blob: d6c90ff510b3ef8d543a8a0bdc72b086657b0539 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "intrinsics_x86_64.h"
#include <limits>
#include "arch/x86_64/instruction_set_features_x86_64.h"
#include "art_method-inl.h"
#include "code_generator_x86_64.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "intrinsics.h"
#include "mirror/array-inl.h"
#include "mirror/string.h"
#include "thread.h"
#include "utils/x86_64/assembler_x86_64.h"
#include "utils/x86_64/constants_x86_64.h"
namespace art {
namespace x86_64 {
IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen)
: arena_(codegen->GetGraph()->GetArena()), codegen_(codegen) {
}
X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() {
return reinterpret_cast<X86_64Assembler*>(codegen_->GetAssembler());
}
ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() {
return codegen_->GetGraph()->GetArena();
}
bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) {
Dispatch(invoke);
const LocationSummary* res = invoke->GetLocations();
return res != nullptr && res->Intrinsified();
}
#define __ reinterpret_cast<X86_64Assembler*>(codegen->GetAssembler())->
// TODO: trg as memory.
static void MoveFromReturnRegister(Location trg,
Primitive::Type type,
CodeGeneratorX86_64* codegen) {
if (!trg.IsValid()) {
DCHECK(type == Primitive::kPrimVoid);
return;
}
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
CpuRegister trg_reg = trg.AsRegister<CpuRegister>();
if (trg_reg.AsRegister() != RAX) {
__ movl(trg_reg, CpuRegister(RAX));
}
break;
}
case Primitive::kPrimLong: {
CpuRegister trg_reg = trg.AsRegister<CpuRegister>();
if (trg_reg.AsRegister() != RAX) {
__ movq(trg_reg, CpuRegister(RAX));
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected void type for valid location " << trg;
UNREACHABLE();
case Primitive::kPrimDouble: {
XmmRegister trg_reg = trg.AsFpuRegister<XmmRegister>();
if (trg_reg.AsFloatRegister() != XMM0) {
__ movsd(trg_reg, XmmRegister(XMM0));
}
break;
}
case Primitive::kPrimFloat: {
XmmRegister trg_reg = trg.AsFpuRegister<XmmRegister>();
if (trg_reg.AsFloatRegister() != XMM0) {
__ movss(trg_reg, XmmRegister(XMM0));
}
break;
}
}
}
static void MoveArguments(HInvoke* invoke, CodeGeneratorX86_64* codegen) {
InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor;
IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
}
// Slow-path for fallback (calling the managed code to handle the intrinsic) in an intrinsified
// call. This will copy the arguments into the positions for a regular call.
//
// Note: The actual parameters are required to be in the locations given by the invoke's location
// summary. If an intrinsic modifies those locations before a slowpath call, they must be
// restored!
class IntrinsicSlowPathX86_64 : public SlowPathCodeX86_64 {
public:
explicit IntrinsicSlowPathX86_64(HInvoke* invoke) : invoke_(invoke) { }
void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE {
CodeGeneratorX86_64* codegen = down_cast<CodeGeneratorX86_64*>(codegen_in);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, invoke_->GetLocations());
MoveArguments(invoke_, codegen);
if (invoke_->IsInvokeStaticOrDirect()) {
codegen->GenerateStaticOrDirectCall(invoke_->AsInvokeStaticOrDirect(), CpuRegister(RDI));
RecordPcInfo(codegen, invoke_, invoke_->GetDexPc());
} else {
UNIMPLEMENTED(FATAL) << "Non-direct intrinsic slow-path not yet implemented";
UNREACHABLE();
}
// Copy the result back to the expected output.
Location out = invoke_->GetLocations()->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
MoveFromReturnRegister(out, invoke_->GetType(), codegen);
}
RestoreLiveRegisters(codegen, invoke_->GetLocations());
__ jmp(GetExitLabel());
}
private:
// The instruction where this slow path is happening.
HInvoke* const invoke_;
DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathX86_64);
};
#undef __
#define __ assembler->
static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
__ movd(output.AsRegister<CpuRegister>(), input.AsFpuRegister<XmmRegister>(), is64bit);
}
static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
__ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<CpuRegister>(), is64bit);
}
void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
CreateIntToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), true, GetAssembler());
}
void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), true, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
CreateIntToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), false, GetAssembler());
}
void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), false, GetAssembler());
}
static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
}
static void GenReverseBytes(LocationSummary* locations,
Primitive::Type size,
X86_64Assembler* assembler) {
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
switch (size) {
case Primitive::kPrimShort:
// TODO: Can be done with an xchg of 8b registers. This is straight from Quick.
__ bswapl(out);
__ sarl(out, Immediate(16));
break;
case Primitive::kPrimInt:
__ bswapl(out);
break;
case Primitive::kPrimLong:
__ bswapq(out);
break;
default:
LOG(FATAL) << "Unexpected size for reverse-bytes: " << size;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
}
// TODO: Consider Quick's way of doing Double abs through integer operations, as the immediate we
// need is 64b.
static void CreateFloatToFloatPlusTemps(ArenaAllocator* arena, HInvoke* invoke) {
// TODO: Enable memory operations when the assembler supports them.
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
// TODO: Allow x86 to work with memory. This requires assembler support, see below.
// locations->SetInAt(0, Location::Any()); // X86 can work on memory directly.
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresFpuRegister()); // FP reg to hold mask.
}
static void MathAbsFP(LocationSummary* locations,
bool is64bit,
X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen) {
Location output = locations->Out();
if (output.IsFpuRegister()) {
// In-register
XmmRegister xmm_temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
// TODO: Can mask directly with constant area using pand if we can guarantee
// that the literal is aligned on a 16 byte boundary. This will avoid a
// temporary.
if (is64bit) {
__ movsd(xmm_temp, codegen->LiteralInt64Address(INT64_C(0x7FFFFFFFFFFFFFFF)));
__ andpd(output.AsFpuRegister<XmmRegister>(), xmm_temp);
} else {
__ movss(xmm_temp, codegen->LiteralInt32Address(INT32_C(0x7FFFFFFF)));
__ andps(output.AsFpuRegister<XmmRegister>(), xmm_temp);
}
} else {
// TODO: update when assember support is available.
UNIMPLEMENTED(FATAL) << "Needs assembler support.";
// Once assembler support is available, in-memory operations look like this:
// if (is64bit) {
// DCHECK(output.IsDoubleStackSlot());
// // No 64b and with literal.
// __ movq(cpu_temp, Immediate(INT64_C(0x7FFFFFFFFFFFFFFF)));
// __ andq(Address(CpuRegister(RSP), output.GetStackIndex()), cpu_temp);
// } else {
// DCHECK(output.IsStackSlot());
// // Can use and with a literal directly.
// __ andl(Address(CpuRegister(RSP), output.GetStackIndex()), Immediate(INT64_C(0x7FFFFFFF)));
// }
}
}
void IntrinsicLocationsBuilderX86_64::VisitMathAbsDouble(HInvoke* invoke) {
CreateFloatToFloatPlusTemps(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAbsDouble(HInvoke* invoke) {
MathAbsFP(invoke->GetLocations(), true, GetAssembler(), codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitMathAbsFloat(HInvoke* invoke) {
CreateFloatToFloatPlusTemps(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAbsFloat(HInvoke* invoke) {
MathAbsFP(invoke->GetLocations(), false, GetAssembler(), codegen_);
}
static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
}
static void GenAbsInteger(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
Location output = locations->Out();
CpuRegister out = output.AsRegister<CpuRegister>();
CpuRegister mask = locations->GetTemp(0).AsRegister<CpuRegister>();
if (is64bit) {
// Create mask.
__ movq(mask, out);
__ sarq(mask, Immediate(63));
// Add mask.
__ addq(out, mask);
__ xorq(out, mask);
} else {
// Create mask.
__ movl(mask, out);
__ sarl(mask, Immediate(31));
// Add mask.
__ addl(out, mask);
__ xorl(out, mask);
}
}
void IntrinsicLocationsBuilderX86_64::VisitMathAbsInt(HInvoke* invoke) {
CreateIntToIntPlusTemp(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAbsInt(HInvoke* invoke) {
GenAbsInteger(invoke->GetLocations(), false, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMathAbsLong(HInvoke* invoke) {
CreateIntToIntPlusTemp(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAbsLong(HInvoke* invoke) {
GenAbsInteger(invoke->GetLocations(), true, GetAssembler());
}
static void GenMinMaxFP(LocationSummary* locations,
bool is_min,
bool is_double,
X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen) {
Location op1_loc = locations->InAt(0);
Location op2_loc = locations->InAt(1);
Location out_loc = locations->Out();
XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
// Shortcut for same input locations.
if (op1_loc.Equals(op2_loc)) {
DCHECK(out_loc.Equals(op1_loc));
return;
}
// (out := op1)
// out <=? op2
// if Nan jmp Nan_label
// if out is min jmp done
// if op2 is min jmp op2_label
// handle -0/+0
// jmp done
// Nan_label:
// out := NaN
// op2_label:
// out := op2
// done:
//
// This removes one jmp, but needs to copy one input (op1) to out.
//
// TODO: This is straight from Quick. Make NaN an out-of-line slowpath?
XmmRegister op2 = op2_loc.AsFpuRegister<XmmRegister>();
Label nan, done, op2_label;
if (is_double) {
__ ucomisd(out, op2);
} else {
__ ucomiss(out, op2);
}
__ j(Condition::kParityEven, &nan);
__ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label);
__ j(is_min ? Condition::kBelow : Condition::kAbove, &done);
// Handle 0.0/-0.0.
if (is_min) {
if (is_double) {
__ orpd(out, op2);
} else {
__ orps(out, op2);
}
} else {
if (is_double) {
__ andpd(out, op2);
} else {
__ andps(out, op2);
}
}
__ jmp(&done);
// NaN handling.
__ Bind(&nan);
if (is_double) {
__ movsd(out, codegen->LiteralInt64Address(INT64_C(0x7FF8000000000000)));
} else {
__ movss(out, codegen->LiteralInt32Address(INT32_C(0x7FC00000)));
}
__ jmp(&done);
// out := op2;
__ Bind(&op2_label);
if (is_double) {
__ movsd(out, op2);
} else {
__ movss(out, op2);
}
// Done.
__ Bind(&done);
}
static void CreateFPFPToFP(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
// The following is sub-optimal, but all we can do for now. It would be fine to also accept
// the second input to be the output (we can simply swap inputs).
locations->SetOut(Location::SameAsFirstInput());
}
void IntrinsicLocationsBuilderX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) {
CreateFPFPToFP(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) {
GenMinMaxFP(invoke->GetLocations(), true, true, GetAssembler(), codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitMathMinFloatFloat(HInvoke* invoke) {
CreateFPFPToFP(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMinFloatFloat(HInvoke* invoke) {
GenMinMaxFP(invoke->GetLocations(), true, false, GetAssembler(), codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) {
CreateFPFPToFP(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) {
GenMinMaxFP(invoke->GetLocations(), false, true, GetAssembler(), codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) {
CreateFPFPToFP(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) {
GenMinMaxFP(invoke->GetLocations(), false, false, GetAssembler(), codegen_);
}
static void GenMinMax(LocationSummary* locations, bool is_min, bool is_long,
X86_64Assembler* assembler) {
Location op1_loc = locations->InAt(0);
Location op2_loc = locations->InAt(1);
// Shortcut for same input locations.
if (op1_loc.Equals(op2_loc)) {
// Can return immediately, as op1_loc == out_loc.
// Note: if we ever support separate registers, e.g., output into memory, we need to check for
// a copy here.
DCHECK(locations->Out().Equals(op1_loc));
return;
}
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
CpuRegister op2 = op2_loc.AsRegister<CpuRegister>();
// (out := op1)
// out <=? op2
// if out is min jmp done
// out := op2
// done:
if (is_long) {
__ cmpq(out, op2);
} else {
__ cmpl(out, op2);
}
__ cmov(is_min ? Condition::kGreater : Condition::kLess, out, op2, is_long);
}
static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
}
void IntrinsicLocationsBuilderX86_64::VisitMathMinIntInt(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMinIntInt(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), true, false, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMathMinLongLong(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMinLongLong(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), true, true, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMathMaxIntInt(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMaxIntInt(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), false, false, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMathMaxLongLong(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMaxLongLong(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), false, true, GetAssembler());
}
static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) {
CreateFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
GetAssembler()->sqrtsd(out, in);
}
static void InvokeOutOfLineIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke) {
MoveArguments(invoke, codegen);
DCHECK(invoke->IsInvokeStaticOrDirect());
codegen->GenerateStaticOrDirectCall(invoke->AsInvokeStaticOrDirect(), CpuRegister(RDI));
codegen->RecordPcInfo(invoke, invoke->GetDexPc());
// Copy the result back to the expected output.
Location out = invoke->GetLocations()->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister());
MoveFromReturnRegister(out, invoke->GetType(), codegen);
}
}
static void CreateSSE41FPToFPLocations(ArenaAllocator* arena,
HInvoke* invoke,
CodeGeneratorX86_64* codegen) {
// Do we have instruction support?
if (codegen->GetInstructionSetFeatures().HasSSE4_1()) {
CreateFPToFPLocations(arena, invoke);
return;
}
// We have to fall back to a call to the intrinsic.
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(Location::FpuRegisterLocation(XMM0));
// Needs to be RDI for the invoke.
locations->AddTemp(Location::RegisterLocation(RDI));
}
static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64* codegen,
HInvoke* invoke,
X86_64Assembler* assembler,
int round_mode) {
LocationSummary* locations = invoke->GetLocations();
if (locations->WillCall()) {
InvokeOutOfLineIntrinsic(codegen, invoke);
} else {
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
__ roundsd(out, in, Immediate(round_mode));
}
}
void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) {
CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2);
}
void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) {
CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1);
}
void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) {
CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0);
}
static void CreateSSE41FPToIntLocations(ArenaAllocator* arena,
HInvoke* invoke,
CodeGeneratorX86_64* codegen) {
// Do we have instruction support?
if (codegen->GetInstructionSetFeatures().HasSSE4_1()) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
return;
}
// We have to fall back to a call to the intrinsic.
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(Location::RegisterLocation(RAX));
// Needs to be RDI for the invoke.
locations->AddTemp(Location::RegisterLocation(RDI));
}
void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) {
CreateSSE41FPToIntLocations(arena_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
if (locations->WillCall()) {
InvokeOutOfLineIntrinsic(codegen_, invoke);
return;
}
// Implement RoundFloat as t1 = floor(input + 0.5f); convert to int.
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
XmmRegister inPlusPointFive = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
Label done, nan;
X86_64Assembler* assembler = GetAssembler();
// Load 0.5 into inPlusPointFive.
__ movss(inPlusPointFive, codegen_->LiteralFloatAddress(0.5f));
// Add in the input.
__ addss(inPlusPointFive, in);
// And truncate to an integer.
__ roundss(inPlusPointFive, inPlusPointFive, Immediate(1));
// if inPlusPointFive >= maxInt goto done
__ comiss(inPlusPointFive, codegen_->LiteralFloatAddress(static_cast<float>(kPrimIntMax)));
__ j(kAboveEqual, &done);
// if input == NaN goto nan
__ j(kUnordered, &nan);
// output = float-to-int-truncate(input)
__ cvttss2si(out, inPlusPointFive);
__ jmp(&done);
__ Bind(&nan);
// output = 0
__ xorl(out, out);
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) {
CreateSSE41FPToIntLocations(arena_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
if (locations->WillCall()) {
InvokeOutOfLineIntrinsic(codegen_, invoke);
return;
}
// Implement RoundDouble as t1 = floor(input + 0.5); convert to long.
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
XmmRegister inPlusPointFive = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
Label done, nan;
X86_64Assembler* assembler = GetAssembler();
// Load 0.5 into inPlusPointFive.
__ movsd(inPlusPointFive, codegen_->LiteralDoubleAddress(0.5));
// Add in the input.
__ addsd(inPlusPointFive, in);
// And truncate to an integer.
__ roundsd(inPlusPointFive, inPlusPointFive, Immediate(1));
// if inPlusPointFive >= maxLong goto done
__ comisd(inPlusPointFive, codegen_->LiteralDoubleAddress(static_cast<double>(kPrimLongMax)));
__ j(kAboveEqual, &done);
// if input == NaN goto nan
__ j(kUnordered, &nan);
// output = double-to-long-truncate(input)
__ cvttsd2si(out, inPlusPointFive, true);
__ jmp(&done);
__ Bind(&nan);
// output = 0
__ xorl(out, out);
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86_64::VisitStringCharAt(HInvoke* invoke) {
// The inputs plus one temp.
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnSlowPath,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorX86_64::VisitStringCharAt(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
// Location of reference to data array
const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count
const int32_t count_offset = mirror::String::CountOffset().Int32Value();
CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister idx = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
// TODO: Maybe we can support range check elimination. Overall, though, I think it's not worth
// the cost.
// TODO: For simplicity, the index parameter is requested in a register, so different from Quick
// we will not optimize the code for constants (which would save a register).
SlowPathCodeX86_64* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
X86_64Assembler* assembler = GetAssembler();
__ cmpl(idx, Address(obj, count_offset));
codegen_->MaybeRecordImplicitNullCheck(invoke);
__ j(kAboveEqual, slow_path->GetEntryLabel());
// out = out[2*idx].
__ movzxw(out, Address(out, idx, ScaleFactor::TIMES_2, value_offset));
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCall,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
CpuRegister argument = locations->InAt(1).AsRegister<CpuRegister>();
__ testl(argument, argument);
SlowPathCodeX86_64* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
__ gs()->call(Address::Absolute(
QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pStringCompareTo), true));
__ Bind(slow_path->GetExitLabel());
}
static void CreateStringIndexOfLocations(HInvoke* invoke,
ArenaAllocator* allocator,
bool start_at_zero) {
LocationSummary* locations = new (allocator) LocationSummary(invoke,
LocationSummary::kCallOnSlowPath,
kIntrinsified);
// The data needs to be in RDI for scasw. So request that the string is there, anyways.
locations->SetInAt(0, Location::RegisterLocation(RDI));
// If we look for a constant char, we'll still have to copy it into RAX. So just request the
// allocator to do that, anyways. We can still do the constant check by checking the parameter
// of the instruction explicitly.
// Note: This works as we don't clobber RAX anywhere.
locations->SetInAt(1, Location::RegisterLocation(RAX));
if (!start_at_zero) {
locations->SetInAt(2, Location::RequiresRegister()); // The starting index.
}
// As we clobber RDI during execution anyways, also use it as the output.
locations->SetOut(Location::SameAsFirstInput());
// repne scasw uses RCX as the counter.
locations->AddTemp(Location::RegisterLocation(RCX));
// Need another temporary to be able to compute the result.
locations->AddTemp(Location::RequiresRegister());
}
static void GenerateStringIndexOf(HInvoke* invoke,
X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
ArenaAllocator* allocator,
bool start_at_zero) {
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
CpuRegister string_obj = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister search_value = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister counter = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister string_length = locations->GetTemp(1).AsRegister<CpuRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
// Check our assumptions for registers.
DCHECK_EQ(string_obj.AsRegister(), RDI);
DCHECK_EQ(search_value.AsRegister(), RAX);
DCHECK_EQ(counter.AsRegister(), RCX);
DCHECK_EQ(out.AsRegister(), RDI);
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
// or directly dispatch if we have a constant.
SlowPathCodeX86_64* slow_path = nullptr;
if (invoke->InputAt(1)->IsIntConstant()) {
if (static_cast<uint32_t>(invoke->InputAt(1)->AsIntConstant()->GetValue()) >
std::numeric_limits<uint16_t>::max()) {
// Always needs the slow-path. We could directly dispatch to it, but this case should be
// rare, so for simplicity just put the full slow-path down and branch unconditionally.
slow_path = new (allocator) IntrinsicSlowPathX86_64(invoke);
codegen->AddSlowPath(slow_path);
__ jmp(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
} else {
__ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max()));
slow_path = new (allocator) IntrinsicSlowPathX86_64(invoke);
codegen->AddSlowPath(slow_path);
__ j(kAbove, slow_path->GetEntryLabel());
}
// From here down, we know that we are looking for a char that fits in 16 bits.
// Location of reference to data array within the String object.
int32_t value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count within the String object.
int32_t count_offset = mirror::String::CountOffset().Int32Value();
// Load string length, i.e., the count field of the string.
__ movl(string_length, Address(string_obj, count_offset));
// Do a length check.
// TODO: Support jecxz.
Label not_found_label;
__ testl(string_length, string_length);
__ j(kEqual, &not_found_label);
if (start_at_zero) {
// Number of chars to scan is the same as the string length.
__ movl(counter, string_length);
// Move to the start of the string.
__ addq(string_obj, Immediate(value_offset));
} else {
CpuRegister start_index = locations->InAt(2).AsRegister<CpuRegister>();
// Do a start_index check.
__ cmpl(start_index, string_length);
__ j(kGreaterEqual, &not_found_label);
// Ensure we have a start index >= 0;
__ xorl(counter, counter);
__ cmpl(start_index, Immediate(0));
__ cmov(kGreater, counter, start_index, false); // 32-bit copy is enough.
// Move to the start of the string: string_obj + value_offset + 2 * start_index.
__ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
// Now update ecx, the work counter: it's gonna be string.length - start_index.
__ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit.
__ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0));
}
// Everything is set up for repne scasw:
// * Comparison address in RDI.
// * Counter in ECX.
__ repne_scasw();
// Did we find a match?
__ j(kNotEqual, &not_found_label);
// Yes, we matched. Compute the index of the result.
__ subl(string_length, counter);
__ leal(out, Address(string_length, -1));
Label done;
__ jmp(&done);
// Failed to match; return -1.
__ Bind(&not_found_label);
__ movl(out, Immediate(-1));
// And join up at the end.
__ Bind(&done);
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) {
CreateStringIndexOfLocations(invoke, arena_, true);
}
void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) {
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, GetAllocator(), true);
}
void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
CreateStringIndexOfLocations(invoke, arena_, false);
}
void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, GetAllocator(), false);
}
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCall,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister byte_array = locations->InAt(0).AsRegister<CpuRegister>();
__ testl(byte_array, byte_array);
SlowPathCodeX86_64* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
__ gs()->call(Address::Absolute(
QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromBytes), true));
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCall,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
__ gs()->call(Address::Absolute(
QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromChars), true));
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCall,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister string_to_copy = locations->InAt(0).AsRegister<CpuRegister>();
__ testl(string_to_copy, string_to_copy);
SlowPathCodeX86_64* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
__ gs()->call(Address::Absolute(
QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromString), true));
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
__ Bind(slow_path->GetExitLabel());
}
static void GenPeek(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) {
CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>(); // == address, here for clarity.
// x86 allows unaligned access. We do not have to check the input or use specific instructions
// to avoid a SIGBUS.
switch (size) {
case Primitive::kPrimByte:
__ movsxb(out, Address(address, 0));
break;
case Primitive::kPrimShort:
__ movsxw(out, Address(address, 0));
break;
case Primitive::kPrimInt:
__ movl(out, Address(address, 0));
break;
case Primitive::kPrimLong:
__ movq(out, Address(address, 0));
break;
default:
LOG(FATAL) << "Type not recognized for peek: " << size;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
}
static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrInt32LongConstant(invoke->InputAt(1)));
}
static void GenPoke(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) {
CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
Location value = locations->InAt(1);
// x86 allows unaligned access. We do not have to check the input or use specific instructions
// to avoid a SIGBUS.
switch (size) {
case Primitive::kPrimByte:
if (value.IsConstant()) {
__ movb(Address(address, 0),
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
} else {
__ movb(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
case Primitive::kPrimShort:
if (value.IsConstant()) {
__ movw(Address(address, 0),
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
} else {
__ movw(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
case Primitive::kPrimInt:
if (value.IsConstant()) {
__ movl(Address(address, 0),
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
} else {
__ movl(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
case Primitive::kPrimLong:
if (value.IsConstant()) {
int64_t v = value.GetConstant()->AsLongConstant()->GetValue();
DCHECK(IsInt<32>(v));
int32_t v_32 = v;
__ movq(Address(address, 0), Immediate(v_32));
} else {
__ movq(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
default:
LOG(FATAL) << "Type not recognized for poke: " << size;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>();
GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86_64WordSize>(), true));
}
static void GenUnsafeGet(LocationSummary* locations, Primitive::Type type,
bool is_volatile ATTRIBUTE_UNUSED, X86_64Assembler* assembler) {
CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
CpuRegister trg = locations->Out().AsRegister<CpuRegister>();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimNot:
__ movl(trg, Address(base, offset, ScaleFactor::TIMES_1, 0));
break;
case Primitive::kPrimLong:
__ movq(trg, Address(base, offset, ScaleFactor::TIMES_1, 0));
break;
default:
LOG(FATAL) << "Unsupported op size " << type;
UNREACHABLE();
}
}
static void CreateIntIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) {
GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimInt, false, GetAssembler());
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimInt, true, GetAssembler());
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimLong, false, GetAssembler());
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimLong, true, GetAssembler());
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimNot, false, GetAssembler());
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimNot, true, GetAssembler());
}
static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* arena,
Primitive::Type type,
HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
if (type == Primitive::kPrimNot) {
// Need temp registers for card-marking.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke);
}
// We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86
// memory model.
static void GenUnsafePut(LocationSummary* locations, Primitive::Type type, bool is_volatile,
CodeGeneratorX86_64* codegen) {
X86_64Assembler* assembler = reinterpret_cast<X86_64Assembler*>(codegen->GetAssembler());
CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
CpuRegister value = locations->InAt(3).AsRegister<CpuRegister>();
if (type == Primitive::kPrimLong) {
__ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
} else {
__ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
}
if (is_volatile) {
__ mfence();
}
if (type == Primitive::kPrimNot) {
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(),
locations->GetTemp(1).AsRegister<CpuRegister>(),
base,
value,
value_can_be_null);
}
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, true, codegen_);
}
static void CreateIntIntIntIntIntToInt(ArenaAllocator* arena, Primitive::Type type,
HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
// expected value must be in EAX/RAX.
locations->SetInAt(3, Location::RegisterLocation(RAX));
locations->SetInAt(4, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
if (type == Primitive::kPrimNot) {
// Need temp registers for card-marking.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimInt, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimLong, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimNot, invoke);
}
static void GenCAS(Primitive::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) {
X86_64Assembler* assembler =
reinterpret_cast<X86_64Assembler*>(codegen->GetAssembler());
LocationSummary* locations = invoke->GetLocations();
CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
CpuRegister expected = locations->InAt(3).AsRegister<CpuRegister>();
DCHECK_EQ(expected.AsRegister(), RAX);
CpuRegister value = locations->InAt(4).AsRegister<CpuRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
if (type == Primitive::kPrimLong) {
__ LockCmpxchgq(Address(base, offset, TIMES_1, 0), value);
} else {
// Integer or object.
if (type == Primitive::kPrimNot) {
// Mark card for object assuming new value is stored.
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(),
locations->GetTemp(1).AsRegister<CpuRegister>(),
base,
value,
value_can_be_null);
}
__ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value);
}
// locked cmpxchg has full barrier semantics, and we don't need scheduling
// barriers at this time.
// Convert ZF into the boolean result.
__ setcc(kZero, out);
__ movzxb(out, out);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
GenCAS(Primitive::kPrimInt, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
GenCAS(Primitive::kPrimLong, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
GenCAS(Primitive::kPrimNot, invoke, codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
}
static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask,
X86_64Assembler* assembler) {
Immediate imm_shift(shift);
Immediate imm_mask(mask);
__ movl(temp, reg);
__ shrl(reg, imm_shift);
__ andl(temp, imm_mask);
__ andl(reg, imm_mask);
__ shll(temp, imm_shift);
__ orl(reg, temp);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) {
X86_64Assembler* assembler =
reinterpret_cast<X86_64Assembler*>(codegen_->GetAssembler());
LocationSummary* locations = invoke->GetLocations();
CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
/*
* Use one bswap instruction to reverse byte order first and then use 3 rounds of
* swapping bits to reverse bits in a number x. Using bswap to save instructions
* compared to generic luni implementation which has 5 rounds of swapping bits.
* x = bswap x
* x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
* x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
* x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F;
*/
__ bswapl(reg);
SwapBits(reg, temp, 1, 0x55555555, assembler);
SwapBits(reg, temp, 2, 0x33333333, assembler);
SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler);
}
void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask,
int32_t shift, int64_t mask, X86_64Assembler* assembler) {
Immediate imm_shift(shift);
__ movq(temp_mask, Immediate(mask));
__ movq(temp, reg);
__ shrq(reg, imm_shift);
__ andq(temp, temp_mask);
__ andq(reg, temp_mask);
__ shlq(temp, imm_shift);
__ orq(reg, temp);
}
void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) {
X86_64Assembler* assembler =
reinterpret_cast<X86_64Assembler*>(codegen_->GetAssembler());
LocationSummary* locations = invoke->GetLocations();
CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
/*
* Use one bswap instruction to reverse byte order first and then use 3 rounds of
* swapping bits to reverse bits in a long number x. Using bswap to save instructions
* compared to generic luni implementation which has 5 rounds of swapping bits.
* x = bswap x
* x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555;
* x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333;
* x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F;
*/
__ bswapq(reg);
SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler);
SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler);
SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler);
}
// Unimplemented intrinsics.
#define UNIMPLEMENTED_INTRINSIC(Name) \
void IntrinsicLocationsBuilderX86_64::Visit ## Name(HInvoke* invoke ATTRIBUTE_UNUSED) { \
} \
void IntrinsicCodeGeneratorX86_64::Visit ## Name(HInvoke* invoke ATTRIBUTE_UNUSED) { \
}
UNIMPLEMENTED_INTRINSIC(StringGetCharsNoCheck)
UNIMPLEMENTED_INTRINSIC(SystemArrayCopyChar)
UNIMPLEMENTED_INTRINSIC(ReferenceGetReferent)
} // namespace x86_64
} // namespace art