blob: 2cb86a6554c0128f88e9ad44cac21414b8101436 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_CMDLINE_CMDLINE_TYPES_H_
#define ART_CMDLINE_CMDLINE_TYPES_H_
#define CMDLINE_NDEBUG 1 // Do not output any debugging information for parsing.
#include "cmdline/memory_representation.h"
#include "cmdline/detail/cmdline_debug_detail.h"
#include "cmdline_type_parser.h"
// Includes for the types that are being specialized
#include <string>
#include "unit.h"
#include "jdwp/jdwp.h"
#include "runtime/base/logging.h"
#include "runtime/base/time_utils.h"
#include "gc/collector_type.h"
#include "gc/space/large_object_space.h"
#include "profiler_options.h"
namespace art {
// The default specialization will always fail parsing the type from a string.
// Provide your own specialization that inherits from CmdlineTypeParser<T>
// and implements either Parse or ParseAndAppend
// (only if the argument was defined with ::AppendValues()) but not both.
template <typename T>
struct CmdlineType : CmdlineTypeParser<T> {
};
// Specializations for CmdlineType<T> follow:
// Parse argument definitions for Unit-typed arguments.
template <>
struct CmdlineType<Unit> : CmdlineTypeParser<Unit> {
Result Parse(const std::string& args) {
if (args == "") {
return Result::Success(Unit{}); // NOLINT [whitespace/braces] [5]
}
return Result::Failure("Unexpected extra characters " + args);
}
};
template <>
struct CmdlineType<JDWP::JdwpOptions> : CmdlineTypeParser<JDWP::JdwpOptions> {
/*
* Handle one of the JDWP name/value pairs.
*
* JDWP options are:
* help: if specified, show help message and bail
* transport: may be dt_socket or dt_shmem
* address: for dt_socket, "host:port", or just "port" when listening
* server: if "y", wait for debugger to attach; if "n", attach to debugger
* timeout: how long to wait for debugger to connect / listen
*
* Useful with server=n (these aren't supported yet):
* onthrow=<exception-name>: connect to debugger when exception thrown
* onuncaught=y|n: connect to debugger when uncaught exception thrown
* launch=<command-line>: launch the debugger itself
*
* The "transport" option is required, as is "address" if server=n.
*/
Result Parse(const std::string& options) {
VLOG(jdwp) << "ParseJdwpOptions: " << options;
if (options == "help") {
return Result::Usage(
"Example: -Xrunjdwp:transport=dt_socket,address=8000,server=y\n"
"Example: -Xrunjdwp:transport=dt_socket,address=localhost:6500,server=n\n");
}
const std::string s;
std::vector<std::string> pairs;
Split(options, ',', &pairs);
JDWP::JdwpOptions jdwp_options;
for (const std::string& jdwp_option : pairs) {
std::string::size_type equals_pos = jdwp_option.find('=');
if (equals_pos == std::string::npos) {
return Result::Failure(s +
"Can't parse JDWP option '" + jdwp_option + "' in '" + options + "'");
}
Result parse_attempt = ParseJdwpOption(jdwp_option.substr(0, equals_pos),
jdwp_option.substr(equals_pos + 1),
&jdwp_options);
if (parse_attempt.IsError()) {
// We fail to parse this JDWP option.
return parse_attempt;
}
}
if (jdwp_options.transport == JDWP::kJdwpTransportUnknown) {
return Result::Failure(s + "Must specify JDWP transport: " + options);
}
if (!jdwp_options.server && (jdwp_options.host.empty() || jdwp_options.port == 0)) {
return Result::Failure(s + "Must specify JDWP host and port when server=n: " + options);
}
return Result::Success(std::move(jdwp_options));
}
Result ParseJdwpOption(const std::string& name, const std::string& value,
JDWP::JdwpOptions* jdwp_options) {
if (name == "transport") {
if (value == "dt_socket") {
jdwp_options->transport = JDWP::kJdwpTransportSocket;
} else if (value == "dt_android_adb") {
jdwp_options->transport = JDWP::kJdwpTransportAndroidAdb;
} else {
return Result::Failure("JDWP transport not supported: " + value);
}
} else if (name == "server") {
if (value == "n") {
jdwp_options->server = false;
} else if (value == "y") {
jdwp_options->server = true;
} else {
return Result::Failure("JDWP option 'server' must be 'y' or 'n'");
}
} else if (name == "suspend") {
if (value == "n") {
jdwp_options->suspend = false;
} else if (value == "y") {
jdwp_options->suspend = true;
} else {
return Result::Failure("JDWP option 'suspend' must be 'y' or 'n'");
}
} else if (name == "address") {
/* this is either <port> or <host>:<port> */
std::string port_string;
jdwp_options->host.clear();
std::string::size_type colon = value.find(':');
if (colon != std::string::npos) {
jdwp_options->host = value.substr(0, colon);
port_string = value.substr(colon + 1);
} else {
port_string = value;
}
if (port_string.empty()) {
return Result::Failure("JDWP address missing port: " + value);
}
char* end;
uint64_t port = strtoul(port_string.c_str(), &end, 10);
if (*end != '\0' || port > 0xffff) {
return Result::Failure("JDWP address has junk in port field: " + value);
}
jdwp_options->port = port;
} else if (name == "launch" || name == "onthrow" || name == "oncaught" || name == "timeout") {
/* valid but unsupported */
LOG(INFO) << "Ignoring JDWP option '" << name << "'='" << value << "'";
} else {
LOG(INFO) << "Ignoring unrecognized JDWP option '" << name << "'='" << value << "'";
}
return Result::SuccessNoValue();
}
static const char* Name() { return "JdwpOptions"; }
};
template <size_t Divisor>
struct CmdlineType<Memory<Divisor>> : CmdlineTypeParser<Memory<Divisor>> {
using typename CmdlineTypeParser<Memory<Divisor>>::Result;
Result Parse(const std::string arg) {
CMDLINE_DEBUG_LOG << "Parsing memory: " << arg << std::endl;
size_t val = ParseMemoryOption(arg.c_str(), Divisor);
CMDLINE_DEBUG_LOG << "Memory parsed to size_t value: " << val << std::endl;
if (val == 0) {
return Result::Failure(std::string("not a valid memory value, or not divisible by ")
+ std::to_string(Divisor));
}
return Result::Success(Memory<Divisor>(val));
}
// Parse a string of the form /[0-9]+[kKmMgG]?/, which is used to specify
// memory sizes. [kK] indicates kilobytes, [mM] megabytes, and
// [gG] gigabytes.
//
// "s" should point just past the "-Xm?" part of the string.
// "div" specifies a divisor, e.g. 1024 if the value must be a multiple
// of 1024.
//
// The spec says the -Xmx and -Xms options must be multiples of 1024. It
// doesn't say anything about -Xss.
//
// Returns 0 (a useless size) if "s" is malformed or specifies a low or
// non-evenly-divisible value.
//
static size_t ParseMemoryOption(const char* s, size_t div) {
// strtoul accepts a leading [+-], which we don't want,
// so make sure our string starts with a decimal digit.
if (isdigit(*s)) {
char* s2;
size_t val = strtoul(s, &s2, 10);
if (s2 != s) {
// s2 should be pointing just after the number.
// If this is the end of the string, the user
// has specified a number of bytes. Otherwise,
// there should be exactly one more character
// that specifies a multiplier.
if (*s2 != '\0') {
// The remainder of the string is either a single multiplier
// character, or nothing to indicate that the value is in
// bytes.
char c = *s2++;
if (*s2 == '\0') {
size_t mul;
if (c == '\0') {
mul = 1;
} else if (c == 'k' || c == 'K') {
mul = KB;
} else if (c == 'm' || c == 'M') {
mul = MB;
} else if (c == 'g' || c == 'G') {
mul = GB;
} else {
// Unknown multiplier character.
return 0;
}
if (val <= std::numeric_limits<size_t>::max() / mul) {
val *= mul;
} else {
// Clamp to a multiple of 1024.
val = std::numeric_limits<size_t>::max() & ~(1024-1);
}
} else {
// There's more than one character after the numeric part.
return 0;
}
}
// The man page says that a -Xm value must be a multiple of 1024.
if (val % div == 0) {
return val;
}
}
}
return 0;
}
static const char* Name() { return Memory<Divisor>::Name(); }
};
template <>
struct CmdlineType<double> : CmdlineTypeParser<double> {
Result Parse(const std::string& str) {
char* end = nullptr;
errno = 0;
double value = strtod(str.c_str(), &end);
if (*end != '\0') {
return Result::Failure("Failed to parse double from " + str);
}
if (errno == ERANGE) {
return Result::OutOfRange(
"Failed to parse double from " + str + "; overflow/underflow occurred");
}
return Result::Success(value);
}
static const char* Name() { return "double"; }
};
template <>
struct CmdlineType<unsigned int> : CmdlineTypeParser<unsigned int> {
Result Parse(const std::string& str) {
const char* begin = str.c_str();
char* end;
// Parse into a larger type (long long) because we can't use strtoul
// since it silently converts negative values into unsigned long and doesn't set errno.
errno = 0;
long long int result = strtoll(begin, &end, 10); // NOLINT [runtime/int] [4]
if (begin == end || *end != '\0' || errno == EINVAL) {
return Result::Failure("Failed to parse integer from " + str);
} else if ((errno == ERANGE) || // NOLINT [runtime/int] [4]
result < std::numeric_limits<int>::min()
|| result > std::numeric_limits<unsigned int>::max() || result < 0) {
return Result::OutOfRange(
"Failed to parse integer from " + str + "; out of unsigned int range");
}
return Result::Success(static_cast<unsigned int>(result));
}
static const char* Name() { return "unsigned integer"; }
};
// Lightweight nanosecond value type. Allows parser to convert user-input from milliseconds
// to nanoseconds automatically after parsing.
//
// All implicit conversion from uint64_t uses nanoseconds.
struct MillisecondsToNanoseconds {
// Create from nanoseconds.
MillisecondsToNanoseconds(uint64_t nanoseconds) : nanoseconds_(nanoseconds) { // NOLINT [runtime/explicit] [5]
}
// Create from milliseconds.
static MillisecondsToNanoseconds FromMilliseconds(unsigned int milliseconds) {
return MillisecondsToNanoseconds(MsToNs(milliseconds));
}
// Get the underlying nanoseconds value.
uint64_t GetNanoseconds() const {
return nanoseconds_;
}
// Get the milliseconds value [via a conversion]. Loss of precision will occur.
uint64_t GetMilliseconds() const {
return NsToMs(nanoseconds_);
}
// Get the underlying nanoseconds value.
operator uint64_t() const {
return GetNanoseconds();
}
// Default constructors/copy-constructors.
MillisecondsToNanoseconds() : nanoseconds_(0ul) {}
MillisecondsToNanoseconds(const MillisecondsToNanoseconds&) = default;
MillisecondsToNanoseconds(MillisecondsToNanoseconds&&) = default;
private:
uint64_t nanoseconds_;
};
template <>
struct CmdlineType<MillisecondsToNanoseconds> : CmdlineTypeParser<MillisecondsToNanoseconds> {
Result Parse(const std::string& str) {
CmdlineType<unsigned int> uint_parser;
CmdlineParseResult<unsigned int> res = uint_parser.Parse(str);
if (res.IsSuccess()) {
return Result::Success(MillisecondsToNanoseconds::FromMilliseconds(res.GetValue()));
} else {
return Result::CastError(res);
}
}
static const char* Name() { return "MillisecondsToNanoseconds"; }
};
template <>
struct CmdlineType<std::string> : CmdlineTypeParser<std::string> {
Result Parse(const std::string& args) {
return Result::Success(args);
}
Result ParseAndAppend(const std::string& args,
std::string& existing_value) {
if (existing_value.empty()) {
existing_value = args;
} else {
existing_value += ' ';
existing_value += args;
}
return Result::SuccessNoValue();
}
};
template <>
struct CmdlineType<std::vector<std::string>> : CmdlineTypeParser<std::vector<std::string>> {
Result Parse(const std::string& args) {
assert(false && "Use AppendValues() for a string vector type");
return Result::Failure("Unconditional failure: string vector must be appended: " + args);
}
Result ParseAndAppend(const std::string& args,
std::vector<std::string>& existing_value) {
existing_value.push_back(args);
return Result::SuccessNoValue();
}
static const char* Name() { return "std::vector<std::string>"; }
};
template <char Separator>
struct ParseStringList {
explicit ParseStringList(std::vector<std::string>&& list) : list_(list) {}
operator std::vector<std::string>() const {
return list_;
}
operator std::vector<std::string>&&() && {
return std::move(list_);
}
size_t Size() const {
return list_.size();
}
std::string Join() const {
return art::Join(list_, Separator);
}
static ParseStringList<Separator> Split(const std::string& str) {
std::vector<std::string> list;
art::Split(str, Separator, &list);
return ParseStringList<Separator>(std::move(list));
}
ParseStringList() = default;
ParseStringList(const ParseStringList&) = default;
ParseStringList(ParseStringList&&) = default;
private:
std::vector<std::string> list_;
};
template <char Separator>
struct CmdlineType<ParseStringList<Separator>> : CmdlineTypeParser<ParseStringList<Separator>> {
using Result = CmdlineParseResult<ParseStringList<Separator>>;
Result Parse(const std::string& args) {
return Result::Success(ParseStringList<Separator>::Split(args));
}
static const char* Name() { return "ParseStringList<Separator>"; }
};
static gc::CollectorType ParseCollectorType(const std::string& option) {
if (option == "MS" || option == "nonconcurrent") {
return gc::kCollectorTypeMS;
} else if (option == "CMS" || option == "concurrent") {
return gc::kCollectorTypeCMS;
} else if (option == "SS") {
return gc::kCollectorTypeSS;
} else if (option == "GSS") {
return gc::kCollectorTypeGSS;
} else if (option == "CC") {
return gc::kCollectorTypeCC;
} else if (option == "MC") {
return gc::kCollectorTypeMC;
} else {
return gc::kCollectorTypeNone;
}
}
struct XGcOption {
// These defaults are used when the command line arguments for -Xgc:
// are either omitted completely or partially.
gc::CollectorType collector_type_ = kUseReadBarrier ?
// If RB is enabled (currently a build-time decision),
// use CC as the default GC.
gc::kCollectorTypeCC :
gc::kCollectorTypeDefault;
bool verify_pre_gc_heap_ = false;
bool verify_pre_sweeping_heap_ = kIsDebugBuild;
bool verify_post_gc_heap_ = false;
bool verify_pre_gc_rosalloc_ = kIsDebugBuild;
bool verify_pre_sweeping_rosalloc_ = false;
bool verify_post_gc_rosalloc_ = false;
bool gcstress_ = false;
};
template <>
struct CmdlineType<XGcOption> : CmdlineTypeParser<XGcOption> {
Result Parse(const std::string& option) { // -Xgc: already stripped
XGcOption xgc{}; // NOLINT [readability/braces] [4]
std::vector<std::string> gc_options;
Split(option, ',', &gc_options);
for (const std::string& gc_option : gc_options) {
gc::CollectorType collector_type = ParseCollectorType(gc_option);
if (collector_type != gc::kCollectorTypeNone) {
xgc.collector_type_ = collector_type;
} else if (gc_option == "preverify") {
xgc.verify_pre_gc_heap_ = true;
} else if (gc_option == "nopreverify") {
xgc.verify_pre_gc_heap_ = false;
} else if (gc_option == "presweepingverify") {
xgc.verify_pre_sweeping_heap_ = true;
} else if (gc_option == "nopresweepingverify") {
xgc.verify_pre_sweeping_heap_ = false;
} else if (gc_option == "postverify") {
xgc.verify_post_gc_heap_ = true;
} else if (gc_option == "nopostverify") {
xgc.verify_post_gc_heap_ = false;
} else if (gc_option == "preverify_rosalloc") {
xgc.verify_pre_gc_rosalloc_ = true;
} else if (gc_option == "nopreverify_rosalloc") {
xgc.verify_pre_gc_rosalloc_ = false;
} else if (gc_option == "presweepingverify_rosalloc") {
xgc.verify_pre_sweeping_rosalloc_ = true;
} else if (gc_option == "nopresweepingverify_rosalloc") {
xgc.verify_pre_sweeping_rosalloc_ = false;
} else if (gc_option == "postverify_rosalloc") {
xgc.verify_post_gc_rosalloc_ = true;
} else if (gc_option == "nopostverify_rosalloc") {
xgc.verify_post_gc_rosalloc_ = false;
} else if (gc_option == "gcstress") {
xgc.gcstress_ = true;
} else if (gc_option == "nogcstress") {
xgc.gcstress_ = false;
} else if ((gc_option == "precise") ||
(gc_option == "noprecise") ||
(gc_option == "verifycardtable") ||
(gc_option == "noverifycardtable")) {
// Ignored for backwards compatibility.
} else {
return Result::Usage(std::string("Unknown -Xgc option ") + gc_option);
}
}
return Result::Success(std::move(xgc));
}
static const char* Name() { return "XgcOption"; }
};
struct BackgroundGcOption {
// If background_collector_type_ is kCollectorTypeNone, it defaults to the
// XGcOption::collector_type_ after parsing options. If you set this to
// kCollectorTypeHSpaceCompact then we will do an hspace compaction when
// we transition to background instead of a normal collector transition.
gc::CollectorType background_collector_type_;
BackgroundGcOption(gc::CollectorType background_collector_type) // NOLINT [runtime/explicit] [5]
: background_collector_type_(background_collector_type) {}
BackgroundGcOption()
: background_collector_type_(gc::kCollectorTypeNone) {
if (kUseReadBarrier) {
background_collector_type_ = gc::kCollectorTypeCC; // Disable background compaction for CC.
}
}
operator gc::CollectorType() const { return background_collector_type_; }
};
template<>
struct CmdlineType<BackgroundGcOption>
: CmdlineTypeParser<BackgroundGcOption>, private BackgroundGcOption {
Result Parse(const std::string& substring) {
// Special handling for HSpaceCompact since this is only valid as a background GC type.
if (substring == "HSpaceCompact") {
background_collector_type_ = gc::kCollectorTypeHomogeneousSpaceCompact;
} else {
gc::CollectorType collector_type = ParseCollectorType(substring);
if (collector_type != gc::kCollectorTypeNone) {
background_collector_type_ = collector_type;
} else {
return Result::Failure();
}
}
BackgroundGcOption res = *this;
return Result::Success(res);
}
static const char* Name() { return "BackgroundGcOption"; }
};
template <>
struct CmdlineType<LogVerbosity> : CmdlineTypeParser<LogVerbosity> {
Result Parse(const std::string& options) {
LogVerbosity log_verbosity = LogVerbosity();
std::vector<std::string> verbose_options;
Split(options, ',', &verbose_options);
for (size_t j = 0; j < verbose_options.size(); ++j) {
if (verbose_options[j] == "class") {
log_verbosity.class_linker = true;
} else if (verbose_options[j] == "compiler") {
log_verbosity.compiler = true;
} else if (verbose_options[j] == "gc") {
log_verbosity.gc = true;
} else if (verbose_options[j] == "heap") {
log_verbosity.heap = true;
} else if (verbose_options[j] == "jdwp") {
log_verbosity.jdwp = true;
} else if (verbose_options[j] == "jit") {
log_verbosity.jit = true;
} else if (verbose_options[j] == "jni") {
log_verbosity.jni = true;
} else if (verbose_options[j] == "monitor") {
log_verbosity.monitor = true;
} else if (verbose_options[j] == "oat") {
log_verbosity.oat = true;
} else if (verbose_options[j] == "profiler") {
log_verbosity.profiler = true;
} else if (verbose_options[j] == "signals") {
log_verbosity.signals = true;
} else if (verbose_options[j] == "startup") {
log_verbosity.startup = true;
} else if (verbose_options[j] == "third-party-jni") {
log_verbosity.third_party_jni = true;
} else if (verbose_options[j] == "threads") {
log_verbosity.threads = true;
} else if (verbose_options[j] == "verifier") {
log_verbosity.verifier = true;
} else {
return Result::Usage(std::string("Unknown -verbose option ") + verbose_options[j]);
}
}
return Result::Success(log_verbosity);
}
static const char* Name() { return "LogVerbosity"; }
};
// TODO: Replace with art::ProfilerOptions for the real thing.
struct TestProfilerOptions {
// Whether or not the applications should be profiled.
bool enabled_;
// Destination file name where the profiling data will be saved into.
std::string output_file_name_;
// Generate profile every n seconds.
uint32_t period_s_;
// Run profile for n seconds.
uint32_t duration_s_;
// Microseconds between samples.
uint32_t interval_us_;
// Coefficient to exponential backoff.
double backoff_coefficient_;
// Whether the profile should start upon app startup or be delayed by some random offset.
bool start_immediately_;
// Top K% of samples that are considered relevant when deciding if the app should be recompiled.
double top_k_threshold_;
// How much the top K% samples needs to change in order for the app to be recompiled.
double top_k_change_threshold_;
// The type of profile data dumped to the disk.
ProfileDataType profile_type_;
// The max depth of the stack collected by the profiler
uint32_t max_stack_depth_;
TestProfilerOptions() :
enabled_(false),
output_file_name_(),
period_s_(0),
duration_s_(0),
interval_us_(0),
backoff_coefficient_(0),
start_immediately_(0),
top_k_threshold_(0),
top_k_change_threshold_(0),
profile_type_(ProfileDataType::kProfilerMethod),
max_stack_depth_(0) {
}
TestProfilerOptions(const TestProfilerOptions&) = default;
TestProfilerOptions(TestProfilerOptions&&) = default;
};
static inline std::ostream& operator<<(std::ostream& stream, const TestProfilerOptions& options) {
stream << "TestProfilerOptions {" << std::endl;
#define PRINT_TO_STREAM(field) \
stream << #field << ": '" << options.field << "'" << std::endl;
PRINT_TO_STREAM(enabled_);
PRINT_TO_STREAM(output_file_name_);
PRINT_TO_STREAM(period_s_);
PRINT_TO_STREAM(duration_s_);
PRINT_TO_STREAM(interval_us_);
PRINT_TO_STREAM(backoff_coefficient_);
PRINT_TO_STREAM(start_immediately_);
PRINT_TO_STREAM(top_k_threshold_);
PRINT_TO_STREAM(top_k_change_threshold_);
PRINT_TO_STREAM(profile_type_);
PRINT_TO_STREAM(max_stack_depth_);
stream << "}";
return stream;
#undef PRINT_TO_STREAM
}
template <>
struct CmdlineType<TestProfilerOptions> : CmdlineTypeParser<TestProfilerOptions> {
using Result = CmdlineParseResult<TestProfilerOptions>;
private:
using StringResult = CmdlineParseResult<std::string>;
using DoubleResult = CmdlineParseResult<double>;
template <typename T>
static Result ParseInto(TestProfilerOptions& options,
T TestProfilerOptions::*pField,
CmdlineParseResult<T>&& result) {
assert(pField != nullptr);
if (result.IsSuccess()) {
options.*pField = result.ReleaseValue();
return Result::SuccessNoValue();
}
return Result::CastError(result);
}
template <typename T>
static Result ParseIntoRangeCheck(TestProfilerOptions& options,
T TestProfilerOptions::*pField,
CmdlineParseResult<T>&& result,
T min,
T max) {
if (result.IsSuccess()) {
const T& value = result.GetValue();
if (value < min || value > max) {
CmdlineParseResult<T> out_of_range = CmdlineParseResult<T>::OutOfRange(value, min, max);
return Result::CastError(out_of_range);
}
}
return ParseInto(options, pField, std::forward<CmdlineParseResult<T>>(result));
}
static StringResult ParseStringAfterChar(const std::string& s, char c) {
std::string parsed_value;
std::string::size_type colon = s.find(c);
if (colon == std::string::npos) {
return StringResult::Usage(std::string() + "Missing char " + c + " in option " + s);
}
// Add one to remove the char we were trimming until.
parsed_value = s.substr(colon + 1);
return StringResult::Success(parsed_value);
}
static std::string RemovePrefix(const std::string& source) {
size_t prefix_idx = source.find(":");
if (prefix_idx == std::string::npos) {
return "";
}
return source.substr(prefix_idx + 1);
}
public:
Result ParseAndAppend(const std::string& option, TestProfilerOptions& existing) {
// Special case which doesn't include a wildcard argument definition.
// We pass-it through as-is.
if (option == "-Xenable-profiler") {
existing.enabled_ = true;
return Result::SuccessNoValue();
}
// The rest of these options are always the wildcard from '-Xprofile-*'
std::string suffix = RemovePrefix(option);
if (StartsWith(option, "filename:")) {
CmdlineType<std::string> type_parser;
return ParseInto(existing,
&TestProfilerOptions::output_file_name_,
type_parser.Parse(suffix));
} else if (StartsWith(option, "period:")) {
CmdlineType<unsigned int> type_parser;
return ParseInto(existing,
&TestProfilerOptions::period_s_,
type_parser.Parse(suffix));
} else if (StartsWith(option, "duration:")) {
CmdlineType<unsigned int> type_parser;
return ParseInto(existing,
&TestProfilerOptions::duration_s_,
type_parser.Parse(suffix));
} else if (StartsWith(option, "interval:")) {
CmdlineType<unsigned int> type_parser;
return ParseInto(existing,
&TestProfilerOptions::interval_us_,
type_parser.Parse(suffix));
} else if (StartsWith(option, "backoff:")) {
CmdlineType<double> type_parser;
return ParseIntoRangeCheck(existing,
&TestProfilerOptions::backoff_coefficient_,
type_parser.Parse(suffix),
1.0,
10.0);
} else if (option == "start-immediately") {
existing.start_immediately_ = true;
return Result::SuccessNoValue();
} else if (StartsWith(option, "top-k-threshold:")) {
CmdlineType<double> type_parser;
return ParseIntoRangeCheck(existing,
&TestProfilerOptions::top_k_threshold_,
type_parser.Parse(suffix),
0.0,
100.0);
} else if (StartsWith(option, "top-k-change-threshold:")) {
CmdlineType<double> type_parser;
return ParseIntoRangeCheck(existing,
&TestProfilerOptions::top_k_change_threshold_,
type_parser.Parse(suffix),
0.0,
100.0);
} else if (option == "type:method") {
existing.profile_type_ = kProfilerMethod;
return Result::SuccessNoValue();
} else if (option == "type:stack") {
existing.profile_type_ = kProfilerBoundedStack;
return Result::SuccessNoValue();
} else if (StartsWith(option, "max-stack-depth:")) {
CmdlineType<unsigned int> type_parser;
return ParseInto(existing,
&TestProfilerOptions::max_stack_depth_,
type_parser.Parse(suffix));
} else {
return Result::Failure(std::string("Invalid suboption '") + option + "'");
}
}
static const char* Name() { return "TestProfilerOptions"; }
static constexpr bool kCanParseBlankless = true;
};
} // namespace art
#endif // ART_CMDLINE_CMDLINE_TYPES_H_