ap);
LOG(ERROR) << error;
}
static void UsageError(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
}
static void Usage(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
UsageError("Usage: dex2oat [options]...");
UsageError("");
UsageError(" --dex-file=<dex-file>: specifies a .dex file to compile.");
UsageError(" Example: --dex-file=/system/framework/core.jar");
UsageError("");
UsageError(" --zip-fd=<file-descriptor>: specifies a file descriptor of a zip file");
UsageError(" containing a classes.dex file to compile.");
UsageError(" Example: --zip-fd=5");
UsageError("");
UsageError(" --zip-location=<zip-location>: specifies a symbolic name for the file corresponding");
UsageError(" to the file descriptor specified by --zip-fd.");
UsageError(" Example: --zip-location=/system/app/Calculator.apk");
UsageError("");
UsageError(" --oat-file=<file.oat>: specifies the required oat filename.");
UsageError(" Example: --oat-file=/system/framework/boot.oat");
UsageError("");
UsageError(" --oat-location=<oat-name>: specifies a symbolic name for the file corresponding");
UsageError(" to the file descriptor specified by --oat-fd.");
UsageError(" Example: --oat-location=/data/art-cache/system@app@Calculator.apk.oat");
UsageError("");
UsageError(" --bitcode=<file.bc>: specifies the optional bitcode filename.");
UsageError(" Example: --bitcode=/system/framework/boot.bc");
UsageError("");
UsageError(" --image=<file.art>: specifies the output image filename.");
UsageError(" Example: --image=/system/framework/boot.art");
UsageError("");
UsageError(" --image-classes=<classname-file>: specifies classes to include in an image.");
UsageError(" Example: --image=frameworks/base/preloaded-classes");
UsageError("");
UsageError(" --base=<hex-address>: specifies the base address when creating a boot image.");
UsageError(" Example: --base=0x50000000");
UsageError("");
UsageError(" --boot-image=<file.art>: provide the image file for the boot class path.");
UsageError(" Example: --boot-image=/system/framework/boot.art");
UsageError(" Default: <host-prefix>/system/framework/boot.art");
UsageError("");
UsageError(" --host-prefix may be used to translate host paths to target paths during");
UsageError(" cross compilation.");
UsageError(" Example: --host-prefix=out/target/product/crespo");
UsageError(" Default: $ANDROID_PRODUCT_OUT");
UsageError("");
UsageError(" --instruction-set=(arm|mips|x86): compile for a particular instruction");
UsageError(" set.");
UsageError(" Example: --instruction-set=x86");
UsageError(" Default: arm");
UsageError("");
UsageError(" --compiler-backend=(Quick|QuickGBC|Portable): select compiler backend");
UsageError(" set.");
UsageError(" Example: --instruction-set=Portable");
UsageError(" Default: Quick");
UsageError(" --runtime-arg <argument>: used to specify various arguments for the runtime,");
UsageError(" such as initial heap size, maximum heap size, and verbose output.");
UsageError(" Use a separate --runtime-arg switch for each argument.");
UsageError(" Example: --runtime-arg -Xms256m");
UsageError("");
std::cerr << "See log for usage error information\n";
exit(EXIT_FAILURE);
}
class Dex2Oat {
public:
static bool Create(Dex2Oat** p_dex2oat, Runtime::Options& options, CompilerBackend compiler_backend,
InstructionSet instruction_set, size_t thread_count, bool support_debugging)
SHARED_TRYLOCK_FUNCTION(true, Locks::mutator_lock_) {
if (!CreateRuntime(options, instruction_set)) {
*p_dex2oat = NULL;
return false;
}
*p_dex2oat = new Dex2Oat(Runtime::Current(), compiler_backend, instruction_set, thread_count,
support_debugging);
return true;
}
~Dex2Oat() {
delete runtime_;
LOG(INFO) << "dex2oat took " << PrettyDuration(NanoTime() - start_ns_) << " (threads: " << thread_count_ << ")";
}
// Make a list of descriptors for classes to include in the image
const std::set<std::string>* GetImageClassDescriptors(const char* image_classes_filename)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
UniquePtr<std::ifstream> image_classes_file(new std::ifstream(image_classes_filename, std::ifstream::in));
if (image_classes_file.get() == NULL) {
LOG(ERROR) << "Failed to open image classes file " << image_classes_filename;
return NULL;
}
// Load all the classes specified in the file
ClassLinker* class_linker = runtime_->GetClassLinker();
Thread* self = Thread::Current();
while (image_classes_file->good()) {
std::string dot;
std::getline(*image_classes_file.get(), dot);
if (StartsWith(dot, "#") || dot.empty()) {
continue;
}
std::string descriptor(DotToDescriptor(dot.c_str()));
SirtRef<Class> klass(self, class_linker->FindSystemClass(descriptor.c_str()));
if (klass.get() == NULL) {
LOG(WARNING) << "Failed to find class " << descriptor;
Thread::Current()->ClearException();
}
}
image_classes_file->close();
// Resolve exception classes referenced by the loaded classes. The catch logic assumes
// exceptions are resolved by the verifier when there is a catch block in an interested method.
// Do this here so that exception classes appear to have been specified image classes.
std::set<std::pair<uint16_t, const DexFile*> > unresolved_exception_types;
SirtRef<Class> java_lang_Throwable(self,
class_linker->FindSystemClass("Ljava/lang/Throwable;"));
do {
unresolved_exception_types.clear();
class_linker->VisitClasses(ResolveCatchBlockExceptionsClassVisitor,
&unresolved_exception_types);
typedef std::set<std::pair<uint16_t, const DexFile*> >::const_iterator It; // TODO: C++0x auto
for (It it = unresolved_exception_types.begin(),
end = unresolved_exception_types.end();
it != end; ++it) {
uint16_t exception_type_idx = it->first;
const DexFile* dex_file = it->second;
DexCache* dex_cache = class_linker->FindDexCache(*dex_file);
ClassLoader* class_loader = NULL;
SirtRef<Class> klass(self, class_linker->ResolveType(*dex_file, exception_type_idx,
dex_cache, class_loader));
if (klass.get() == NULL) {
const DexFile::TypeId& type_id = dex_file->GetTypeId(exception_type_idx);
const char* descriptor = dex_file->GetTypeDescriptor(type_id);
LOG(FATAL) << "Failed to resolve class " << descriptor;
}
DCHECK(java_lang_Throwable->IsAssignableFrom(klass.get()));
}
// Resolving exceptions may load classes that reference more exceptions, iterate until no
// more are found
} while (!unresolved_exception_types.empty());
// We walk the roots looking for classes so that we'll pick up the
// above classes plus any classes them depend on such super
// classes, interfaces, and the required ClassLinker roots.
UniquePtr<std::set<std::string> > image_classes(new std::set<std::string>());
class_linker->VisitClasses(RecordImageClassesVisitor, image_classes.get());
CHECK_NE(image_classes->size(), 0U);
return image_classes.release();
}
const Compiler* CreateOatFile(const std::string& boot_image_option,
const std::string* host_prefix,
const std::vector<const DexFile*>& dex_files,
File* oat_file,
const std::string& bitcode_filename,
bool image,
const std::set<std::string>* image_classes,
bool dump_stats,
bool dump_timings)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// SirtRef and ClassLoader creation needs to come after Runtime::Create
jobject class_loader = NULL;
if (!boot_image_option.empty()) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
std::vector<const DexFile*> class_path_files(dex_files);
OpenClassPathFiles(runtime_->GetClassPathString(), class_path_files);
for (size_t i = 0; i < class_path_files.size(); i++) {
class_linker->RegisterDexFile(*class_path_files[i]);
}
ScopedObjectAccessUnchecked soa(Thread::Current());
soa.Env()->AllocObject(WellKnownClasses::dalvik_system_PathClassLoader);
ScopedLocalRef<jobject> class_loader_local(soa.Env(),
soa.Env()->AllocObject(WellKnownClasses::dalvik_system_PathClassLoader));
class_loader = soa.Env()->NewGlobalRef(class_loader_local.get());
Runtime::Current()->SetCompileTimeClassPath(class_loader, class_path_files);
}
UniquePtr<Compiler> compiler(new Compiler(compiler_backend_,
instruction_set_,
image,
thread_count_,
support_debugging_,
image_classes,
dump_stats,
dump_timings));
if ((compiler_backend_ == kPortable) || (compiler_backend_ == kIceland)) {
compiler->SetBitcodeFileName(bitcode_filename);
}
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
compiler->CompileAll(class_loader, dex_files);
Thread::Current()->TransitionFromSuspendedToRunnable();
std::string image_file_location;
uint32_t image_file_location_oat_checksum = 0;
uint32_t image_file_location_oat_begin = 0;
Heap* heap = Runtime::Current()->GetHeap();
if (heap->GetSpaces().size() > 1) {
ImageSpace* image_space = heap->GetImageSpace();
image_file_location_oat_checksum = image_space->GetImageHeader().GetOatChecksum();
image_file_location_oat_begin = reinterpret_cast<uint32_t>(image_space->GetImageHeader().GetOatBegin());
image_file_location = image_space->GetImageFilename();
if (host_prefix != NULL && StartsWith(image_file_location, host_prefix->c_str())) {
image_file_location = image_file_location.substr(host_prefix->size());
}
}
if (!OatWriter::Create(oat_file,
dex_files,
image_file_location_oat_checksum,
image_file_location_oat_begin,
image_file_location,
*compiler.get())) {
LOG(ERROR) << "Failed to create oat file " << oat_file->name();
return NULL;
}
return compiler.release();
}
bool CreateImageFile(const std::string& image_filename,
uintptr_t image_base,
const std::set<std::string>* image_classes,
const std::string& oat_filename,
const std::string& oat_location,
const Compiler& compiler)
LOCKS_EXCLUDED(Locks::mutator_lock_) {
ImageWriter image_writer(image_classes);
if (!image_writer.Write(image_filename, image_base, oat_filename, oat_location, compiler)) {
LOG(ERROR) << "Failed to create image file " << image_filename;
return false;
}
return true;
}
private:
explicit Dex2Oat(Runtime* runtime, CompilerBackend compiler_backend, InstructionSet instruction_set,
size_t thread_count, bool support_debugging)
: compiler_backend_(compiler_backend),
instruction_set_(instruction_set),
runtime_(runtime),
thread_count_(thread_count),
support_debugging_(support_debugging),
start_ns_(NanoTime()) {
}
static bool CreateRuntime(Runtime::Options& options, InstructionSet instruction_set)
SHARED_TRYLOCK_FUNCTION(true, Locks::mutator_lock_) {
if (!Runtime::Create(options, false)) {
LOG(ERROR) << "Failed to create runtime";
return false;
}
Runtime* runtime = Runtime::Current();
// if we loaded an existing image, we will reuse values from the image roots.
if (!runtime->HasJniDlsymLookupStub()) {
runtime->SetJniDlsymLookupStub(Compiler::CreateJniDlsymLookupStub(instruction_set));
}
if (!runtime->HasAbstractMethodErrorStubArray()) {
runtime->SetAbstractMethodErrorStubArray(Compiler::CreateAbstractMethodErrorStub(instruction_set));
}
for (int i = 0; i < Runtime::kLastTrampolineMethodType; i++) {
Runtime::TrampolineType type = Runtime::TrampolineType(i);
if (!runtime->HasResolutionStubArray(type)) {
runtime->SetResolutionStubArray(Compiler::CreateResolutionStub(instruction_set, type), type);
}
}
if (!runtime->HasResolutionMethod()) {
runtime->SetResolutionMethod(runtime->CreateResolutionMethod());
}
for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
if (!runtime->HasCalleeSaveMethod(type)) {
runtime->SetCalleeSaveMethod(runtime->CreateCalleeSaveMethod(instruction_set, type), type);
}
}
runtime->GetClassLinker()->FixupDexCaches(runtime->GetResolutionMethod());
return true;
}
static void ResolveExceptionsForMethod(MethodHelper* mh,
std::set<std::pair<uint16_t, const DexFile*> >& exceptions_to_resolve)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
const DexFile::CodeItem* code_item = mh->GetCodeItem();
if (code_item == NULL) {
return; // native or abstract method
}
if (code_item->tries_size_ == 0) {
return; // nothing to process
}
const byte* encoded_catch_handler_list = DexFile::GetCatchHandlerData(*code_item, 0);
size_t num_encoded_catch_handlers = DecodeUnsignedLeb128(&encoded_catch_handler_list);
for (size_t i = 0; i < num_encoded_catch_handlers; i++) {
int32_t encoded_catch_handler_size = DecodeSignedLeb128(&encoded_catch_handler_list);
bool has_catch_all = false;
if (encoded_catch_handler_size <= 0) {
encoded_catch_handler_size = -encoded_catch_handler_size;
has_catch_all = true;
}
for (int32_t j = 0; j < encoded_catch_handler_size; j++) {
uint16_t encoded_catch_handler_handlers_type_idx =
DecodeUnsignedLeb128(&encoded_catch_handler_list);
// Add to set of types to resolve if not already in the dex cache resolved types
if (!mh->IsResolvedTypeIdx(encoded_catch_handler_handlers_type_idx)) {
exceptions_to_resolve.insert(
std::pair<uint16_t, const DexFile*>(encoded_catch_handler_handlers_type_idx,
&mh->GetDexFile()));
}
// ignore address associated with catch handler
DecodeUnsignedLeb128(&encoded_catch_handler_list);
}
if (has_catch_all) {
// ignore catch all address
DecodeUnsignedLeb128(&encoded_catch_handler_list);
}
}
}
static bool ResolveCatchBlockExceptionsClassVisitor(Class* c, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
std::set<std::pair<uint16_t, const DexFile*> >* exceptions_to_resolve =
reinterpret_cast<std::set<std::pair<uint16_t, const DexFile*> >*>(arg);
MethodHelper mh;
for (size_t i = 0; i < c->NumVirtualMethods(); ++i) {
AbstractMethod* m = c->GetVirtualMethod(i);
mh.ChangeMethod(m);
ResolveExceptionsForMethod(&mh, *exceptions_to_resolve);
}
for (size_t i = 0; i < c->NumDirectMethods(); ++i) {
AbstractMethod* m = c->GetDirectMethod(i);
mh.ChangeMethod(m);
ResolveExceptionsForMethod(&mh, *exceptions_to_resolve);
}
return true;
}
static bool RecordImageClassesVisitor(Class* klass, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
std::set<std::string>* image_classes = reinterpret_cast<std::set<std::string>*>(arg);
if (klass->IsArrayClass() || klass->IsPrimitive()) {
return true;
}
image_classes->insert(ClassHelper(klass).GetDescriptor());
return true;
}
// Appends to dex_files any elements of class_path that it doesn't already
// contain. This will open those dex files as necessary.
static void OpenClassPathFiles(const std::string& class_path, std::vector<const DexFile*>& dex_files) {
std::vector<std::string> parsed;
Split(class_path, ':', parsed);
for (size_t i = 0; i < parsed.size(); ++i) {
if (DexFilesContains(dex_files, parsed[i])) {
continue;
}
const DexFile* dex_file = DexFile::Open(parsed[i], parsed[i]);
if (dex_file == NULL) {
LOG(WARNING) << "Failed to open dex file " << parsed[i];
} else {
dex_files.push_back(dex_file);
}
}
}
// Returns true if dex_files has a dex with the named location.
static bool DexFilesContains(const std::vector<const DexFile*>& dex_files, const std::string& location) {
for (size_t i = 0; i < dex_files.size(); ++i) {
if (dex_files[i]->GetLocation() == location) {
return true;
}
}
return false;
}
const CompilerBackend compiler_backend_;
const InstructionSet instruction_set_;
Runtime* runtime_;
size_t thread_count_;
bool support_debugging_;
uint64_t start_ns_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat);
};
static bool ParseInt(const char* in, int* out) {
char* end;
int result = strtol(in, &end, 10);
if (in == end || *end != '\0') {
return false;
}
*out = result;
return true;
}
static size_t OpenDexFiles(const std::vector<const char*>& dex_filenames,
const std::vector<const char*>& dex_locations,
std::vector<const DexFile*>& dex_files) {
size_t failure_count = 0;
for (size_t i = 0; i < dex_filenames.size(); i++) {
const char* dex_filename = dex_filenames[i];
const char* dex_location = dex_locations[i];
const DexFile* dex_file = DexFile::Open(dex_filename, dex_location);
if (dex_file == NULL) {
LOG(WARNING) << "could not open .dex from file " << dex_filename;
++failure_count;
} else {
dex_files.push_back(dex_file);
}
}
return failure_count;
}
static int dex2oat(int argc, char** argv) {
InitLogging(argv);
// Skip over argv[0].
argv++;
argc--;
if (argc == 0) {
Usage("no arguments specified");
}
std::vector<const char*> dex_filenames;
std::vector<const char*> dex_locations;
int zip_fd = -1;
std::string zip_location;
std::string oat_filename;
std::string oat_location;
int oat_fd = -1;
std::string bitcode_filename;
const char* image_classes_filename = NULL;
std::string image_filename;
std::string boot_image_filename;
uintptr_t image_base = 0;
UniquePtr<std::string> host_prefix;
std::vector<const char*> runtime_args;
int thread_count = sysconf(_SC_NPROCESSORS_CONF);
bool support_debugging = false;
#if defined(ART_USE_PORTABLE_COMPILER)
CompilerBackend compiler_backend = kPortable;
#elif defined(ART_USE_LLVM_COMPILER)
CompilerBackend compiler_backend = kIceland;
#else
CompilerBackend compiler_backend = kQuick;
#endif
#if defined(__arm__)
InstructionSet instruction_set = kThumb2;
#elif defined(__i386__)
InstructionSet instruction_set = kX86;
#elif defined(__mips__)
InstructionSet instruction_set = kMips;
#else
#error "Unsupported architecture"
#endif
bool dump_stats = kIsDebugBuild;
bool dump_timings = kIsDebugBuild;
for (int i = 0; i < argc; i++) {
const StringPiece option(argv[i]);
bool log_options = false;
if (log_options) {
LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i];
}
if (option.starts_with("--dex-file=")) {
dex_filenames.push_back(option.substr(strlen("--dex-file=")).data());
} else if (option.starts_with("--dex-location=")) {
dex_locations.push_back(option.substr(strlen("--dex-location=")).data());
} else if (option.starts_with("--zip-fd=")) {
const char* zip_fd_str = option.substr(strlen("--zip-fd=")).data();
if (!ParseInt(zip_fd_str, &zip_fd)) {
Usage("could not parse --zip-fd argument '%s' as an integer", zip_fd_str);
}
} else if (option.starts_with("--zip-location=")) {
zip_location = option.substr(strlen("--zip-location=")).data();
} else if (option.starts_with("--oat-file=")) {
oat_filename = option.substr(strlen("--oat-file=")).data();
} else if (option.starts_with("--oat-fd=")) {
const char* oat_fd_str = option.substr(strlen("--oat-fd=")).data();
if (!ParseInt(oat_fd_str, &oat_fd)) {
Usage("could not parse --oat-fd argument '%s' as an integer", oat_fd_str);
}
} else if (option.starts_with("-g")) {
support_debugging = true;
} else if (option.starts_with("-j")) {
const char* thread_count_str = option.substr(strlen("-j")).data();
if (!ParseInt(thread_count_str, &thread_count)) {
Usage("could not parse -j argument '%s' as an integer", thread_count_str);
}
} else if (option.starts_with("--oat-location=")) {
oat_location = option.substr(strlen("--oat-location=")).data();
} else if (option.starts_with("--bitcode=")) {
bitcode_filename = option.substr(strlen("--bitcode=")).data();
} else if (option.starts_with("--image=")) {
image_filename = option.substr(strlen("--image=")).data();
} else if (option.starts_with("--image-classes=")) {
image_classes_filename = option.substr(strlen("--image-classes=")).data();
} else if (option.starts_with("--base=")) {
const char* image_base_str = option.substr(strlen("--base=")).data();
char* end;
image_base = strtoul(image_base_str, &end, 16);
if (end == image_base_str || *end != '\0') {
Usage("Failed to parse hexadecimal value for option %s", option.data());
}
} else if (option.starts_with("--boot-image=")) {
boot_image_filename = option.substr(strlen("--boot-image=")).data();
} else if (option.starts_with("--host-prefix=")) {
host_prefix.reset(new std::string(option.substr(strlen("--host-prefix=")).data()));
} else if (option.starts_with("--instruction-set=")) {
StringPiece instruction_set_str = option.substr(strlen("--instruction-set=")).data();
if (instruction_set_str == "arm") {
instruction_set = kThumb2;
} else if (instruction_set_str == "mips") {
instruction_set = kMips;
} else if (instruction_set_str == "x86") {
instruction_set = kX86;
}
} else if (option.starts_with("--compiler-backend=")) {
StringPiece backend_str = option.substr(strlen("--compiler-backend=")).data();
if (backend_str == "Quick") {
compiler_backend = kQuick;
} else if (backend_str == "QuickGBC") {
compiler_backend = kQuickGBC;
} else if (backend_str == "Iceland") {
// TODO: remove this when Portable/Iceland merge complete
compiler_backend = kIceland;
} else if (backend_str == "Portable") {
compiler_backend = kPortable;
}
} else if (option == "--runtime-arg") {
if (++i >= argc) {
Usage("Missing required argument for --runtime-arg");
}
if (log_options) {
LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i];
}
runtime_args.push_back(argv[i]);
} else {
Usage("unknown argument %s", option.data());
}
}
if (oat_filename.empty() && oat_fd == -1) {
Usage("Output must be supplied with either --oat-file or --oat-fd");
}
if (!oat_filename.empty() && oat_fd != -1) {
Usage("--oat-file should not be used with --oat-fd");
}
if (!oat_filename.empty() && oat_fd != -1) {
Usage("--oat-file should not be used with --oat-fd");
}
if (oat_fd != -1 && !image_filename.empty()) {
Usage("--oat-fd should not be used with --image");
}
if (host_prefix.get() == NULL) {
const char* android_product_out = getenv("ANDROID_PRODUCT_OUT");
if (android_product_out != NULL) {
host_prefix.reset(new std::string(android_product_out));
}
}
bool image = (!image_filename.empty());
if (!image && boot_image_filename.empty()) {
if (host_prefix.get() == NULL) {
boot_image_filename += GetAndroidRoot();
} else {
boot_image_filename += *host_prefix.get();
boot_image_filename += "/system";
}
boot_image_filename += "/framework/boot.art";
}
std::string boot_image_option;
if (!boot_image_filename.empty()) {
boot_image_option += "-Ximage:";
boot_image_option += boot_image_filename;
}
if (image_classes_filename != NULL && !image) {
Usage("--image-classes should only be used with --image");
}
if (image_classes_filename != NULL && !boot_image_option.empty()) {
Usage("--image-classes should not be used with --boot-image");
}
if (dex_filenames.empty() && zip_fd == -1) {
Usage("Input must be supplied with either --dex-file or --zip-fd");
}
if (!dex_filenames.empty() && zip_fd != -1) {
Usage("--dex-file should not be used with --zip-fd");
}
if (!dex_filenames.empty() && !zip_location.empty()) {
Usage("--dex-file should not be used with --zip-location");
}
if (dex_locations.empty()) {
for (size_t i = 0; i < dex_filenames.size(); i++) {
dex_locations.push_back(dex_filenames[i]);
}
} else if (dex_locations.size() != dex_filenames.size()) {
Usage("--dex-location arguments do not match --dex-file arguments");
}
if (zip_fd != -1 && zip_location.empty()) {
Usage("--zip-location should be supplied with --zip-fd");
}
if (boot_image_option.empty()) {
if (image_base == 0) {
Usage("non-zero --base not specified");
}
}
// Check early that the result of compilation can be written
UniquePtr<File> oat_file;
bool create_file = !oat_filename.empty(); // as opposed to using open file descriptor
if (create_file) {
oat_file.reset(OS::OpenFile(oat_filename.c_str(), true));
if (oat_location.empty()) {
oat_location = oat_filename;
}
} else {
oat_file.reset(OS::FileFromFd(oat_location.c_str(), oat_fd));
}
if (oat_file.get() == NULL) {
PLOG(ERROR) << "Failed to create oat file: " << oat_location;
return EXIT_FAILURE;
}
if (create_file && fchmod(oat_file->Fd(), 0644) != 0) {
PLOG(ERROR) << "Failed to make oat file world readable: " << oat_location;
return EXIT_FAILURE;
}
LOG(INFO) << "dex2oat: " << oat_location;
Runtime::Options options;
options.push_back(std::make_pair("compiler", reinterpret_cast<void*>(NULL)));
std::vector<const DexFile*> boot_class_path;
if (boot_image_option.empty()) {
size_t failure_count = OpenDexFiles(dex_filenames, dex_locations, boot_class_path);
if (failure_count > 0) {
LOG(ERROR) << "Failed to open some dex files: " << failure_count;
return EXIT_FAILURE;
}
options.push_back(std::make_pair("bootclasspath", &boot_class_path));
} else {
options.push_back(std::make_pair(boot_image_option.c_str(), reinterpret_cast<void*>(NULL)));
}
if (host_prefix.get() != NULL) {
options.push_back(std::make_pair("host-prefix", host_prefix->c_str()));
}
for (size_t i = 0; i < runtime_args.size(); i++) {
options.push_back(std::make_pair(runtime_args[i], reinterpret_cast<void*>(NULL)));
}
Dex2Oat* p_dex2oat;
if (!Dex2Oat::Create(&p_dex2oat, options, compiler_backend, instruction_set, thread_count, support_debugging)) {
LOG(ERROR) << "Failed to create dex2oat";
return EXIT_FAILURE;
}
UniquePtr<Dex2Oat> dex2oat(p_dex2oat);
// Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start,
// give it away now and then switch to a more managable ScopedObjectAccess.
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
// Whilst we're in native take the opportunity to initialize well known classes.
WellKnownClasses::InitClasses(Thread::Current()->GetJniEnv());
ScopedObjectAccess soa(Thread::Current());
// If --image-classes was specified, calculate the full list of classes to include in the image
UniquePtr<const std::set<std::string> > image_classes(NULL);
if (image_classes_filename != NULL) {
image_classes.reset(dex2oat->GetImageClassDescriptors(image_classes_filename));
if (image_classes.get() == NULL) {
LOG(ERROR) << "Failed to create list of image classes from " << image_classes_filename;
return EXIT_FAILURE;
}
}
std::vector<const DexFile*> dex_files;
if (boot_image_option.empty()) {
dex_files = Runtime::Current()->GetClassLinker()->GetBootClassPath();
} else {
if (dex_filenames.empty()) {
UniquePtr<ZipArchive> zip_archive(ZipArchive::OpenFromFd(zip_fd));
if (zip_archive.get() == NULL) {
LOG(ERROR) << "Failed to zip from file descriptor for " << zip_location;
return EXIT_FAILURE;
}
const DexFile* dex_file = DexFile::Open(*zip_archive.get(), zip_location);
if (dex_file == NULL) {
LOG(ERROR) << "Failed to open dex from file descriptor for zip file: " << zip_location;
return EXIT_FAILURE;
}
dex_files.push_back(dex_file);
} else {
size_t failure_count = OpenDexFiles(dex_filenames, dex_locations, dex_files);
if (failure_count > 0) {
LOG(ERROR) << "Failed to open some dex files: " << failure_count;
return EXIT_FAILURE;
}
}
}
UniquePtr<const Compiler> compiler(dex2oat->CreateOatFile(boot_image_option,
host_prefix.get(),
dex_files,
oat_file.get(),
bitcode_filename,
image,
image_classes.get(),
dump_stats,
dump_timings));
if (compiler.get() == NULL) {
LOG(ERROR) << "Failed to create oat file: " << oat_location;
return EXIT_FAILURE;
}
if (!image) {
LOG(INFO) << "Oat file written successfully: " << oat_location;
return EXIT_SUCCESS;
}
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
bool image_creation_success = dex2oat->CreateImageFile(image_filename,
image_base,
image_classes.get(),
oat_filename,
oat_location,
*compiler.get());
Thread::Current()->TransitionFromSuspendedToRunnable();
if (!image_creation_success) {
return EXIT_FAILURE;
}
// We wrote the oat file successfully, and want to keep it.
LOG(INFO) << "Oat file written successfully: " << oat_filename;
LOG(INFO) << "Image written successfully: " << image_filename;
return EXIT_SUCCESS;
}
} // namespace art
int main(int argc, char** argv) {
return art::dex2oat(argc, argv);
}