blob: fa4615b44229b94b53cc814a447445339da3fa17 [file] [log] [blame]
* Copyright (C) 2015 The Android Open Source Project
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
#include <set>
#include <vector>
#include "base/arena_containers.h"
#include "base/arena_object.h"
#include "base/atomic.h"
#include "base/bit_memory_region.h"
#include "base/hash_set.h"
#include "base/malloc_arena_pool.h"
#include "base/mem_map.h"
#include "base/safe_map.h"
#include "dex/dex_cache_resolved_classes.h"
#include "dex/dex_file.h"
#include "dex/dex_file_types.h"
#include "dex/method_reference.h"
#include "dex/type_reference.h"
namespace art {
* Convenient class to pass around profile information (including inline caches)
* without the need to hold GC-able objects.
struct ProfileMethodInfo {
struct ProfileInlineCache {
ProfileInlineCache(uint32_t pc,
bool missing_types,
const std::vector<TypeReference>& profile_classes)
: dex_pc(pc), is_missing_types(missing_types), classes(profile_classes) {}
const uint32_t dex_pc;
const bool is_missing_types;
const std::vector<TypeReference> classes;
explicit ProfileMethodInfo(MethodReference reference) : ref(reference) {}
ProfileMethodInfo(MethodReference reference, const std::vector<ProfileInlineCache>& caches)
: ref(reference),
inline_caches(caches) {}
MethodReference ref;
std::vector<ProfileInlineCache> inline_caches;
* Profile information in a format suitable to be queried by the compiler and
* performing profile guided compilation.
* It is a serialize-friendly format based on information collected by the
* interpreter (ProfileInfo).
* Currently it stores only the hot compiled methods.
class ProfileCompilationInfo {
static const uint8_t kProfileMagic[];
static const uint8_t kProfileVersion[];
static const uint8_t kProfileVersionWithCounters[];
static const char kDexMetadataProfileEntry[];
static constexpr size_t kProfileVersionSize = 4;
static constexpr uint8_t kIndividualInlineCacheSize = 5;
// Data structures for encoding the offline representation of inline caches.
// This is exposed as public in order to make it available to dex2oat compilations
// (see compiler/optimizing/
// A dex location together with its checksum.
struct DexReference {
DexReference() : dex_checksum(0), num_method_ids(0) {}
DexReference(const std::string& location, uint32_t checksum, uint32_t num_methods)
: dex_location(location), dex_checksum(checksum), num_method_ids(num_methods) {}
bool operator==(const DexReference& other) const {
return dex_checksum == other.dex_checksum &&
dex_location == other.dex_location &&
num_method_ids == other.num_method_ids;
bool MatchesDex(const DexFile* dex_file) const {
return dex_checksum == dex_file->GetLocationChecksum() &&
dex_location == GetProfileDexFileKey(dex_file->GetLocation());
std::string dex_location;
uint32_t dex_checksum;
uint32_t num_method_ids;
// Encodes a class reference in the profile.
// The owning dex file is encoded as the index (dex_profile_index) it has in the
// profile rather than as a full DexRefence(location,checksum).
// This avoids excessive string copying when managing the profile data.
// The dex_profile_index is an index in either of:
// - OfflineProfileMethodInfo#dex_references vector (public use)
// - DexFileData#profile_index (internal use).
// Note that the dex_profile_index is not necessary the multidex index.
// We cannot rely on the actual multidex index because a single profile may store
// data from multiple splits. This means that a profile may contain a classes2.dex from split-A
// and one from split-B.
struct ClassReference : public ValueObject {
ClassReference(uint8_t dex_profile_idx, const dex::TypeIndex type_idx) :
dex_profile_index(dex_profile_idx), type_index(type_idx) {}
bool operator==(const ClassReference& other) const {
return dex_profile_index == other.dex_profile_index && type_index == other.type_index;
bool operator<(const ClassReference& other) const {
return dex_profile_index == other.dex_profile_index
? type_index < other.type_index
: dex_profile_index < other.dex_profile_index;
uint8_t dex_profile_index; // the index of the owning dex in the profile info
dex::TypeIndex type_index; // the type index of the class
// The set of classes that can be found at a given dex pc.
using ClassSet = ArenaSet<ClassReference>;
// Encodes the actual inline cache for a given dex pc (whether or not the receiver is
// megamorphic and its possible types).
// If the receiver is megamorphic or is missing types the set of classes will be empty.
struct DexPcData : public ArenaObject<kArenaAllocProfile> {
explicit DexPcData(ArenaAllocator* allocator)
: is_missing_types(false),
classes(std::less<ClassReference>(), allocator->Adapter(kArenaAllocProfile)) {}
void AddClass(uint16_t dex_profile_idx, const dex::TypeIndex& type_idx);
void SetIsMegamorphic() {
if (is_missing_types) return;
is_megamorphic = true;
void SetIsMissingTypes() {
is_megamorphic = false;
is_missing_types = true;
bool operator==(const DexPcData& other) const {
return is_megamorphic == other.is_megamorphic &&
is_missing_types == other.is_missing_types &&
classes == other.classes;
// Not all runtime types can be encoded in the profile. For example if the receiver
// type is in a dex file which is not tracked for profiling its type cannot be
// encoded. When types are missing this field will be set to true.
bool is_missing_types;
bool is_megamorphic;
ClassSet classes;
// The inline cache map: DexPc -> DexPcData.
using InlineCacheMap = ArenaSafeMap<uint16_t, DexPcData>;
// Maps a method dex index to its inline cache.
using MethodMap = ArenaSafeMap<uint16_t, InlineCacheMap>;
// Profile method hotness information for a single method. Also includes a pointer to the inline
// cache map.
class MethodHotness {
enum Flag {
kFlagHot = 0x1,
kFlagStartup = 0x2,
kFlagPostStartup = 0x4,
bool IsHot() const {
return (flags_ & kFlagHot) != 0;
bool IsStartup() const {
return (flags_ & kFlagStartup) != 0;
bool IsPostStartup() const {
return (flags_ & kFlagPostStartup) != 0;
void AddFlag(Flag flag) {
flags_ |= flag;
uint8_t GetFlags() const {
return flags_;
bool IsInProfile() const {
return flags_ != 0;
const InlineCacheMap* inline_cache_map_ = nullptr;
uint8_t flags_ = 0;
const InlineCacheMap* GetInlineCacheMap() const {
return inline_cache_map_;
void SetInlineCacheMap(const InlineCacheMap* info) {
inline_cache_map_ = info;
friend class ProfileCompilationInfo;
// Encodes the full set of inline caches for a given method.
// The dex_references vector is indexed according to the ClassReference::dex_profile_index.
// i.e. the dex file of any ClassReference present in the inline caches can be found at
// dex_references[ClassReference::dex_profile_index].
struct OfflineProfileMethodInfo {
explicit OfflineProfileMethodInfo(const InlineCacheMap* inline_cache_map)
: inline_caches(inline_cache_map) {}
bool operator==(const OfflineProfileMethodInfo& other) const;
const InlineCacheMap* const inline_caches;
std::vector<DexReference> dex_references;
// Public methods to create, extend or query the profile.
explicit ProfileCompilationInfo(ArenaPool* arena_pool);
// Add the given methods to the current profile object.
bool AddMethods(const std::vector<ProfileMethodInfo>& methods, MethodHotness::Flag flags);
// Add the given classes to the current profile object.
bool AddClasses(const std::set<DexCacheResolvedClasses>& resolved_classes);
// Add multiple type ids for classes in a single dex file. Iterator is for type_ids not
// class_defs.
template <class Iterator>
bool AddClassesForDex(const DexFile* dex_file, Iterator index_begin, Iterator index_end) {
DexFileData* data = GetOrAddDexFileData(dex_file);
if (data == nullptr) {
return false;
data->class_set.insert(index_begin, index_end);
return true;
// Add a single type id for a dex file.
bool AddClassForDex(const TypeReference& ref) {
DexFileData* data = GetOrAddDexFileData(ref.dex_file);
if (data == nullptr) {
return false;
return true;
// Add a method index to the profile (without inline caches). The method flags determine if it is
// hot, startup, or post startup, or a combination of the previous.
bool AddMethodIndex(MethodHotness::Flag flags,
const std::string& dex_location,
uint32_t checksum,
uint16_t method_idx,
uint32_t num_method_ids);
bool AddMethodIndex(MethodHotness::Flag flags, const MethodReference& ref);
// Add a method to the profile using its online representation (containing runtime structures).
bool AddMethod(const ProfileMethodInfo& pmi, MethodHotness::Flag flags);
// Bulk add sampled methods and/or hot methods for a single dex, fast since it only has one
// GetOrAddDexFileData call.
template <class Iterator>
bool AddMethodsForDex(MethodHotness::Flag flags,
const DexFile* dex_file,
Iterator index_begin,
Iterator index_end) {
DexFileData* data = GetOrAddDexFileData(dex_file);
if (data == nullptr) {
return false;
for (Iterator it = index_begin; it != index_end; ++it) {
DCHECK_LT(*it, data->num_method_ids);
if (!data->AddMethod(flags, *it)) {
return false;
return true;
// Add hotness flags for a simple method.
bool AddMethodHotness(const MethodReference& method_ref, const MethodHotness& hotness);
// Load or Merge profile information from the given file descriptor.
// If the current profile is non-empty the load will fail.
// If merge_classes is set to false, classes will not be merged/loaded.
// If filter_fn is present, it will be used to filter out profile data belonging
// to dex file which do not comply with the filter
// (i.e. for which filter_fn(dex_location, dex_checksum) is false).
using ProfileLoadFilterFn = std::function<bool(const std::string&, uint32_t)>;
// Profile filter method which accepts all dex locations.
// This is convenient to use when we need to accept all locations without repeating the same
// lambda.
static bool ProfileFilterFnAcceptAll(const std::string& dex_location, uint32_t checksum);
bool Load(
int fd,
bool merge_classes = true,
const ProfileLoadFilterFn& filter_fn = ProfileFilterFnAcceptAll);
// Verify integrity of the profile file with the provided dex files.
// If there exists a DexData object which maps to a dex_file, then it verifies that:
// - The checksums of the DexData and dex_file are equals.
// - No method id exceeds NumMethodIds corresponding to the dex_file.
// - No class id exceeds NumTypeIds corresponding to the dex_file.
// - For every inline_caches, class_ids does not exceed NumTypeIds corresponding to
// the dex_file they are in.
bool VerifyProfileData(const std::vector<const DexFile *> &dex_files);
// Load profile information from the given file
// If the current profile is non-empty the load will fail.
// If clear_if_invalid is true and the file is invalid the method clears the
// the file and returns true.
bool Load(const std::string& filename, bool clear_if_invalid);
// Merge the data from another ProfileCompilationInfo into the current object. Only merges
// classes if merge_classes is true. This is used for creating the boot profile since
// we don't want all of the classes to be image classes.
bool MergeWith(const ProfileCompilationInfo& info, bool merge_classes = true);
// Merge profile information from the given file descriptor.
bool MergeWith(const std::string& filename);
// Save the profile data to the given file descriptor.
bool Save(int fd);
// Save the current profile into the given file. The file will be cleared before saving.
bool Save(const std::string& filename, uint64_t* bytes_written);
// Return the number of methods that were profiled.
uint32_t GetNumberOfMethods() const;
// Return the number of resolved classes that were profiled.
uint32_t GetNumberOfResolvedClasses() const;
// Returns the profile method info for a given method reference.
MethodHotness GetMethodHotness(const MethodReference& method_ref) const;
MethodHotness GetMethodHotness(const std::string& dex_location,
uint32_t dex_checksum,
uint16_t dex_method_index) const;
// Return true if the class's type is present in the profiling info.
bool ContainsClass(const DexFile& dex_file, dex::TypeIndex type_idx) const;
// Return the method data for the given location and index from the profiling info.
// If the method index is not found or the checksum doesn't match, null is returned.
// Note: the inline cache map is a pointer to the map stored in the profile and
// its allocation will go away if the profile goes out of scope.
std::unique_ptr<OfflineProfileMethodInfo> GetMethod(const std::string& dex_location,
uint32_t dex_checksum,
uint16_t dex_method_index) const;
// Dump all the loaded profile info into a string and returns it.
// If dex_files is not empty then the method indices will be resolved to their
// names.
// This is intended for testing and debugging.
std::string DumpInfo(const std::vector<const DexFile*>& dex_files,
bool print_full_dex_location = true) const;
// Return the classes and methods for a given dex file through out args. The out args are the set
// of class as well as the methods and their associated inline caches. Returns true if the dex
// file is register and has a matching checksum, false otherwise.
bool GetClassesAndMethods(const DexFile& dex_file,
/*out*/std::set<dex::TypeIndex>* class_set,
/*out*/std::set<uint16_t>* hot_method_set,
/*out*/std::set<uint16_t>* startup_method_set,
/*out*/std::set<uint16_t>* post_startup_method_method_set) const;
// Perform an equality test with the `other` profile information.
bool Equals(const ProfileCompilationInfo& other);
// Return the class descriptors for all of the classes in the profiles' class sets.
std::set<DexCacheResolvedClasses> GetResolvedClasses(
const std::vector<const DexFile*>& dex_files_) const;
// Return the profile key associated with the given dex location.
static std::string GetProfileDexFileKey(const std::string& dex_location);
// Generate a test profile which will contain a percentage of the total maximum
// number of methods and classes (method_ratio and class_ratio).
static bool GenerateTestProfile(int fd,
uint16_t number_of_dex_files,
uint16_t method_ratio,
uint16_t class_ratio,
uint32_t random_seed);
// Generate a test profile which will randomly contain classes and methods from
// the provided list of dex files.
static bool GenerateTestProfile(int fd,
std::vector<std::unique_ptr<const DexFile>>& dex_files,
uint16_t method_percentage,
uint16_t class_percentage,
uint32_t random_seed);
// Check that the given profile method info contain the same data.
static bool Equals(const ProfileCompilationInfo::OfflineProfileMethodInfo& pmi1,
const ProfileCompilationInfo::OfflineProfileMethodInfo& pmi2);
ArenaAllocator* GetAllocator() { return &allocator_; }
// Return all of the class descriptors in the profile for a set of dex files.
HashSet<std::string> GetClassDescriptors(const std::vector<const DexFile*>& dex_files);
// Return true if the fd points to a profile file.
bool IsProfileFile(int fd);
// Update the profile keys corresponding to the given dex files based on their current paths.
// This method allows fix-ups in the profile for dex files that might have been renamed.
// The new profile key will be constructed based on the current dex location.
// The matching [profile key <-> dex_file] is done based on the dex checksum and the number of
// methods ids. If neither is a match then the profile key is not updated.
// If the new profile key would collide with an existing key (for a different dex)
// the method returns false. Otherwise it returns true.
bool UpdateProfileKeys(const std::vector<std::unique_ptr<const DexFile>>& dex_files);
// Checks if the profile is empty.
bool IsEmpty() const;
// Clears all the data from the profile.
void ClearData();
// Prepare the profile to store aggregation counters.
// This will change the profile version and allocate extra storage for the counters.
// It allocates 2 bytes for every possible method and class, so do not use in performance
// critical code which needs to be memory efficient.
void PrepareForAggregationCounters();
// Returns true if the profile is configured to store aggregation counters.
bool StoresAggregationCounters() const;
// Returns the aggregation counter for the given method.
// Returns -1 if the method is not in the profile.
// CHECKs that the profile is configured to store aggregations counters.
int32_t GetMethodAggregationCounter(const MethodReference& method_ref) const;
// Returns the aggregation counter for the given class.
// Returns -1 if the class is not in the profile.
// CHECKs that the profile is configured to store aggregations counters.
int32_t GetClassAggregationCounter(const TypeReference& type_ref) const;
// Returns the number of times the profile was merged.
// CHECKs that the profile is configured to store aggregations counters.
uint16_t GetAggregationCounter() const;
// Return the version of this profile.
const uint8_t* GetVersion() const;
enum ProfileLoadStatus {
const uint32_t kProfileSizeWarningThresholdInBytes = 500000U;
const uint32_t kProfileSizeErrorThresholdInBytes = 1000000U;
// Internal representation of the profile information belonging to a dex file.
// Note that we could do without profile_key (the key used to encode the dex
// file in the profile) and profile_index (the index of the dex file in the
// profile) fields in this struct because we can infer them from
// profile_key_map_ and info_. However, it makes the profiles logic much
// simpler if we have references here as well.
struct DexFileData : public DeletableArenaObject<kArenaAllocProfile> {
DexFileData(ArenaAllocator* allocator,
const std::string& key,
uint32_t location_checksum,
uint16_t index,
uint32_t num_methods,
bool store_aggregation_counters)
: allocator_(allocator),
method_map(std::less<uint16_t>(), allocator->Adapter(kArenaAllocProfile)),
class_set(std::less<dex::TypeIndex>(), allocator->Adapter(kArenaAllocProfile)),
class_counters(allocator->Adapter(kArenaAllocProfile)) {
if (!bitmap_storage.empty()) {
method_bitmap =
&bitmap_storage[0], bitmap_storage.size()), 0, ComputeBitmapBits(num_method_ids));
if (store_aggregation_counters) {
static size_t ComputeBitmapBits(uint32_t num_method_ids) {
return num_method_ids * kBitmapIndexCount;
static size_t ComputeBitmapStorage(uint32_t num_method_ids) {
return RoundUp(ComputeBitmapBits(num_method_ids), kBitsPerByte) / kBitsPerByte;
bool operator==(const DexFileData& other) const {
return checksum == other.checksum &&
num_method_ids == other.num_method_ids &&
method_map == other.method_map &&
class_set == other.class_set &&
(BitMemoryRegion::Compare(method_bitmap, other.method_bitmap) == 0) &&
class_counters == other.class_counters &&
method_counters == other.method_counters;
// Mark a method as executed at least once.
bool AddMethod(MethodHotness::Flag flags, size_t index);
void MergeBitmap(const DexFileData& other) {
DCHECK_EQ(bitmap_storage.size(), other.bitmap_storage.size());
for (size_t i = 0; i < bitmap_storage.size(); ++i) {
bitmap_storage[i] |= other.bitmap_storage[i];
void SetMethodHotness(size_t index, MethodHotness::Flag flags);
MethodHotness GetHotnessInfo(uint32_t dex_method_index) const;
void PrepareForAggregationCounters();
int32_t GetMethodAggregationCounter(uint16_t method_index) const;
int32_t GetClassAggregationCounter(uint16_t type_index) const;
uint16_t GetNumMethodCounters() const;
bool ContainsClass(const dex::TypeIndex type_index) const;
// The allocator used to allocate new inline cache maps.
ArenaAllocator* const allocator_;
// The profile key this data belongs to.
std::string profile_key;
// The profile index of this dex file (matches ClassReference#dex_profile_index).
uint8_t profile_index;
// The dex checksum.
uint32_t checksum;
// The methods' profile information.
MethodMap method_map;
// The classes which have been profiled. Note that these don't necessarily include
// all the classes that can be found in the inline caches reference.
ArenaSet<dex::TypeIndex> class_set;
// Find the inline caches of the the given method index. Add an empty entry if
// no previous data is found.
InlineCacheMap* FindOrAddMethod(uint16_t method_index);
// Num method ids.
uint32_t num_method_ids;
ArenaVector<uint8_t> bitmap_storage;
BitMemoryRegion method_bitmap;
ArenaVector<uint16_t> method_counters;
ArenaVector<uint16_t> class_counters;
enum BitmapIndex {
size_t MethodBitIndex(bool startup, size_t index) const {
DCHECK_LT(index, num_method_ids);
// The format is [startup bitmap][post startup bitmap]
// This compresses better than ([startup bit][post statup bit])*
return index + (startup
? kBitmapIndexStartup * num_method_ids
: kBitmapIndexPostStartup * num_method_ids);
// Return the profile data for the given profile key or null if the dex location
// already exists but has a different checksum
DexFileData* GetOrAddDexFileData(const std::string& profile_key,
uint32_t checksum,
uint32_t num_method_ids);
DexFileData* GetOrAddDexFileData(const DexFile* dex_file) {
return GetOrAddDexFileData(GetProfileDexFileKey(dex_file->GetLocation()),
// Add a method to the profile using its offline representation.
// This is mostly used to facilitate testing.
bool AddMethod(const std::string& dex_location,
uint32_t dex_checksum,
uint16_t method_index,
uint32_t num_method_ids,
const OfflineProfileMethodInfo& pmi,
MethodHotness::Flag flags);
// Add a class index to the profile.
bool AddClassIndex(const std::string& dex_location,
uint32_t checksum,
dex::TypeIndex type_idx,
uint32_t num_method_ids);
// Add all classes from the given dex cache to the the profile.
bool AddResolvedClasses(const DexCacheResolvedClasses& classes);
// Encode the known dex_files into a vector. The index of a dex_reference will
// be the same as the profile index of the dex file (used to encode the ClassReferences).
void DexFileToProfileIndex(/*out*/std::vector<DexReference>* dex_references) const;
// Return the dex data associated with the given profile key or null if the profile
// doesn't contain the key.
const DexFileData* FindDexData(const std::string& profile_key,
uint32_t checksum,
bool verify_checksum = true) const;
// Return the dex data associated with the given dex file or null if the profile doesn't contain
// the key or the checksum mismatches.
const DexFileData* FindDexData(const DexFile* dex_file) const;
// Inflate the input buffer (in_buffer) of size in_size. It returns a buffer of
// compressed data for the input buffer of "compressed_data_size" size.
std::unique_ptr<uint8_t[]> DeflateBuffer(const uint8_t* in_buffer,
uint32_t in_size,
/*out*/uint32_t* compressed_data_size);
// Inflate the input buffer(in_buffer) of size in_size. out_size is the expected output
// size of the buffer. It puts the output in out_buffer. It returns Z_STREAM_END on
// success. On error, it returns Z_STREAM_ERROR if the compressed data is inconsistent
// and Z_DATA_ERROR if the stream ended prematurely or the stream has extra data.
int InflateBuffer(const uint8_t* in_buffer,
uint32_t in_size,
uint32_t out_size,
/*out*/uint8_t* out_buffer);
// Parsing functionality.
// The information present in the header of each profile line.
struct ProfileLineHeader {
std::string dex_location;
uint16_t class_set_size;
uint32_t method_region_size_bytes;
uint32_t checksum;
uint32_t num_method_ids;
* Encapsulate the source of profile data for loading.
* The source can be either a plain file or a zip file.
* For zip files, the profile entry will be extracted to
* the memory map.
class ProfileSource {
* Create a profile source for the given fd. The ownership of the fd
* remains to the caller; as this class will not attempt to close it at any
* point.
static ProfileSource* Create(int32_t fd) {
DCHECK_GT(fd, -1);
return new ProfileSource(fd, MemMap::Invalid());
* Create a profile source backed by a memory map. The map can be null in
* which case it will the treated as an empty source.
static ProfileSource* Create(MemMap&& mem_map) {
return new ProfileSource(/*fd*/ -1, std::move(mem_map));
* Read bytes from this source.
* Reading will advance the current source position so subsequent
* invocations will read from the las position.
ProfileLoadStatus Read(uint8_t* buffer,
size_t byte_count,
const std::string& debug_stage,
std::string* error);
/** Return true if the source has 0 data. */
bool HasEmptyContent() const;
/** Return true if all the information from this source has been read. */
bool HasConsumedAllData() const;
ProfileSource(int32_t fd, MemMap&& mem_map)
: fd_(fd), mem_map_(std::move(mem_map)), mem_map_cur_(0) {}
bool IsMemMap() const { return fd_ == -1; }
int32_t fd_; // The fd is not owned by this class.
MemMap mem_map_;
size_t mem_map_cur_; // Current position in the map to read from.
// A helper structure to make sure we don't read past our buffers in the loops.
struct SafeBuffer {
explicit SafeBuffer(size_t size) : storage_(new uint8_t[size]) {
ptr_current_ = storage_.get();
ptr_end_ = ptr_current_ + size;
// Reads the content of the descriptor at the current position.
ProfileLoadStatus Fill(ProfileSource& source,
const std::string& debug_stage,
/*out*/std::string* error);
// Reads an uint value (high bits to low bits) and advances the current pointer
// with the number of bits read.
template <typename T> bool ReadUintAndAdvance(/*out*/ T* value);
// Compares the given data with the content current pointer. If the contents are
// equal it advances the current pointer by data_size.
bool CompareAndAdvance(const uint8_t* data, size_t data_size);
// Advances current pointer by data_size.
void Advance(size_t data_size);
// Returns the count of unread bytes.
size_t CountUnreadBytes();
// Returns the current pointer.
const uint8_t* GetCurrentPtr();
// Get the underlying raw buffer.
uint8_t* Get() { return storage_.get(); }
std::unique_ptr<uint8_t[]> storage_;
uint8_t* ptr_end_;
uint8_t* ptr_current_;
ProfileLoadStatus OpenSource(int32_t fd,
/*out*/ std::unique_ptr<ProfileSource>* source,
/*out*/ std::string* error);
// Entry point for profile loading functionality.
ProfileLoadStatus LoadInternal(
int32_t fd,
std::string* error,
bool merge_classes = true,
const ProfileLoadFilterFn& filter_fn = ProfileFilterFnAcceptAll);
// Read the profile header from the given fd and store the number of profile
// lines into number_of_dex_files.
ProfileLoadStatus ReadProfileHeader(ProfileSource& source,
/*out*/uint8_t* number_of_dex_files,
/*out*/uint32_t* size_uncompressed_data,
/*out*/uint32_t* size_compressed_data,
/*out*/std::string* error);
// Read the header of a profile line from the given fd.
ProfileLoadStatus ReadProfileLineHeader(SafeBuffer& buffer,
/*out*/ProfileLineHeader* line_header,
/*out*/std::string* error);
// Read individual elements from the profile line header.
bool ReadProfileLineHeaderElements(SafeBuffer& buffer,
/*out*/uint16_t* dex_location_size,
/*out*/ProfileLineHeader* line_header,
/*out*/std::string* error);
// Read a single profile line from the given fd.
ProfileLoadStatus ReadProfileLine(SafeBuffer& buffer,
uint8_t number_of_dex_files,
const ProfileLineHeader& line_header,
const SafeMap<uint8_t, uint8_t>& dex_profile_index_remap,
bool merge_classes,
/*out*/std::string* error);
// Read all the classes from the buffer into the profile `info_` structure.
bool ReadClasses(SafeBuffer& buffer,
const ProfileLineHeader& line_header,
/*out*/std::string* error);
// Read all the methods from the buffer into the profile `info_` structure.
bool ReadMethods(SafeBuffer& buffer,
uint8_t number_of_dex_files,
const ProfileLineHeader& line_header,
const SafeMap<uint8_t, uint8_t>& dex_profile_index_remap,
/*out*/std::string* error);
// Read the aggregation counters from the buffer.
bool ReadAggregationCounters(SafeBuffer& buffer,
DexFileData& dex_data,
/*out*/std::string* error);
// The method generates mapping of profile indices while merging a new profile
// data into current data. It returns true, if the mapping was successful.
bool RemapProfileIndex(const std::vector<ProfileLineHeader>& profile_line_headers,
const ProfileLoadFilterFn& filter_fn,
/*out*/SafeMap<uint8_t, uint8_t>* dex_profile_index_remap);
// Read the inline cache encoding from line_bufer into inline_cache.
bool ReadInlineCache(SafeBuffer& buffer,
uint8_t number_of_dex_files,
const SafeMap<uint8_t, uint8_t>& dex_profile_index_remap,
/*out*/InlineCacheMap* inline_cache,
/*out*/std::string* error);
// Encode the inline cache into the given buffer.
void AddInlineCacheToBuffer(std::vector<uint8_t>* buffer,
const InlineCacheMap& inline_cache);
// Return the number of bytes needed to encode the profile information
// for the methods in dex_data.
uint32_t GetMethodsRegionSize(const DexFileData& dex_data);
// Group `classes` by their owning dex profile index and put the result in
// `dex_to_classes_map`.
void GroupClassesByDex(
const ClassSet& classes,
/*out*/SafeMap<uint8_t, std::vector<dex::TypeIndex>>* dex_to_classes_map);
// Find the data for the dex_pc in the inline cache. Adds an empty entry
// if no previous data exists.
DexPcData* FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc);
// Initializes the profile version to the desired one.
void InitProfileVersionInternal(const uint8_t version[]);
friend class ProfileCompilationInfoTest;
friend class CompilerDriverProfileTest;
friend class ProfileAssistantTest;
friend class Dex2oatLayoutTest;
MallocArenaPool default_arena_pool_;
ArenaAllocator allocator_;
// Vector containing the actual profile info.
// The vector index is the profile index of the dex data and
// matched DexFileData::profile_index.
ArenaVector<DexFileData*> info_;
// Cache mapping profile keys to profile index.
// This is used to speed up searches since it avoids iterating
// over the info_ vector when searching by profile key.
ArenaSafeMap<const std::string, uint8_t> profile_key_map_;
// The version of the profile.
// This may change if a "normal" profile is transformed to keep track
// of aggregation counters.
uint8_t version_[kProfileVersionSize];
// Stored only when the profile is configured to keep track of aggregation counters.
uint16_t aggregation_count_;
} // namespace art