blob: ef6b403eea88329224ce756267ebb933a3a9ae21 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_mips.h"
#include "arch/mips/entrypoints_direct_mips.h"
#include "arch/mips/instruction_set_features_mips.h"
#include "art_method.h"
#include "code_generator_utils.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "gc/accounting/card_table.h"
#include "intrinsics.h"
#include "intrinsics_mips.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "offsets.h"
#include "thread.h"
#include "utils/assembler.h"
#include "utils/mips/assembler_mips.h"
#include "utils/stack_checks.h"
namespace art {
namespace mips {
static constexpr int kCurrentMethodStackOffset = 0;
static constexpr Register kMethodRegisterArgument = A0;
// We need extra temporary/scratch registers (in addition to AT) in some cases.
static constexpr FRegister FTMP = F8;
Location MipsReturnLocation(Primitive::Type return_type) {
switch (return_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
return Location::RegisterLocation(V0);
case Primitive::kPrimLong:
return Location::RegisterPairLocation(V0, V1);
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
return Location::FpuRegisterLocation(F0);
case Primitive::kPrimVoid:
return Location();
}
UNREACHABLE();
}
Location InvokeDexCallingConventionVisitorMIPS::GetReturnLocation(Primitive::Type type) const {
return MipsReturnLocation(type);
}
Location InvokeDexCallingConventionVisitorMIPS::GetMethodLocation() const {
return Location::RegisterLocation(kMethodRegisterArgument);
}
Location InvokeDexCallingConventionVisitorMIPS::GetNextLocation(Primitive::Type type) {
Location next_location;
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
uint32_t gp_index = gp_index_++;
if (gp_index < calling_convention.GetNumberOfRegisters()) {
next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index));
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = Location::StackSlot(stack_offset);
}
break;
}
case Primitive::kPrimLong: {
uint32_t gp_index = gp_index_;
gp_index_ += 2;
if (gp_index + 1 < calling_convention.GetNumberOfRegisters()) {
if (calling_convention.GetRegisterAt(gp_index) == A1) {
gp_index_++; // Skip A1, and use A2_A3 instead.
gp_index++;
}
Register low_even = calling_convention.GetRegisterAt(gp_index);
Register high_odd = calling_convention.GetRegisterAt(gp_index + 1);
DCHECK_EQ(low_even + 1, high_odd);
next_location = Location::RegisterPairLocation(low_even, high_odd);
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = Location::DoubleStackSlot(stack_offset);
}
break;
}
// Note: both float and double types are stored in even FPU registers. On 32 bit FPU, double
// will take up the even/odd pair, while floats are stored in even regs only.
// On 64 bit FPU, both double and float are stored in even registers only.
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
uint32_t float_index = float_index_++;
if (float_index < calling_convention.GetNumberOfFpuRegisters()) {
next_location = Location::FpuRegisterLocation(
calling_convention.GetFpuRegisterAt(float_index));
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
: Location::StackSlot(stack_offset);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected parameter type " << type;
break;
}
// Space on the stack is reserved for all arguments.
stack_index_ += Primitive::Is64BitType(type) ? 2 : 1;
return next_location;
}
Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type type) {
return MipsReturnLocation(type);
}
#define __ down_cast<CodeGeneratorMIPS*>(codegen)->GetAssembler()->
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsWordSize, x).Int32Value()
class BoundsCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit BoundsCheckSlowPathMIPS(HBoundsCheck* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(locations->InAt(0),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimInt,
locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimInt);
mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowArrayBounds),
instruction_,
instruction_->GetDexPc(),
this,
IsDirectEntrypoint(kQuickThrowArrayBounds));
CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathMIPS"; }
private:
HBoundsCheck* const instruction_;
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathMIPS);
};
class DivZeroCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit DivZeroCheckSlowPathMIPS(HDivZeroCheck* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowDivZero),
instruction_,
instruction_->GetDexPc(),
this,
IsDirectEntrypoint(kQuickThrowDivZero));
CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathMIPS"; }
private:
HDivZeroCheck* const instruction_;
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathMIPS);
};
class LoadClassSlowPathMIPS : public SlowPathCodeMIPS {
public:
LoadClassSlowPathMIPS(HLoadClass* cls,
HInstruction* at,
uint32_t dex_pc,
bool do_clinit)
: cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = at_->GetLocations();
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
__ LoadConst32(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex());
int32_t entry_point_offset = do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
: QUICK_ENTRY_POINT(pInitializeType);
bool direct = do_clinit_ ? IsDirectEntrypoint(kQuickInitializeStaticStorage)
: IsDirectEntrypoint(kQuickInitializeType);
mips_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this, direct);
if (do_clinit_) {
CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
} else {
CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
}
// Move the class to the desired location.
Location out = locations->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
Primitive::Type type = at_->GetType();
mips_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
}
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathMIPS"; }
private:
// The class this slow path will load.
HLoadClass* const cls_;
// The instruction where this slow path is happening.
// (Might be the load class or an initialization check).
HInstruction* const at_;
// The dex PC of `at_`.
const uint32_t dex_pc_;
// Whether to initialize the class.
const bool do_clinit_;
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathMIPS);
};
class LoadStringSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit LoadStringSlowPathMIPS(HLoadString* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
__ LoadConst32(calling_convention.GetRegisterAt(0), instruction_->GetStringIndex());
mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pResolveString),
instruction_,
instruction_->GetDexPc(),
this,
IsDirectEntrypoint(kQuickResolveString));
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
Primitive::Type type = instruction_->GetType();
mips_codegen->MoveLocation(locations->Out(),
calling_convention.GetReturnLocation(type),
type);
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathMIPS"; }
private:
HLoadString* const instruction_;
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathMIPS);
};
class NullCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit NullCheckSlowPathMIPS(HNullCheck* instr) : instruction_(instr) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowNullPointer),
instruction_,
instruction_->GetDexPc(),
this,
IsDirectEntrypoint(kQuickThrowNullPointer));
CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathMIPS"; }
private:
HNullCheck* const instruction_;
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathMIPS);
};
class SuspendCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
SuspendCheckSlowPathMIPS(HSuspendCheck* instruction, HBasicBlock* successor)
: instruction_(instruction), successor_(successor) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, instruction_->GetLocations());
mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pTestSuspend),
instruction_,
instruction_->GetDexPc(),
this,
IsDirectEntrypoint(kQuickTestSuspend));
CheckEntrypointTypes<kQuickTestSuspend, void, void>();
RestoreLiveRegisters(codegen, instruction_->GetLocations());
if (successor_ == nullptr) {
__ B(GetReturnLabel());
} else {
__ B(mips_codegen->GetLabelOf(successor_));
}
}
MipsLabel* GetReturnLabel() {
DCHECK(successor_ == nullptr);
return &return_label_;
}
const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathMIPS"; }
private:
HSuspendCheck* const instruction_;
// If not null, the block to branch to after the suspend check.
HBasicBlock* const successor_;
// If `successor_` is null, the label to branch to after the suspend check.
MipsLabel return_label_;
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathMIPS);
};
class TypeCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit TypeCheckSlowPathMIPS(HInstruction* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0) : locations->Out();
uint32_t dex_pc = instruction_->GetDexPc();
DCHECK(instruction_->IsCheckCast()
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimNot,
object_class,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimNot);
if (instruction_->IsInstanceOf()) {
mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial),
instruction_,
dex_pc,
this,
IsDirectEntrypoint(kQuickInstanceofNonTrivial));
CheckEntrypointTypes<
kQuickInstanceofNonTrivial, uint32_t, const mirror::Class*, const mirror::Class*>();
Primitive::Type ret_type = instruction_->GetType();
Location ret_loc = calling_convention.GetReturnLocation(ret_type);
mips_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
} else {
DCHECK(instruction_->IsCheckCast());
mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast),
instruction_,
dex_pc,
this,
IsDirectEntrypoint(kQuickCheckCast));
CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
}
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathMIPS"; }
private:
HInstruction* const instruction_;
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathMIPS);
};
class DeoptimizationSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit DeoptimizationSlowPathMIPS(HInstruction* instruction)
: instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, instruction_->GetLocations());
DCHECK(instruction_->IsDeoptimize());
HDeoptimize* deoptimize = instruction_->AsDeoptimize();
uint32_t dex_pc = deoptimize->GetDexPc();
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
instruction_,
dex_pc,
this,
IsDirectEntrypoint(kQuickDeoptimize));
CheckEntrypointTypes<kQuickDeoptimize, void, void>();
}
const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathMIPS"; }
private:
HInstruction* const instruction_;
DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathMIPS);
};
CodeGeneratorMIPS::CodeGeneratorMIPS(HGraph* graph,
const MipsInstructionSetFeatures& isa_features,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats)
: CodeGenerator(graph,
kNumberOfCoreRegisters,
kNumberOfFRegisters,
kNumberOfRegisterPairs,
ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
arraysize(kCoreCalleeSaves)),
ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
arraysize(kFpuCalleeSaves)),
compiler_options,
stats),
block_labels_(nullptr),
location_builder_(graph, this),
instruction_visitor_(graph, this),
move_resolver_(graph->GetArena(), this),
assembler_(&isa_features),
isa_features_(isa_features) {
// Save RA (containing the return address) to mimic Quick.
AddAllocatedRegister(Location::RegisterLocation(RA));
}
#undef __
#define __ down_cast<MipsAssembler*>(GetAssembler())->
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsWordSize, x).Int32Value()
void CodeGeneratorMIPS::Finalize(CodeAllocator* allocator) {
// Ensure that we fix up branches.
__ FinalizeCode();
// Adjust native pc offsets in stack maps.
for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) {
uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_offset;
uint32_t new_position = __ GetAdjustedPosition(old_position);
DCHECK_GE(new_position, old_position);
stack_map_stream_.SetStackMapNativePcOffset(i, new_position);
}
// Adjust pc offsets for the disassembly information.
if (disasm_info_ != nullptr) {
GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
for (auto& it : *disasm_info_->GetInstructionIntervals()) {
it.second.start = __ GetAdjustedPosition(it.second.start);
it.second.end = __ GetAdjustedPosition(it.second.end);
}
for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
}
}
CodeGenerator::Finalize(allocator);
}
MipsAssembler* ParallelMoveResolverMIPS::GetAssembler() const {
return codegen_->GetAssembler();
}
void ParallelMoveResolverMIPS::EmitMove(size_t index) {
DCHECK_LT(index, moves_.size());
MoveOperands* move = moves_[index];
codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType());
}
void ParallelMoveResolverMIPS::EmitSwap(size_t index) {
DCHECK_LT(index, moves_.size());
MoveOperands* move = moves_[index];
Primitive::Type type = move->GetType();
Location loc1 = move->GetDestination();
Location loc2 = move->GetSource();
DCHECK(!loc1.IsConstant());
DCHECK(!loc2.IsConstant());
if (loc1.Equals(loc2)) {
return;
}
if (loc1.IsRegister() && loc2.IsRegister()) {
// Swap 2 GPRs.
Register r1 = loc1.AsRegister<Register>();
Register r2 = loc2.AsRegister<Register>();
__ Move(TMP, r2);
__ Move(r2, r1);
__ Move(r1, TMP);
} else if (loc1.IsFpuRegister() && loc2.IsFpuRegister()) {
FRegister f1 = loc1.AsFpuRegister<FRegister>();
FRegister f2 = loc2.AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ MovS(FTMP, f2);
__ MovS(f2, f1);
__ MovS(f1, FTMP);
} else {
DCHECK_EQ(type, Primitive::kPrimDouble);
__ MovD(FTMP, f2);
__ MovD(f2, f1);
__ MovD(f1, FTMP);
}
} else if ((loc1.IsRegister() && loc2.IsFpuRegister()) ||
(loc1.IsFpuRegister() && loc2.IsRegister())) {
// Swap FPR and GPR.
DCHECK_EQ(type, Primitive::kPrimFloat); // Can only swap a float.
FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
: loc2.AsFpuRegister<FRegister>();
Register r2 = loc1.IsRegister() ? loc1.AsRegister<Register>()
: loc2.AsRegister<Register>();
__ Move(TMP, r2);
__ Mfc1(r2, f1);
__ Mtc1(TMP, f1);
} else if (loc1.IsRegisterPair() && loc2.IsRegisterPair()) {
// Swap 2 GPR register pairs.
Register r1 = loc1.AsRegisterPairLow<Register>();
Register r2 = loc2.AsRegisterPairLow<Register>();
__ Move(TMP, r2);
__ Move(r2, r1);
__ Move(r1, TMP);
r1 = loc1.AsRegisterPairHigh<Register>();
r2 = loc2.AsRegisterPairHigh<Register>();
__ Move(TMP, r2);
__ Move(r2, r1);
__ Move(r1, TMP);
} else if ((loc1.IsRegisterPair() && loc2.IsFpuRegister()) ||
(loc1.IsFpuRegister() && loc2.IsRegisterPair())) {
// Swap FPR and GPR register pair.
DCHECK_EQ(type, Primitive::kPrimDouble);
FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
: loc2.AsFpuRegister<FRegister>();
Register r2_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
: loc2.AsRegisterPairLow<Register>();
Register r2_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
: loc2.AsRegisterPairHigh<Register>();
// Use 2 temporary registers because we can't first swap the low 32 bits of an FPR and
// then swap the high 32 bits of the same FPR. mtc1 makes the high 32 bits of an FPR
// unpredictable and the following mfch1 will fail.
__ Mfc1(TMP, f1);
__ Mfhc1(AT, f1);
__ Mtc1(r2_l, f1);
__ Mthc1(r2_h, f1);
__ Move(r2_l, TMP);
__ Move(r2_h, AT);
} else if (loc1.IsStackSlot() && loc2.IsStackSlot()) {
Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ false);
} else if (loc1.IsDoubleStackSlot() && loc2.IsDoubleStackSlot()) {
Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ true);
} else {
LOG(FATAL) << "Swap between " << loc1 << " and " << loc2 << " is unsupported";
}
}
void ParallelMoveResolverMIPS::RestoreScratch(int reg) {
__ Pop(static_cast<Register>(reg));
}
void ParallelMoveResolverMIPS::SpillScratch(int reg) {
__ Push(static_cast<Register>(reg));
}
void ParallelMoveResolverMIPS::Exchange(int index1, int index2, bool double_slot) {
// Allocate a scratch register other than TMP, if available.
// Else, spill V0 (arbitrary choice) and use it as a scratch register (it will be
// automatically unspilled when the scratch scope object is destroyed).
ScratchRegisterScope ensure_scratch(this, TMP, V0, codegen_->GetNumberOfCoreRegisters());
// If V0 spills onto the stack, SP-relative offsets need to be adjusted.
int stack_offset = ensure_scratch.IsSpilled() ? kMipsWordSize : 0;
for (int i = 0; i <= (double_slot ? 1 : 0); i++, stack_offset += kMipsWordSize) {
__ LoadFromOffset(kLoadWord,
Register(ensure_scratch.GetRegister()),
SP,
index1 + stack_offset);
__ LoadFromOffset(kLoadWord,
TMP,
SP,
index2 + stack_offset);
__ StoreToOffset(kStoreWord,
Register(ensure_scratch.GetRegister()),
SP,
index2 + stack_offset);
__ StoreToOffset(kStoreWord, TMP, SP, index1 + stack_offset);
}
}
static dwarf::Reg DWARFReg(Register reg) {
return dwarf::Reg::MipsCore(static_cast<int>(reg));
}
// TODO: mapping of floating-point registers to DWARF.
void CodeGeneratorMIPS::GenerateFrameEntry() {
__ Bind(&frame_entry_label_);
bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kMips) || !IsLeafMethod();
if (do_overflow_check) {
__ LoadFromOffset(kLoadWord,
ZERO,
SP,
-static_cast<int32_t>(GetStackOverflowReservedBytes(kMips)));
RecordPcInfo(nullptr, 0);
}
if (HasEmptyFrame()) {
return;
}
// Make sure the frame size isn't unreasonably large.
if (GetFrameSize() > GetStackOverflowReservedBytes(kMips)) {
LOG(FATAL) << "Stack frame larger than " << GetStackOverflowReservedBytes(kMips) << " bytes";
}
// Spill callee-saved registers.
// Note that their cumulative size is small and they can be indexed using
// 16-bit offsets.
// TODO: increment/decrement SP in one step instead of two or remove this comment.
uint32_t ofs = FrameEntrySpillSize();
bool unaligned_float = ofs & 0x7;
bool fpu_32bit = isa_features_.Is32BitFloatingPoint();
__ IncreaseFrameSize(ofs);
for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) {
Register reg = kCoreCalleeSaves[i];
if (allocated_registers_.ContainsCoreRegister(reg)) {
ofs -= kMipsWordSize;
__ Sw(reg, SP, ofs);
__ cfi().RelOffset(DWARFReg(reg), ofs);
}
}
for (int i = arraysize(kFpuCalleeSaves) - 1; i >= 0; --i) {
FRegister reg = kFpuCalleeSaves[i];
if (allocated_registers_.ContainsFloatingPointRegister(reg)) {
ofs -= kMipsDoublewordSize;
// TODO: Change the frame to avoid unaligned accesses for fpu registers.
if (unaligned_float) {
if (fpu_32bit) {
__ Swc1(reg, SP, ofs);
__ Swc1(static_cast<FRegister>(reg + 1), SP, ofs + 4);
} else {
__ Mfhc1(TMP, reg);
__ Swc1(reg, SP, ofs);
__ Sw(TMP, SP, ofs + 4);
}
} else {
__ Sdc1(reg, SP, ofs);
}
// TODO: __ cfi().RelOffset(DWARFReg(reg), ofs);
}
}
// Allocate the rest of the frame and store the current method pointer
// at its end.
__ IncreaseFrameSize(GetFrameSize() - FrameEntrySpillSize());
static_assert(IsInt<16>(kCurrentMethodStackOffset),
"kCurrentMethodStackOffset must fit into int16_t");
__ Sw(kMethodRegisterArgument, SP, kCurrentMethodStackOffset);
}
void CodeGeneratorMIPS::GenerateFrameExit() {
__ cfi().RememberState();
if (!HasEmptyFrame()) {
// Deallocate the rest of the frame.
__ DecreaseFrameSize(GetFrameSize() - FrameEntrySpillSize());
// Restore callee-saved registers.
// Note that their cumulative size is small and they can be indexed using
// 16-bit offsets.
// TODO: increment/decrement SP in one step instead of two or remove this comment.
uint32_t ofs = 0;
bool unaligned_float = FrameEntrySpillSize() & 0x7;
bool fpu_32bit = isa_features_.Is32BitFloatingPoint();
for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
FRegister reg = kFpuCalleeSaves[i];
if (allocated_registers_.ContainsFloatingPointRegister(reg)) {
if (unaligned_float) {
if (fpu_32bit) {
__ Lwc1(reg, SP, ofs);
__ Lwc1(static_cast<FRegister>(reg + 1), SP, ofs + 4);
} else {
__ Lwc1(reg, SP, ofs);
__ Lw(TMP, SP, ofs + 4);
__ Mthc1(TMP, reg);
}
} else {
__ Ldc1(reg, SP, ofs);
}
ofs += kMipsDoublewordSize;
// TODO: __ cfi().Restore(DWARFReg(reg));
}
}
for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
Register reg = kCoreCalleeSaves[i];
if (allocated_registers_.ContainsCoreRegister(reg)) {
__ Lw(reg, SP, ofs);
ofs += kMipsWordSize;
__ cfi().Restore(DWARFReg(reg));
}
}
DCHECK_EQ(ofs, FrameEntrySpillSize());
__ DecreaseFrameSize(ofs);
}
__ Jr(RA);
__ Nop();
__ cfi().RestoreState();
__ cfi().DefCFAOffset(GetFrameSize());
}
void CodeGeneratorMIPS::Bind(HBasicBlock* block) {
__ Bind(GetLabelOf(block));
}
void CodeGeneratorMIPS::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
if (src.Equals(dst)) {
return;
}
if (src.IsConstant()) {
MoveConstant(dst, src.GetConstant());
} else {
if (Primitive::Is64BitType(dst_type)) {
Move64(dst, src);
} else {
Move32(dst, src);
}
}
}
void CodeGeneratorMIPS::Move32(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegister()) {
if (source.IsRegister()) {
__ Move(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ Mfc1(destination.AsRegister<Register>(), source.AsFpuRegister<FRegister>());
} else {
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
}
} else if (destination.IsFpuRegister()) {
if (source.IsRegister()) {
__ Mtc1(source.AsRegister<Register>(), destination.AsFpuRegister<FRegister>());
} else if (source.IsFpuRegister()) {
__ MovS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
} else {
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadSFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
}
} else {
DCHECK(destination.IsStackSlot()) << destination;
if (source.IsRegister()) {
__ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex());
} else if (source.IsFpuRegister()) {
__ StoreSToOffset(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex());
} else {
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
__ StoreToOffset(kStoreWord, TMP, SP, destination.GetStackIndex());
}
}
}
void CodeGeneratorMIPS::Move64(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegisterPair()) {
if (source.IsRegisterPair()) {
__ Move(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
__ Move(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
} else if (source.IsFpuRegister()) {
Register dst_high = destination.AsRegisterPairHigh<Register>();
Register dst_low = destination.AsRegisterPairLow<Register>();
FRegister src = source.AsFpuRegister<FRegister>();
__ Mfc1(dst_low, src);
__ Mfhc1(dst_high, src);
} else {
DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
int32_t off = source.GetStackIndex();
Register r = destination.AsRegisterPairLow<Register>();
__ LoadFromOffset(kLoadDoubleword, r, SP, off);
}
} else if (destination.IsFpuRegister()) {
if (source.IsRegisterPair()) {
FRegister dst = destination.AsFpuRegister<FRegister>();
Register src_high = source.AsRegisterPairHigh<Register>();
Register src_low = source.AsRegisterPairLow<Register>();
__ Mtc1(src_low, dst);
__ Mthc1(src_high, dst);
} else if (source.IsFpuRegister()) {
__ MovD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
} else {
DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadDFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
}
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
int32_t off = destination.GetStackIndex();
if (source.IsRegisterPair()) {
__ StoreToOffset(kStoreDoubleword, source.AsRegisterPairLow<Register>(), SP, off);
} else if (source.IsFpuRegister()) {
__ StoreDToOffset(source.AsFpuRegister<FRegister>(), SP, off);
} else {
DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
__ StoreToOffset(kStoreWord, TMP, SP, off);
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex() + 4);
__ StoreToOffset(kStoreWord, TMP, SP, off + 4);
}
}
}
void CodeGeneratorMIPS::MoveConstant(Location destination, HConstant* c) {
if (c->IsIntConstant() || c->IsNullConstant()) {
// Move 32 bit constant.
int32_t value = GetInt32ValueOf(c);
if (destination.IsRegister()) {
Register dst = destination.AsRegister<Register>();
__ LoadConst32(dst, value);
} else {
DCHECK(destination.IsStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConst32ToOffset(value, SP, destination.GetStackIndex(), TMP);
}
} else if (c->IsLongConstant()) {
// Move 64 bit constant.
int64_t value = GetInt64ValueOf(c);
if (destination.IsRegisterPair()) {
Register r_h = destination.AsRegisterPairHigh<Register>();
Register r_l = destination.AsRegisterPairLow<Register>();
__ LoadConst64(r_h, r_l, value);
} else {
DCHECK(destination.IsDoubleStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConst64ToOffset(value, SP, destination.GetStackIndex(), TMP);
}
} else if (c->IsFloatConstant()) {
// Move 32 bit float constant.
int32_t value = GetInt32ValueOf(c);
if (destination.IsFpuRegister()) {
__ LoadSConst32(destination.AsFpuRegister<FRegister>(), value, TMP);
} else {
DCHECK(destination.IsStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConst32ToOffset(value, SP, destination.GetStackIndex(), TMP);
}
} else {
// Move 64 bit double constant.
DCHECK(c->IsDoubleConstant()) << c->DebugName();
int64_t value = GetInt64ValueOf(c);
if (destination.IsFpuRegister()) {
FRegister fd = destination.AsFpuRegister<FRegister>();
__ LoadDConst64(fd, value, TMP);
} else {
DCHECK(destination.IsDoubleStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConst64ToOffset(value, SP, destination.GetStackIndex(), TMP);
}
}
}
void CodeGeneratorMIPS::MoveConstant(Location destination, int32_t value) {
DCHECK(destination.IsRegister());
Register dst = destination.AsRegister<Register>();
__ LoadConst32(dst, value);
}
void CodeGeneratorMIPS::Move(HInstruction* instruction,
Location location,
HInstruction* move_for) {
LocationSummary* locations = instruction->GetLocations();
Primitive::Type type = instruction->GetType();
DCHECK_NE(type, Primitive::kPrimVoid);
if (instruction->IsCurrentMethod()) {
Move32(location, Location::StackSlot(kCurrentMethodStackOffset));
} else if (locations != nullptr && locations->Out().Equals(location)) {
return;
} else if (instruction->IsIntConstant()
|| instruction->IsLongConstant()
|| instruction->IsNullConstant()) {
MoveConstant(location, instruction->AsConstant());
} else if (instruction->IsTemporary()) {
Location temp_location = GetTemporaryLocation(instruction->AsTemporary());
if (temp_location.IsStackSlot()) {
Move32(location, temp_location);
} else {
DCHECK(temp_location.IsDoubleStackSlot());
Move64(location, temp_location);
}
} else if (instruction->IsLoadLocal()) {
uint32_t stack_slot = GetStackSlot(instruction->AsLoadLocal()->GetLocal());
if (Primitive::Is64BitType(type)) {
Move64(location, Location::DoubleStackSlot(stack_slot));
} else {
Move32(location, Location::StackSlot(stack_slot));
}
} else {
DCHECK((instruction->GetNext() == move_for) || instruction->GetNext()->IsTemporary());
if (Primitive::Is64BitType(type)) {
Move64(location, locations->Out());
} else {
Move32(location, locations->Out());
}
}
}
void CodeGeneratorMIPS::AddLocationAsTemp(Location location, LocationSummary* locations) {
if (location.IsRegister()) {
locations->AddTemp(location);
} else if (location.IsRegisterPair()) {
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
} else {
UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
}
}
Location CodeGeneratorMIPS::GetStackLocation(HLoadLocal* load) const {
Primitive::Type type = load->GetType();
switch (type) {
case Primitive::kPrimNot:
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
return Location::StackSlot(GetStackSlot(load->GetLocal()));
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
return Location::DoubleStackSlot(GetStackSlot(load->GetLocal()));
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected type " << type;
}
LOG(FATAL) << "Unreachable";
return Location::NoLocation();
}
void CodeGeneratorMIPS::MarkGCCard(Register object, Register value) {
MipsLabel done;
Register card = AT;
Register temp = TMP;
__ Beqz(value, &done);
__ LoadFromOffset(kLoadWord,
card,
TR,
Thread::CardTableOffset<kMipsWordSize>().Int32Value());
__ Srl(temp, object, gc::accounting::CardTable::kCardShift);
__ Addu(temp, card, temp);
__ Sb(card, temp, 0);
__ Bind(&done);
}
void CodeGeneratorMIPS::SetupBlockedRegisters(bool is_baseline) const {
// Don't allocate the dalvik style register pair passing.
blocked_register_pairs_[A1_A2] = true;
// ZERO, K0, K1, GP, SP, RA are always reserved and can't be allocated.
blocked_core_registers_[ZERO] = true;
blocked_core_registers_[K0] = true;
blocked_core_registers_[K1] = true;
blocked_core_registers_[GP] = true;
blocked_core_registers_[SP] = true;
blocked_core_registers_[RA] = true;
// AT and TMP(T8) are used as temporary/scratch registers
// (similar to how AT is used by MIPS assemblers).
blocked_core_registers_[AT] = true;
blocked_core_registers_[TMP] = true;
blocked_fpu_registers_[FTMP] = true;
// Reserve suspend and thread registers.
blocked_core_registers_[S0] = true;
blocked_core_registers_[TR] = true;
// Reserve T9 for function calls
blocked_core_registers_[T9] = true;
// Reserve odd-numbered FPU registers.
for (size_t i = 1; i < kNumberOfFRegisters; i += 2) {
blocked_fpu_registers_[i] = true;
}
if (is_baseline) {
for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
blocked_core_registers_[kCoreCalleeSaves[i]] = true;
}
for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
}
}
UpdateBlockedPairRegisters();
}
void CodeGeneratorMIPS::UpdateBlockedPairRegisters() const {
for (int i = 0; i < kNumberOfRegisterPairs; i++) {
MipsManagedRegister current =
MipsManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
if (blocked_core_registers_[current.AsRegisterPairLow()]
|| blocked_core_registers_[current.AsRegisterPairHigh()]) {
blocked_register_pairs_[i] = true;
}
}
}
Location CodeGeneratorMIPS::AllocateFreeRegister(Primitive::Type type) const {
switch (type) {
case Primitive::kPrimLong: {
size_t reg = FindFreeEntry(blocked_register_pairs_, kNumberOfRegisterPairs);
MipsManagedRegister pair =
MipsManagedRegister::FromRegisterPair(static_cast<RegisterPair>(reg));
DCHECK(!blocked_core_registers_[pair.AsRegisterPairLow()]);
DCHECK(!blocked_core_registers_[pair.AsRegisterPairHigh()]);
blocked_core_registers_[pair.AsRegisterPairLow()] = true;
blocked_core_registers_[pair.AsRegisterPairHigh()] = true;
UpdateBlockedPairRegisters();
return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh());
}
case Primitive::kPrimByte:
case Primitive::kPrimBoolean:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
int reg = FindFreeEntry(blocked_core_registers_, kNumberOfCoreRegisters);
// Block all register pairs that contain `reg`.
for (int i = 0; i < kNumberOfRegisterPairs; i++) {
MipsManagedRegister current =
MipsManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
if (current.AsRegisterPairLow() == reg || current.AsRegisterPairHigh() == reg) {
blocked_register_pairs_[i] = true;
}
}
return Location::RegisterLocation(reg);
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
int reg = FindFreeEntry(blocked_fpu_registers_, kNumberOfFRegisters);
return Location::FpuRegisterLocation(reg);
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
}
UNREACHABLE();
}
size_t CodeGeneratorMIPS::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
__ StoreToOffset(kStoreWord, Register(reg_id), SP, stack_index);
return kMipsWordSize;
}
size_t CodeGeneratorMIPS::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
__ LoadFromOffset(kLoadWord, Register(reg_id), SP, stack_index);
return kMipsWordSize;
}
size_t CodeGeneratorMIPS::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ StoreDToOffset(FRegister(reg_id), SP, stack_index);
return kMipsDoublewordSize;
}
size_t CodeGeneratorMIPS::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ LoadDFromOffset(FRegister(reg_id), SP, stack_index);
return kMipsDoublewordSize;
}
void CodeGeneratorMIPS::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << MipsManagedRegister::FromCoreRegister(Register(reg));
}
void CodeGeneratorMIPS::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << MipsManagedRegister::FromFRegister(FRegister(reg));
}
void CodeGeneratorMIPS::InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
InvokeRuntime(GetThreadOffset<kMipsWordSize>(entrypoint).Int32Value(),
instruction,
dex_pc,
slow_path,
IsDirectEntrypoint(entrypoint));
}
constexpr size_t kMipsDirectEntrypointRuntimeOffset = 16;
void CodeGeneratorMIPS::InvokeRuntime(int32_t entry_point_offset,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path,
bool is_direct_entrypoint) {
if (is_direct_entrypoint) {
// Reserve argument space on stack (for $a0-$a3) for
// entrypoints that directly reference native implementations.
// Called function may use this space to store $a0-$a3 regs.
__ IncreaseFrameSize(kMipsDirectEntrypointRuntimeOffset);
}
__ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
__ Jalr(T9);
__ Nop();
if (is_direct_entrypoint) {
__ DecreaseFrameSize(kMipsDirectEntrypointRuntimeOffset);
}
RecordPcInfo(instruction, dex_pc, slow_path);
}
void InstructionCodeGeneratorMIPS::GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path,
Register class_reg) {
__ LoadFromOffset(kLoadWord, TMP, class_reg, mirror::Class::StatusOffset().Int32Value());
__ LoadConst32(AT, mirror::Class::kStatusInitialized);
__ Blt(TMP, AT, slow_path->GetEntryLabel());
// Even if the initialized flag is set, we need to ensure consistent memory ordering.
__ Sync(0);
__ Bind(slow_path->GetExitLabel());
}
void InstructionCodeGeneratorMIPS::GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED) {
__ Sync(0); // Only stype 0 is supported.
}
void InstructionCodeGeneratorMIPS::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
SuspendCheckSlowPathMIPS* slow_path =
new (GetGraph()->GetArena()) SuspendCheckSlowPathMIPS(instruction, successor);
codegen_->AddSlowPath(slow_path);
__ LoadFromOffset(kLoadUnsignedHalfword,
TMP,
TR,
Thread::ThreadFlagsOffset<kMipsWordSize>().Int32Value());
if (successor == nullptr) {
__ Bnez(TMP, slow_path->GetEntryLabel());
__ Bind(slow_path->GetReturnLabel());
} else {
__ Beqz(TMP, codegen_->GetLabelOf(successor));
__ B(slow_path->GetEntryLabel());
// slow_path will return to GetLabelOf(successor).
}
}
InstructionCodeGeneratorMIPS::InstructionCodeGeneratorMIPS(HGraph* graph,
CodeGeneratorMIPS* codegen)
: HGraphVisitor(graph),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
void LocationsBuilderMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
DCHECK_EQ(instruction->InputCount(), 2U);
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
Primitive::Type type = instruction->GetResultType();
switch (type) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
HInstruction* right = instruction->InputAt(1);
bool can_use_imm = false;
if (right->IsConstant()) {
int32_t imm = CodeGenerator::GetInt32ValueOf(right->AsConstant());
if (instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
can_use_imm = IsUint<16>(imm);
} else if (instruction->IsAdd()) {
can_use_imm = IsInt<16>(imm);
} else {
DCHECK(instruction->IsSub());
can_use_imm = IsInt<16>(-imm);
}
}
if (can_use_imm)
locations->SetInAt(1, Location::ConstantLocation(right->AsConstant()));
else
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
// TODO: can 2nd param be const?
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
if (instruction->IsAdd() || instruction->IsSub()) {
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
} else {
DCHECK(instruction->IsAnd() || instruction->IsOr() || instruction->IsXor());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
DCHECK(instruction->IsAdd() || instruction->IsSub());
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type;
}
}
void InstructionCodeGeneratorMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
Primitive::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case Primitive::kPrimInt: {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_reg = ZERO;
int32_t rhs_imm = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
} else {
rhs_reg = rhs_location.AsRegister<Register>();
}
if (instruction->IsAnd()) {
if (use_imm)
__ Andi(dst, lhs, rhs_imm);
else
__ And(dst, lhs, rhs_reg);
} else if (instruction->IsOr()) {
if (use_imm)
__ Ori(dst, lhs, rhs_imm);
else
__ Or(dst, lhs, rhs_reg);
} else if (instruction->IsXor()) {
if (use_imm)
__ Xori(dst, lhs, rhs_imm);
else
__ Xor(dst, lhs, rhs_reg);
} else if (instruction->IsAdd()) {
if (use_imm)
__ Addiu(dst, lhs, rhs_imm);
else
__ Addu(dst, lhs, rhs_reg);
} else {
DCHECK(instruction->IsSub());
if (use_imm)
__ Addiu(dst, lhs, -rhs_imm);
else
__ Subu(dst, lhs, rhs_reg);
}
break;
}
case Primitive::kPrimLong: {
// TODO: can 2nd param be const?
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
if (instruction->IsAnd()) {
__ And(dst_low, lhs_low, rhs_low);
__ And(dst_high, lhs_high, rhs_high);
} else if (instruction->IsOr()) {
__ Or(dst_low, lhs_low, rhs_low);
__ Or(dst_high, lhs_high, rhs_high);
} else if (instruction->IsXor()) {
__ Xor(dst_low, lhs_low, rhs_low);
__ Xor(dst_high, lhs_high, rhs_high);
} else if (instruction->IsAdd()) {
__ Addu(dst_low, lhs_low, rhs_low);
__ Sltu(TMP, dst_low, lhs_low);
__ Addu(dst_high, lhs_high, rhs_high);
__ Addu(dst_high, dst_high, TMP);
} else {
DCHECK(instruction->IsSub());
__ Subu(dst_low, lhs_low, rhs_low);
__ Sltu(TMP, lhs_low, dst_low);
__ Subu(dst_high, lhs_high, rhs_high);
__ Subu(dst_high, dst_high, TMP);
}
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
if (instruction->IsAdd()) {
if (type == Primitive::kPrimFloat) {
__ AddS(dst, lhs, rhs);
} else {
__ AddD(dst, lhs, rhs);
}
} else {
DCHECK(instruction->IsSub());
if (type == Primitive::kPrimFloat) {
__ SubS(dst, lhs, rhs);
} else {
__ SubD(dst, lhs, rhs);
}
}
break;
}
default:
LOG(FATAL) << "Unexpected binary operation type " << type;
}
}
void LocationsBuilderMIPS::HandleShift(HBinaryOperation* instr) {
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
Primitive::Type type = instr->GetResultType();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
locations->SetOut(Location::RequiresRegister());
break;
}
default:
LOG(FATAL) << "Unexpected shift type " << type;
}
}
static constexpr size_t kMipsBitsPerWord = kMipsWordSize * kBitsPerByte;
void InstructionCodeGeneratorMIPS::HandleShift(HBinaryOperation* instr) {
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
LocationSummary* locations = instr->GetLocations();
Primitive::Type type = instr->GetType();
Location rhs_location = locations->InAt(1);
bool use_imm = rhs_location.IsConstant();
Register rhs_reg = use_imm ? ZERO : rhs_location.AsRegister<Register>();
int64_t rhs_imm = use_imm ? CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()) : 0;
uint32_t shift_mask = (type == Primitive::kPrimInt) ? kMaxIntShiftValue : kMaxLongShiftValue;
uint32_t shift_value = rhs_imm & shift_mask;
switch (type) {
case Primitive::kPrimInt: {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
if (use_imm) {
if (instr->IsShl()) {
__ Sll(dst, lhs, shift_value);
} else if (instr->IsShr()) {
__ Sra(dst, lhs, shift_value);
} else {
__ Srl(dst, lhs, shift_value);
}
} else {
if (instr->IsShl()) {
__ Sllv(dst, lhs, rhs_reg);
} else if (instr->IsShr()) {
__ Srav(dst, lhs, rhs_reg);
} else {
__ Srlv(dst, lhs, rhs_reg);
}
}
break;
}
case Primitive::kPrimLong: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
if (use_imm) {
if (shift_value == 0) {
codegen_->Move64(locations->Out(), locations->InAt(0));
} else if (shift_value < kMipsBitsPerWord) {
if (instr->IsShl()) {
__ Sll(dst_low, lhs_low, shift_value);
__ Srl(TMP, lhs_low, kMipsBitsPerWord - shift_value);
__ Sll(dst_high, lhs_high, shift_value);
__ Or(dst_high, dst_high, TMP);
} else if (instr->IsShr()) {
__ Sra(dst_high, lhs_high, shift_value);
__ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
__ Srl(dst_low, lhs_low, shift_value);
__ Or(dst_low, dst_low, TMP);
} else {
__ Srl(dst_high, lhs_high, shift_value);
__ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
__ Srl(dst_low, lhs_low, shift_value);
__ Or(dst_low, dst_low, TMP);
}
} else {
shift_value -= kMipsBitsPerWord;
if (instr->IsShl()) {
__ Sll(dst_high, lhs_low, shift_value);
__ Move(dst_low, ZERO);
} else if (instr->IsShr()) {
__ Sra(dst_low, lhs_high, shift_value);
__ Sra(dst_high, dst_low, kMipsBitsPerWord - 1);
} else {
__ Srl(dst_low, lhs_high, shift_value);
__ Move(dst_high, ZERO);
}
}
} else {
MipsLabel done;
if (instr->IsShl()) {
__ Sllv(dst_low, lhs_low, rhs_reg);
__ Nor(AT, ZERO, rhs_reg);
__ Srl(TMP, lhs_low, 1);
__ Srlv(TMP, TMP, AT);
__ Sllv(dst_high, lhs_high, rhs_reg);
__ Or(dst_high, dst_high, TMP);
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
__ Beqz(TMP, &done);
__ Move(dst_high, dst_low);
__ Move(dst_low, ZERO);
} else if (instr->IsShr()) {
__ Srav(dst_high, lhs_high, rhs_reg);
__ Nor(AT, ZERO, rhs_reg);
__ Sll(TMP, lhs_high, 1);
__ Sllv(TMP, TMP, AT);
__ Srlv(dst_low, lhs_low, rhs_reg);
__ Or(dst_low, dst_low, TMP);
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
__ Beqz(TMP, &done);
__ Move(dst_low, dst_high);
__ Sra(dst_high, dst_high, 31);
} else {
__ Srlv(dst_high, lhs_high, rhs_reg);
__ Nor(AT, ZERO, rhs_reg);
__ Sll(TMP, lhs_high, 1);
__ Sllv(TMP, TMP, AT);
__ Srlv(dst_low, lhs_low, rhs_reg);
__ Or(dst_low, dst_low, TMP);
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
__ Beqz(TMP, &done);
__ Move(dst_low, dst_high);
__ Move(dst_high, ZERO);
}
__ Bind(&done);
}
break;
}
default:
LOG(FATAL) << "Unexpected shift operation type " << type;
}
}
void LocationsBuilderMIPS::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (Primitive::IsFloatingPointType(instruction->GetType())) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorMIPS::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location index = locations->InAt(1);
Primitive::Type type = instruction->GetType();
switch (type) {
case Primitive::kPrimBoolean: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
__ LoadFromOffset(kLoadUnsignedByte, out, obj, offset);
} else {
__ Addu(TMP, obj, index.AsRegister<Register>());
__ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset);
}
break;
}
case Primitive::kPrimByte: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
__ LoadFromOffset(kLoadSignedByte, out, obj, offset);
} else {
__ Addu(TMP, obj, index.AsRegister<Register>());
__ LoadFromOffset(kLoadSignedByte, out, TMP, data_offset);
}
break;
}
case Primitive::kPrimShort: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
__ LoadFromOffset(kLoadSignedHalfword, out, obj, offset);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_2);
__ Addu(TMP, obj, TMP);
__ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset);
}
break;
}
case Primitive::kPrimChar: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
__ LoadFromOffset(kLoadUnsignedHalfword, out, obj, offset);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_2);
__ Addu(TMP, obj, TMP);
__ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset);
}
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t));
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ LoadFromOffset(kLoadWord, out, obj, offset);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
__ Addu(TMP, obj, TMP);
__ LoadFromOffset(kLoadWord, out, TMP, data_offset);
}
break;
}
case Primitive::kPrimLong: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
Register out = locations->Out().AsRegisterPairLow<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ LoadFromOffset(kLoadDoubleword, out, obj, offset);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
__ Addu(TMP, obj, TMP);
__ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset);
}
break;
}
case Primitive::kPrimFloat: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ LoadSFromOffset(out, obj, offset);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
__ Addu(TMP, obj, TMP);
__ LoadSFromOffset(out, TMP, data_offset);
}
break;
}
case Primitive::kPrimDouble: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ LoadDFromOffset(out, obj, offset);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
__ Addu(TMP, obj, TMP);
__ LoadDFromOffset(out, TMP, data_offset);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << instruction->GetType();
UNREACHABLE();
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
void LocationsBuilderMIPS::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = instruction->GetLocations();
uint32_t offset = mirror::Array::LengthOffset().Uint32Value();
Register obj = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ LoadFromOffset(kLoadWord, out, obj, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
void LocationsBuilderMIPS::VisitArraySet(HArraySet* instruction) {
bool needs_runtime_call = instruction->NeedsTypeCheck();
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction,
needs_runtime_call ? LocationSummary::kCall : LocationSummary::kNoCall);
if (needs_runtime_call) {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
} else {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (Primitive::IsFloatingPointType(instruction->InputAt(2)->GetType())) {
locations->SetInAt(2, Location::RequiresFpuRegister());
} else {
locations->SetInAt(2, Location::RequiresRegister());
}
}
}
void InstructionCodeGeneratorMIPS::VisitArraySet(HArraySet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location index = locations->InAt(1);
Primitive::Type value_type = instruction->GetComponentType();
bool needs_runtime_call = locations->WillCall();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
switch (value_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
Register value = locations->InAt(2).AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
__ StoreToOffset(kStoreByte, value, obj, offset);
} else {
__ Addu(TMP, obj, index.AsRegister<Register>());
__ StoreToOffset(kStoreByte, value, TMP, data_offset);
}
break;
}
case Primitive::kPrimShort:
case Primitive::kPrimChar: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
Register value = locations->InAt(2).AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
__ StoreToOffset(kStoreHalfword, value, obj, offset);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_2);
__ Addu(TMP, obj, TMP);
__ StoreToOffset(kStoreHalfword, value, TMP, data_offset);
}
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
if (!needs_runtime_call) {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
Register value = locations->InAt(2).AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ StoreToOffset(kStoreWord, value, obj, offset);
} else {
DCHECK(index.IsRegister()) << index;
__ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
__ Addu(TMP, obj, TMP);
__ StoreToOffset(kStoreWord, value, TMP, data_offset);
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
if (needs_write_barrier) {
DCHECK_EQ(value_type, Primitive::kPrimNot);
codegen_->MarkGCCard(obj, value);
}
} else {
DCHECK_EQ(value_type, Primitive::kPrimNot);
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
instruction,
instruction->GetDexPc(),
nullptr,
IsDirectEntrypoint(kQuickAputObject));
CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
}
break;
}
case Primitive::kPrimLong: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
Register value = locations->InAt(2).AsRegisterPairLow<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ StoreToOffset(kStoreDoubleword, value, obj, offset);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
__ Addu(TMP, obj, TMP);
__ StoreToOffset(kStoreDoubleword, value, TMP, data_offset);
}
break;
}
case Primitive::kPrimFloat: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
FRegister value = locations->InAt(2).AsFpuRegister<FRegister>();
DCHECK(locations->InAt(2).IsFpuRegister());
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ StoreSToOffset(value, obj, offset);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
__ Addu(TMP, obj, TMP);
__ StoreSToOffset(value, TMP, data_offset);
}
break;
}
case Primitive::kPrimDouble: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
FRegister value = locations->InAt(2).AsFpuRegister<FRegister>();
DCHECK(locations->InAt(2).IsFpuRegister());
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ StoreDToOffset(value, obj, offset);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
__ Addu(TMP, obj, TMP);
__ StoreDToOffset(value, TMP, data_offset);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << instruction->GetType();
UNREACHABLE();
}
// Ints and objects are handled in the switch.
if (value_type != Primitive::kPrimInt && value_type != Primitive::kPrimNot) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
void LocationsBuilderMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations = instruction->GetLocations();
BoundsCheckSlowPathMIPS* slow_path =
new (GetGraph()->GetArena()) BoundsCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
Register index = locations->InAt(0).AsRegister<Register>();
Register length = locations->InAt(1).AsRegister<Register>();
// length is limited by the maximum positive signed 32-bit integer.
// Unsigned comparison of length and index checks for index < 0
// and for length <= index simultaneously.
__ Bgeu(index, length, slow_path->GetEntryLabel());
}
void LocationsBuilderMIPS::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction,
LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Note that TypeCheckSlowPathMIPS uses this register too.
locations->AddTemp(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Register cls = locations->InAt(1).AsRegister<Register>();
Register obj_cls = locations->GetTemp(0).AsRegister<Register>();
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
// TODO: avoid this check if we know obj is not null.
__ Beqz(obj, slow_path->GetExitLabel());
// Compare the class of `obj` with `cls`.
__ LoadFromOffset(kLoadWord, obj_cls, obj, mirror::Object::ClassOffset().Int32Value());
__ Bne(obj_cls, cls, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderMIPS::VisitClinitCheck(HClinitCheck* check) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
if (check->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorMIPS::VisitClinitCheck(HClinitCheck* check) {
// We assume the class is not null.
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS(
check->GetLoadClass(),
check,
check->GetDexPc(),
true);
codegen_->AddSlowPath(slow_path);
GenerateClassInitializationCheck(slow_path,
check->GetLocations()->InAt(0).AsRegister<Register>());
}
void LocationsBuilderMIPS::VisitCompare(HCompare* compare) {
Primitive::Type in_type = compare->InputAt(0)->GetType();
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
switch (in_type) {
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Output overlaps because it is written before doing the low comparison.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type for compare operation " << in_type;
}
}
void InstructionCodeGeneratorMIPS::VisitCompare(HCompare* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register res = locations->Out().AsRegister<Register>();
Primitive::Type in_type = instruction->InputAt(0)->GetType();
bool gt_bias = instruction->IsGtBias();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
// 0 if: left == right
// 1 if: left > right
// -1 if: left < right
switch (in_type) {
case Primitive::kPrimLong: {
MipsLabel done;
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
// TODO: more efficient (direct) comparison with a constant.
__ Slt(TMP, lhs_high, rhs_high);
__ Slt(AT, rhs_high, lhs_high); // Inverted: is actually gt.
__ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ].
__ Bnez(res, &done); // If we compared ==, check if lower bits are also equal.
__ Sltu(TMP, lhs_low, rhs_low);
__ Sltu(AT, rhs_low, lhs_low); // Inverted: is actually gt.
__ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ].
__ Bind(&done);
break;
}
case Primitive::kPrimFloat: {
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
MipsLabel done;
if (isR6) {
__ CmpEqS(FTMP, lhs, rhs);
__ LoadConst32(res, 0);
__ Bc1nez(FTMP, &done);
if (gt_bias) {
__ CmpLtS(FTMP, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, 1);
} else {
__ CmpLtS(FTMP, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, -1);
}
} else {
if (gt_bias) {
__ ColtS(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1t(0, &done);
__ CeqS(0, lhs, rhs);
__ LoadConst32(res, 1);
__ Movt(res, ZERO, 0);
} else {
__ ColtS(0, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1t(0, &done);
__ CeqS(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Movt(res, ZERO, 0);
}
}
__ Bind(&done);
break;
}
case Primitive::kPrimDouble: {
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
MipsLabel done;
if (isR6) {
__ CmpEqD(FTMP, lhs, rhs);
__ LoadConst32(res, 0);
__ Bc1nez(FTMP, &done);
if (gt_bias) {
__ CmpLtD(FTMP, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, 1);
} else {
__ CmpLtD(FTMP, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, -1);
}
} else {
if (gt_bias) {
__ ColtD(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1t(0, &done);
__ CeqD(0, lhs, rhs);
__ LoadConst32(res, 1);
__ Movt(res, ZERO, 0);
} else {
__ ColtD(0, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1t(0, &done);
__ CeqD(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Movt(res, ZERO, 0);
}
}
__ Bind(&done);
break;
}
default:
LOG(FATAL) << "Unimplemented compare type " << in_type;
}
}
void LocationsBuilderMIPS::HandleCondition(HCondition* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
switch (instruction->InputAt(0)->GetType()) {
default:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
break;
}
if (instruction->NeedsMaterialization()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorMIPS::HandleCondition(HCondition* instruction) {
if (!instruction->NeedsMaterialization()) {
return;
}
Primitive::Type type = instruction->InputAt(0)->GetType();
LocationSummary* locations = instruction->GetLocations();
Register dst = locations->Out().AsRegister<Register>();
MipsLabel true_label;
switch (type) {
default:
// Integer case.
GenerateIntCompare(instruction->GetCondition(), locations);
return;
case Primitive::kPrimLong:
// TODO: don't use branches.
GenerateLongCompareAndBranch(instruction->GetCondition(), locations, &true_label);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
// TODO: don't use branches.
GenerateFpCompareAndBranch(instruction->GetCondition(),
instruction->IsGtBias(),
type,
locations,
&true_label);
break;
}
// Convert the branches into the result.
MipsLabel done;
// False case: result = 0.
__ LoadConst32(dst, 0);
__ B(&done);
// True case: result = 1.
__ Bind(&true_label);
__ LoadConst32(dst, 1);
__ Bind(&done);
}
void InstructionCodeGeneratorMIPS::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
DCHECK(imm == 1 || imm == -1);
if (instruction->IsRem()) {
__ Move(out, ZERO);
} else {
if (imm == -1) {
__ Subu(out, ZERO, dividend);
} else if (out != dividend) {
__ Move(out, dividend);
}
}
}
void InstructionCodeGeneratorMIPS::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
uint32_t abs_imm = static_cast<uint32_t>(std::abs(imm));
DCHECK(IsPowerOfTwo(abs_imm));
int ctz_imm = CTZ(abs_imm);
if (instruction->IsDiv()) {
if (ctz_imm == 1) {
// Fast path for division by +/-2, which is very common.
__ Srl(TMP, dividend, 31);
} else {
__ Sra(TMP, dividend, 31);
__ Srl(TMP, TMP, 32 - ctz_imm);
}
__ Addu(out, dividend, TMP);
__ Sra(out, out, ctz_imm);
if (imm < 0) {
__ Subu(out, ZERO, out);
}
} else {
if (ctz_imm == 1) {
// Fast path for modulo +/-2, which is very common.
__ Sra(TMP, dividend, 31);
__ Subu(out, dividend, TMP);
__ Andi(out, out, 1);
__ Addu(out, out, TMP);
} else {
__ Sra(TMP, dividend, 31);
__ Srl(TMP, TMP, 32 - ctz_imm);
__ Addu(out, dividend, TMP);
if (IsUint<16>(abs_imm - 1)) {
__ Andi(out, out, abs_imm - 1);
} else {
__ Sll(out, out, 32 - ctz_imm);
__ Srl(out, out, 32 - ctz_imm);
}
__ Subu(out, out, TMP);
}
}
}
void InstructionCodeGeneratorMIPS::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
int64_t magic;
int shift;
CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
__ LoadConst32(TMP, magic);
if (isR6) {
__ MuhR6(TMP, dividend, TMP);
} else {
__ MultR2(dividend, TMP);
__ Mfhi(TMP);
}
if (imm > 0 && magic < 0) {
__ Addu(TMP, TMP, dividend);
} else if (imm < 0 && magic > 0) {
__ Subu(TMP, TMP, dividend);
}
if (shift != 0) {
__ Sra(TMP, TMP, shift);
}
if (instruction->IsDiv()) {
__ Sra(out, TMP, 31);
__ Subu(out, TMP, out);
} else {
__ Sra(AT, TMP, 31);
__ Subu(AT, TMP, AT);
__ LoadConst32(TMP, imm);
if (isR6) {
__ MulR6(TMP, AT, TMP);
} else {
__ MulR2(TMP, AT, TMP);
}
__ Subu(out, dividend, TMP);
}
}
void InstructionCodeGeneratorMIPS::GenerateDivRemIntegral(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Register out = locations->Out().AsRegister<Register>();
Location second = locations->InAt(1);
if (second.IsConstant()) {
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
if (imm == 0) {
// Do not generate anything. DivZeroCheck would prevent any code to be executed.
} else if (imm == 1 || imm == -1) {
DivRemOneOrMinusOne(instruction);
} else if (IsPowerOfTwo(std::abs(imm))) {
DivRemByPowerOfTwo(instruction);
} else {
DCHECK(imm <= -2 || imm >= 2);
GenerateDivRemWithAnyConstant(instruction);
}
} else {
Register dividend = locations->InAt(0).AsRegister<Register>();
Register divisor = second.AsRegister<Register>();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
if (instruction->IsDiv()) {
if (isR6) {
__ DivR6(out, dividend, divisor);
} else {
__ DivR2(out, dividend, divisor);
}
} else {
if (isR6) {
__ ModR6(out, dividend, divisor);
} else {
__ ModR2(out, dividend, divisor);
}
}
}
}
void LocationsBuilderMIPS::VisitDiv(HDiv* div) {
Primitive::Type type = div->GetResultType();
LocationSummary::CallKind call_kind = (type == Primitive::kPrimLong)
? LocationSummary::kCall
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
switch (type) {
case Primitive::kPrimInt:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
locations->SetOut(calling_convention.GetReturnLocation(type));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected div type " << type;
}
}
void InstructionCodeGeneratorMIPS::VisitDiv(HDiv* instruction) {
Primitive::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case Primitive::kPrimInt:
GenerateDivRemIntegral(instruction);
break;
case Primitive::kPrimLong: {
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv),
instruction,
instruction->GetDexPc(),
nullptr,
IsDirectEntrypoint(kQuickLdiv));
CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ DivS(dst, lhs, rhs);
} else {
__ DivD(dst, lhs, rhs);
}
break;
}
default:
LOG(FATAL) << "Unexpected div type " << type;
}
}
void LocationsBuilderMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
Location value = instruction->GetLocations()->InAt(0);
Primitive::Type type = instruction->GetType();
switch (type) {
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt: {
if (value.IsConstant()) {
if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
__ B(slow_path->GetEntryLabel());
} else {
// A division by a non-null constant is valid. We don't need to perform
// any check, so simply fall through.
}
} else {
DCHECK(value.IsRegister()) << value;
__ Beqz(value.AsRegister<Register>(), slow_path->GetEntryLabel());
}
break;
}
case Primitive::kPrimLong: {
if (value.IsConstant()) {
if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
__ B(slow_path->GetEntryLabel());
} else {
// A division by a non-null constant is valid. We don't need to perform
// any check, so simply fall through.
}
} else {
DCHECK(value.IsRegisterPair()) << value;
__ Or(TMP, value.AsRegisterPairHigh<Register>(), value.AsRegisterPairLow<Register>());
__ Beqz(TMP, slow_path->GetEntryLabel());
}
break;
}
default:
LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
}
}
void LocationsBuilderMIPS::VisitDoubleConstant(HDoubleConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitDoubleConstant(HDoubleConstant* cst ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitExit(HExit* exit) {
exit->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
}
void LocationsBuilderMIPS::VisitFloatConstant(HFloatConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitGoto(HGoto* got) {
got->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::HandleGoto(HInstruction* got, HBasicBlock* successor) {
DCHECK(!successor->IsExitBlock());
HBasicBlock* block = got->GetBlock();
HInstruction* previous = got->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return;
}
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
}
if (!codegen_->GoesToNextBlock(block, successor)) {
__ B(codegen_->GetLabelOf(successor));
}
}
void InstructionCodeGeneratorMIPS::VisitGoto(HGoto* got) {
HandleGoto(got, got->GetSuccessor());
}
void LocationsBuilderMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
try_boundary->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
if (!successor->IsExitBlock()) {
HandleGoto(try_boundary, successor);
}
}
void InstructionCodeGeneratorMIPS::GenerateIntCompare(IfCondition cond,
LocationSummary* locations) {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_reg = ZERO;
int64_t rhs_imm = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
} else {
rhs_reg = rhs_location.AsRegister<Register>();
}
switch (cond) {
case kCondEQ:
case kCondNE:
if (use_imm && IsUint<16>(rhs_imm)) {
__ Xori(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Xor(dst, lhs, rhs_reg);
}
if (cond == kCondEQ) {
__ Sltiu(dst, dst, 1);
} else {
__ Sltu(dst, ZERO, dst);
}
break;
case kCondLT:
case kCondGE:
if (use_imm && IsInt<16>(rhs_imm)) {
__ Slti(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Slt(dst, lhs, rhs_reg);
}
if (cond == kCondGE) {
// Simulate lhs >= rhs via !(lhs < rhs) since there's
// only the slt instruction but no sge.
__ Xori(dst, dst, 1);
}
break;
case kCondLE:
case kCondGT:
if (use_imm && IsInt<16>(rhs_imm + 1)) {
// Simulate lhs <= rhs via lhs < rhs + 1.
__ Slti(dst, lhs, rhs_imm + 1);
if (cond == kCondGT) {
// Simulate lhs > rhs via !(lhs <= rhs) since there's
// only the slti instruction but no sgti.
__ Xori(dst, dst, 1);
}
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Slt(dst, rhs_reg, lhs);
if (cond == kCondLE) {
// Simulate lhs <= rhs via !(rhs < lhs) since there's
// only the slt instruction but no sle.
__ Xori(dst, dst, 1);
}
}
break;
case kCondB:
case kCondAE:
if (use_imm && IsInt<16>(rhs_imm)) {
// Sltiu sign-extends its 16-bit immediate operand before
// the comparison and thus lets us compare directly with
// unsigned values in the ranges [0, 0x7fff] and
// [0xffff8000, 0xffffffff].
__ Sltiu(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Sltu(dst, lhs, rhs_reg);
}
if (cond == kCondAE) {
// Simulate lhs >= rhs via !(lhs < rhs) since there's
// only the sltu instruction but no sgeu.
__ Xori(dst, dst, 1);
}
break;
case kCondBE:
case kCondA:
if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
// Simulate lhs <= rhs via lhs < rhs + 1.
// Note that this only works if rhs + 1 does not overflow
// to 0, hence the check above.
// Sltiu sign-extends its 16-bit immediate operand before
// the comparison and thus lets us compare directly with
// unsigned values in the ranges [0, 0x7fff] and
// [0xffff8000, 0xffffffff].
__ Sltiu(dst, lhs, rhs_imm + 1);
if (cond == kCondA) {
// Simulate lhs > rhs via !(lhs <= rhs) since there's
// only the sltiu instruction but no sgtiu.
__ Xori(dst, dst, 1);
}
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Sltu(dst, rhs_reg, lhs);
if (cond == kCondBE) {
// Simulate lhs <= rhs via !(rhs < lhs) since there's
// only the sltu instruction but no sleu.
__ Xori(dst, dst, 1);
}
}
break;
}
}
void InstructionCodeGeneratorMIPS::GenerateIntCompareAndBranch(IfCondition cond,
LocationSummary* locations,
MipsLabel* label) {
Register lhs = locations->InAt(0).AsRegister<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_reg = ZERO;
int32_t rhs_imm = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
} else {
rhs_reg = rhs_location.AsRegister<Register>();
}
if (use_imm && rhs_imm == 0) {
switch (cond) {
case kCondEQ:
case kCondBE: // <= 0 if zero
__ Beqz(lhs, label);
break;
case kCondNE:
case kCondA: // > 0 if non-zero
__ Bnez(lhs, label);
break;
case kCondLT:
__ Bltz(lhs, label);
break;
case kCondGE:
__ Bgez(lhs, label);
break;
case kCondLE:
__ Blez(lhs, label);
break;
case kCondGT:
__ Bgtz(lhs, label);
break;
case kCondB: // always false
break;
case kCondAE: // always true
__ B(label);
break;
}
} else {
if (use_imm) {
// TODO: more efficient comparison with 16-bit constants without loading them into TMP.
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
switch (cond) {
case kCondEQ:
__ Beq(lhs, rhs_reg, label);
break;
case kCondNE:
__ Bne(lhs, rhs_reg, label);
break;
case kCondLT:
__ Blt(lhs, rhs_reg, label);
break;
case kCondGE:
__ Bge(lhs, rhs_reg, label);
break;
case kCondLE:
__ Bge(rhs_reg, lhs, label);
break;
case kCondGT:
__ Blt(rhs_reg, lhs, label);
break;
case kCondB:
__ Bltu(lhs, rhs_reg, label);
break;
case kCondAE:
__ Bgeu(lhs, rhs_reg, label);
break;
case kCondBE:
__ Bgeu(rhs_reg, lhs, label);
break;
case kCondA:
__ Bltu(rhs_reg, lhs, label);
break;
}
}
}
void InstructionCodeGeneratorMIPS::GenerateLongCompareAndBranch(IfCondition cond,
LocationSummary* locations,
MipsLabel* label) {
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_high = ZERO;
Register rhs_low = ZERO;
int64_t imm = 0;
uint32_t imm_high = 0;
uint32_t imm_low = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
imm = rhs_location.GetConstant()->AsLongConstant()->GetValue();
imm_high = High32Bits(imm);
imm_low = Low32Bits(imm);
} else {
rhs_high = rhs_location.AsRegisterPairHigh<Register>();
rhs_low = rhs_location.AsRegisterPairLow<Register>();
}
if (use_imm && imm == 0) {
switch (cond) {
case kCondEQ:
case kCondBE: // <= 0 if zero
__ Or(TMP, lhs_high, lhs_low);
__ Beqz(TMP, label);
break;
case kCondNE:
case kCondA: // > 0 if non-zero
__ Or(TMP, lhs_high, lhs_low);
__ Bnez(TMP, label);
break;
case kCondLT:
__ Bltz(lhs_high, label);
break;
case kCondGE:
__ Bgez(lhs_high, label);
break;
case kCondLE:
__ Or(TMP, lhs_high, lhs_low);
__ Sra(AT, lhs_high, 31);
__ Bgeu(AT, TMP, label);
break;
case kCondGT:
__ Or(TMP, lhs_high, lhs_low);
__ Sra(AT, lhs_high, 31);
__ Bltu(AT, TMP, label);
break;
case kCondB: // always false
break;
case kCondAE: // always true
__ B(label);
break;
}
} else if (use_imm) {
// TODO: more efficient comparison with constants without loading them into TMP/AT.
switch (cond) {
case kCondEQ:
__ LoadConst32(TMP, imm_high);
__ Xor(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Xor(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondNE:
__ LoadConst32(TMP, imm_high);
__ Xor(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Xor(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Bnez(TMP, label);
break;
case kCondLT:
__ LoadConst32(TMP, imm_high);
__ Blt(lhs_high, TMP, label);
__ Slt(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Blt(TMP, AT, label);
break;
case kCondGE:
__ LoadConst32(TMP, imm_high);
__ Blt(TMP, lhs_high, label);
__ Slt(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondLE:
__ LoadConst32(TMP, imm_high);
__ Blt(lhs_high, TMP, label);
__ Slt(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondGT:
__ LoadConst32(TMP, imm_high);
__ Blt(TMP, lhs_high, label);
__ Slt(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Blt(TMP, AT, label);
break;
case kCondB:
__ LoadConst32(TMP, imm_high);
__ Bltu(lhs_high, TMP, label);
__ Sltu(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Blt(TMP, AT, label);
break;
case kCondAE:
__ LoadConst32(TMP, imm_high);
__ Bltu(TMP, lhs_high, label);
__ Sltu(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondBE:
__ LoadConst32(TMP, imm_high);
__ Bltu(lhs_high, TMP, label);
__ Sltu(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondA:
__ LoadConst32(TMP, imm_high);
__ Bltu(TMP, lhs_high, label);
__ Sltu(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Blt(TMP, AT, label);
break;
}
} else {
switch (cond) {
case kCondEQ:
__ Xor(TMP, lhs_high, rhs_high);
__ Xor(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondNE:
__ Xor(TMP, lhs_high, rhs_high);
__ Xor(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Bnez(TMP, label);
break;
case kCondLT:
__ Blt(lhs_high, rhs_high, label);
__ Slt(TMP, rhs_high, lhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Blt(TMP, AT, label);
break;
case kCondGE:
__ Blt(rhs_high, lhs_high, label);
__ Slt(TMP, lhs_high, rhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondLE:
__ Blt(lhs_high, rhs_high, label);
__ Slt(TMP, rhs_high, lhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondGT:
__ Blt(rhs_high, lhs_high, label);
__ Slt(TMP, lhs_high, rhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Blt(TMP, AT, label);
break;
case kCondB:
__ Bltu(lhs_high, rhs_high, label);
__ Sltu(TMP, rhs_high, lhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Blt(TMP, AT, label);
break;
case kCondAE:
__ Bltu(rhs_high, lhs_high, label);
__ Sltu(TMP, lhs_high, rhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondBE:
__ Bltu(lhs_high, rhs_high, label);
__ Sltu(TMP, rhs_high, lhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondA:
__ Bltu(rhs_high, lhs_high, label);
__ Sltu(TMP, lhs_high, rhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Blt(TMP, AT, label);
break;
}
}
}
void InstructionCodeGeneratorMIPS::GenerateFpCompareAndBranch(IfCondition cond,
bool gt_bias,
Primitive::Type type,
LocationSummary* locations,
MipsLabel* label) {
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
if (type == Primitive::kPrimFloat) {
if (isR6) {
switch (cond) {
case kCondEQ:
__ CmpEqS(FTMP, lhs, rhs);
__ Bc1nez(FTMP, label);
break;
case kCondNE:
__ CmpEqS(FTMP, lhs, rhs);
__ Bc1eqz(FTMP, label);
break;
case kCondLT:
if (gt_bias) {
__ CmpLtS(FTMP, lhs, rhs);
} else {
__ CmpUltS(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondLE:
if (gt_bias) {
__ CmpLeS(FTMP, lhs, rhs);
} else {
__ CmpUleS(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGT:
if (gt_bias) {
__ CmpUltS(FTMP, rhs, lhs);
} else {
__ CmpLtS(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGE:
if (gt_bias) {
__ CmpUleS(FTMP, rhs, lhs);
} else {
__ CmpLeS(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
}
} else {
switch (cond) {
case kCondEQ:
__ CeqS(0, lhs, rhs);
__ Bc1t(0, label);
break;
case kCondNE:
__ CeqS(0, lhs, rhs);
__ Bc1f(0, label);
break;
case kCondLT:
if (gt_bias) {
__ ColtS(0, lhs, rhs);
} else {
__ CultS(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondLE:
if (gt_bias) {
__ ColeS(0, lhs, rhs);
} else {
__ CuleS(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondGT:
if (gt_bias) {
__ CultS(0, rhs, lhs);
} else {
__ ColtS(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
case kCondGE:
if (gt_bias) {
__ CuleS(0, rhs, lhs);
} else {
__ ColeS(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
}
}
} else {
DCHECK_EQ(type, Primitive::kPrimDouble);
if (isR6) {
switch (cond) {
case kCondEQ:
__ CmpEqD(FTMP, lhs, rhs);
__ Bc1nez(FTMP, label);
break;
case kCondNE:
__ CmpEqD(FTMP, lhs, rhs);
__ Bc1eqz(FTMP, label);
break;
case kCondLT:
if (gt_bias) {
__ CmpLtD(FTMP, lhs, rhs);
} else {
__ CmpUltD(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondLE:
if (gt_bias) {
__ CmpLeD(FTMP, lhs, rhs);
} else {
__ CmpUleD(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGT:
if (gt_bias) {
__ CmpUltD(FTMP, rhs, lhs);
} else {
__ CmpLtD(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGE:
if (gt_bias) {
__ CmpUleD(FTMP, rhs, lhs);
} else {
__ CmpLeD(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
}
} else {
switch (cond) {
case kCondEQ:
__ CeqD(0, lhs, rhs);
__ Bc1t(0, label);
break;
case kCondNE:
__ CeqD(0, lhs, rhs);
__ Bc1f(0, label);
break;
case kCondLT:
if (gt_bias) {
__ ColtD(0, lhs, rhs);
} else {
__ CultD(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondLE:
if (gt_bias) {
__ ColeD(0, lhs, rhs);
} else {
__ CuleD(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondGT:
if (gt_bias) {
__ CultD(0, rhs, lhs);
} else {
__ ColtD(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
case kCondGE:
if (gt_bias) {
__ CuleD(0, rhs, lhs);
} else {
__ ColeD(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
}
}
}
}
void InstructionCodeGeneratorMIPS::GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
MipsLabel* true_target,
MipsLabel* false_target) {
HInstruction* cond = instruction->InputAt(condition_input_index);
if (true_target == nullptr && false_target == nullptr) {
// Nothing to do. The code always falls through.
return;
} else if (cond->IsIntConstant()) {
// Constant condition, statically compared against 1.
if (cond->AsIntConstant()->IsOne()) {
if (true_target != nullptr) {
__ B(true_target);
}
} else {
DCHECK(cond->AsIntConstant()->IsZero());
if (false_target != nullptr) {
__ B(false_target);
}
}
return;
}
// The following code generates these patterns:
// (1) true_target == nullptr && false_target != nullptr
// - opposite condition true => branch to false_target
// (2) true_target != nullptr && false_target == nullptr
// - condition true => branch to true_target
// (3) true_target != nullptr && false_target != nullptr
// - condition true => branch to true_target
// - branch to false_target
if (IsBooleanValueOrMaterializedCondition(cond)) {
// The condition instruction has been materialized, compare the output to 0.
Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
DCHECK(cond_val.IsRegister());
if (true_target == nullptr) {
__ Beqz(cond_val.AsRegister<Register>(), false_target);
} else {
__ Bnez(cond_val.AsRegister<Register>(), true_target);
}
} else {
// The condition instruction has not been materialized, use its inputs as
// the comparison and its condition as the branch condition.
HCondition* condition = cond->AsCondition();
Primitive::Type type = condition->InputAt(0)->GetType();
LocationSummary* locations = cond->GetLocations();
IfCondition if_cond = condition->GetCondition();
MipsLabel* branch_target = true_target;
if (true_target == nullptr) {
if_cond = condition->GetOppositeCondition();
branch_target = false_target;
}
switch (type) {
default:
GenerateIntCompareAndBranch(if_cond, locations, branch_target);
break;
case Primitive::kPrimLong:
GenerateLongCompareAndBranch(if_cond, locations, branch_target);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
GenerateFpCompareAndBranch(if_cond, condition->IsGtBias(), type, locations, branch_target);
break;
}
}
// If neither branch falls through (case 3), the conditional branch to `true_target`
// was already emitted (case 2) and we need to emit a jump to `false_target`.
if (true_target != nullptr && false_target != nullptr) {
__ B(false_target);
}
}
void LocationsBuilderMIPS::VisitIf(HIf* if_instr) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorMIPS::VisitIf(HIf* if_instr) {
HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
MipsLabel* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
nullptr : codegen_->GetLabelOf(true_successor);
MipsLabel* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
nullptr : codegen_->GetLabelOf(false_successor);
GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
}
void LocationsBuilderMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
LocationSummary* locations = new (GetGraph()->GetArena())
LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) DeoptimizationSlowPathMIPS(deoptimize);
codegen_->AddSlowPath(slow_path);
GenerateTestAndBranch(deoptimize,
/* condition_input_index */ 0,
slow_path->GetEntryLabel(),
/* false_target */ nullptr);
}
void LocationsBuilderMIPS::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
Primitive::Type field_type = field_info.GetFieldType();
bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble);
bool generate_volatile = field_info.IsVolatile() && is_wide;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction, generate_volatile ? LocationSummary::kCall : LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
if (generate_volatile) {
InvokeRuntimeCallingConvention calling_convention;
// need A0 to hold base + offset
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
if (field_type == Primitive::kPrimLong) {
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimLong));
} else {
locations->SetOut(Location::RequiresFpuRegister());
// Need some temp core regs since FP results are returned in core registers
Location reg = calling_convention.GetReturnLocation(Primitive::kPrimLong);
locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairLow<Register>()));
locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairHigh<Register>()));
}
} else {
if (Primitive::IsFloatingPointType(instruction->GetType())) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
}
void InstructionCodeGeneratorMIPS::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info,
uint32_t dex_pc) {
Primitive::Type type = field_info.GetFieldType();
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
LoadOperandType load_type = kLoadUnsignedByte;
bool is_volatile = field_info.IsVolatile();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
switch (type) {
case Primitive::kPrimBoolean:
load_type = kLoadUnsignedByte;
break;
case Primitive::kPrimByte:
load_type = kLoadSignedByte;
break;
case Primitive::kPrimShort:
load_type = kLoadSignedHalfword;
break;
case Primitive::kPrimChar:
load_type = kLoadUnsignedHalfword;
break;
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
case Primitive::kPrimNot:
load_type = kLoadWord;
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
load_type = kLoadDoubleword;
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
if (is_volatile && load_type == kLoadDoubleword) {
InvokeRuntimeCallingConvention calling_convention;
__ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
// Do implicit Null check
__ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0);
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pA64Load),
instruction,
dex_pc,
nullptr,
IsDirectEntrypoint(kQuickA64Load));
CheckEntrypointTypes<kQuickA64Load, int64_t, volatile const int64_t*>();
if (type == Primitive::kPrimDouble) {
// Need to move to FP regs since FP results are returned in core registers.
__ Mtc1(locations->GetTemp(1).AsRegister<Register>(),
locations->Out().AsFpuRegister<FRegister>());
__ Mthc1(locations->GetTemp(2).AsRegister<Register>(),
locations->Out().AsFpuRegister<FRegister>());
}
} else {
if (!Primitive::IsFloatingPointType(type)) {
Register dst;
if (type == Primitive::kPrimLong) {
DCHECK(locations->Out().IsRegisterPair());
dst = locations->Out().AsRegisterPairLow<Register>();
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
if (obj == dst) {
__ LoadFromOffset(kLoadWord, dst_high, obj, offset + kMipsWordSize);
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ LoadFromOffset(kLoadWord, dst, obj, offset);
} else {
__ LoadFromOffset(kLoadWord, dst, obj, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ LoadFromOffset(kLoadWord, dst_high, obj, offset + kMipsWordSize);
}
} else {
DCHECK(locations->Out().IsRegister());
dst = locations->Out().AsRegister<Register>();
__ LoadFromOffset(load_type, dst, obj, offset);
}
} else {
DCHECK(locations->Out().IsFpuRegister());
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ LoadSFromOffset(dst, obj, offset);
} else {
__ LoadDFromOffset(dst, obj, offset);
}
}
// Longs are handled earlier.
if (type != Primitive::kPrimLong) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
}
void LocationsBuilderMIPS::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
Primitive::Type field_type = field_info.GetFieldType();
bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble);
bool generate_volatile = field_info.IsVolatile() && is_wide;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction, generate_volatile ? LocationSummary::kCall : LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
if (generate_volatile) {
InvokeRuntimeCallingConvention calling_convention;
// need A0 to hold base + offset
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
if (field_type == Primitive::kPrimLong) {
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
} else {
locations->SetInAt(1, Location::RequiresFpuRegister());
// Pass FP parameters in core registers.
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
}
} else {
if (Primitive::IsFloatingPointType(field_type)) {
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::RequiresRegister());
}
}
}
void InstructionCodeGeneratorMIPS::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
uint32_t dex_pc) {
Primitive::Type type = field_info.GetFieldType();
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
StoreOperandType store_type = kStoreByte;
bool is_volatile = field_info.IsVolatile();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
store_type = kStoreByte;
break;
case Primitive::kPrimShort:
case Primitive::kPrimChar:
store_type = kStoreHalfword;
break;
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
case Primitive::kPrimNot:
store_type = kStoreWord;
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
store_type = kStoreDoubleword;
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
}
if (is_volatile && store_type == kStoreDoubleword) {
InvokeRuntimeCallingConvention calling_convention;
__ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
// Do implicit Null check.
__ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0);
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
if (type == Primitive::kPrimDouble) {
// Pass FP parameters in core registers.
__ Mfc1(locations->GetTemp(1).AsRegister<Register>(),
locations->InAt(1).AsFpuRegister<FRegister>());
__ Mfhc1(locations->GetTemp(2).AsRegister<Register>(),
locations->InAt(1).AsFpuRegister<FRegister>());
}
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pA64Store),
instruction,
dex_pc,
nullptr,
IsDirectEntrypoint(kQuickA64Store));
CheckEntrypointTypes<kQuickA64Store, void, volatile int64_t *, int64_t>();
} else {
if (!Primitive::IsFloatingPointType(type)) {
Register src;
if (type == Primitive::kPrimLong) {
DCHECK(locations->InAt(1).IsRegisterPair());
src = locations->InAt(1).AsRegisterPairLow<Register>();
Register src_high = locations->InAt(1).AsRegisterPairHigh<Register>();
__ StoreToOffset(kStoreWord, src, obj, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ StoreToOffset(kStoreWord, src_high, obj, offset + kMipsWordSize);
} else {
DCHECK(locations->InAt(1).IsRegister());
src = locations->InAt(1).AsRegister<Register>();
__ StoreToOffset(store_type, src, obj, offset);
}
} else {
DCHECK(locations->InAt(1).IsFpuRegister());
FRegister src = locations->InAt(1).AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ StoreSToOffset(src, obj, offset);
} else {
__ StoreDToOffset(src, obj, offset);
}
}
// Longs are handled earlier.
if (type != Primitive::kPrimLong) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
// TODO: memory barriers?
if (CodeGenerator::StoreNeedsWriteBarrier(type, instruction->InputAt(1))) {
DCHECK(locations->InAt(1).IsRegister());
Register src = locations->InAt(1).AsRegister<Register>();
codegen_->MarkGCCard(obj, src);
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
}
void LocationsBuilderMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
}
void LocationsBuilderMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
}
void LocationsBuilderMIPS::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary::CallKind call_kind =
instruction->IsExactCheck() ? LocationSummary::kNoCall : LocationSummary::kCallOnSlowPath;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// The output does overlap inputs.
// Note that TypeCheckSlowPathMIPS uses this register too.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Register cls = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
MipsLabel done;
// Return 0 if `obj` is null.
// TODO: Avoid this check if we know `obj` is not null.
__ Move(out, ZERO);
__ Beqz(obj, &done);
// Compare the class of `obj` with `cls`.
__ LoadFromOffset(kLoadWord, out, obj, mirror::Object::ClassOffset().Int32Value());
if (instruction->IsExactCheck()) {
// Classes must be equal for the instanceof to succeed.
__ Xor(out, out, cls);
__ Sltiu(out, out, 1);
} else {
// If the classes are not equal, we go into a slow path.
DCHECK(locations->OnlyCallsOnSlowPath());
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
__ Bne(out, cls, slow_path->GetEntryLabel());
__ LoadConst32(out, 1);
__ Bind(slow_path->GetExitLabel());
}
__ Bind(&done);
}
void LocationsBuilderMIPS::VisitIntConstant(HIntConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitNullConstant(HNullConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::HandleInvoke(HInvoke* invoke) {
InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
}
void LocationsBuilderMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
HandleInvoke(invoke);
// The register T0 is required to be used for the hidden argument in
// art_quick_imt_conflict_trampoline, so add the hidden argument.
invoke->GetLocations()->AddTemp(Location::RegisterLocation(T0));
}
void InstructionCodeGeneratorMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
uint32_t method_offset = mirror::Class::EmbeddedImTableEntryOffset(
invoke->GetImtIndex() % mirror::Class::kImtSize, kMipsPointerSize).Uint32Value();
Location receiver = invoke->GetLocations()->InAt(0);
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsWordSize);
// Set the hidden argument.
__ LoadConst32(invoke->GetLocations()->GetTemp(1).AsRegister<Register>(),
invoke->GetDexMethodIndex());
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
__ LoadFromOffset(kLoadWord, temp, temp, class_offset);
} else {
__ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// temp = temp->GetImtEntryAt(method_offset);
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
// T9 = temp->GetEntryPoint();
__ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
// T9();
__ Jalr(T9);
__ Nop();
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
void LocationsBuilderMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// When we do not run baseline, explicit clinit checks triggered by static
// invokes must have been pruned by art::PrepareForRegisterAllocation.
DCHECK(codegen_->IsBaseline() || !invoke->IsStaticWithExplicitClinitCheck());
IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
if (invoke->GetLocations()->Intrinsified()) {
IntrinsicCodeGeneratorMIPS intrinsic(codegen);
intrinsic.Dispatch(invoke);
return true;
}
return false;
}
HInvokeStaticOrDirect::DispatchInfo CodeGeneratorMIPS::GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
MethodReference target_method ATTRIBUTE_UNUSED) {
switch (desired_dispatch_info.method_load_kind) {
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative:
// TODO: Implement these types. For the moment, we fall back to kDexCacheViaMethod.
return HInvokeStaticOrDirect::DispatchInfo {
HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod,
HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
0u,
0u
};
default:
break;
}
switch (desired_dispatch_info.code_ptr_location) {
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative:
// TODO: Implement these types. For the moment, we fall back to kCallArtMethod.
return HInvokeStaticOrDirect::DispatchInfo {
desired_dispatch_info.method_load_kind,
HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
desired_dispatch_info.method_load_data,
0u
};
default:
return desired_dispatch_info;
}
}
void CodeGeneratorMIPS::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
// All registers are assumed to be correctly set up per the calling convention.
Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
switch (invoke->GetMethodLoadKind()) {
case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
// temp = thread->string_init_entrypoint
__ LoadFromOffset(kLoadWord,
temp.AsRegister<Register>(),
TR,
invoke->GetStringInitOffset());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
__ LoadConst32(temp.AsRegister<Register>(), invoke->GetMethodAddress());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative:
// TODO: Implement these types.
// Currently filtered out by GetSupportedInvokeStaticOrDirectDispatch().
LOG(FATAL) << "Unsupported";
UNREACHABLE();
case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
Register reg = temp.AsRegister<Register>();
Register method_reg;
if (current_method.IsRegister()) {
method_reg = current_method.AsRegister<Register>();
} else {
// TODO: use the appropriate DCHECK() here if possible.
// DCHECK(invoke->GetLocations()->Intrinsified());
DCHECK(!current_method.IsValid());
method_reg = reg;
__ Lw(reg, SP, kCurrentMethodStackOffset);
}
// temp = temp->dex_cache_resolved_methods_;
__ LoadFromOffset(kLoadWord,
reg,
method_reg,
ArtMethod::DexCacheResolvedMethodsOffset(kMipsPointerSize).Int32Value());
// temp = temp[index_in_cache]
uint32_t index_in_cache = invoke->GetTargetMethod().dex_method_index;
__ LoadFromOffset(kLoadWord,
reg,
reg,
CodeGenerator::GetCachePointerOffset(index_in_cache));
break;
}
}
switch (invoke->GetCodePtrLocation()) {
case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
__ Jalr(&frame_entry_label_, T9);
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
// LR = invoke->GetDirectCodePtr();
__ LoadConst32(T9, invoke->GetDirectCodePtr());
// LR()
__ Jalr(T9);
__ Nop();
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative:
// TODO: Implement these types.
// Currently filtered out by GetSupportedInvokeStaticOrDirectDispatch().
LOG(FATAL) << "Unsupported";
UNREACHABLE();
case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
// T9 = callee_method->entry_point_from_quick_compiled_code_;
__ LoadFromOffset(kLoadWord,
T9,
callee_method.AsRegister<Register>(),
ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kMipsWordSize).Int32Value());
// T9()
__ Jalr(T9);
__ Nop();
break;
}
DCHECK(!IsLeafMethod());
}
void InstructionCodeGeneratorMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// When we do not run baseline, explicit clinit checks triggered by static
// invokes must have been pruned by art::PrepareForRegisterAllocation.
DCHECK(codegen_->IsBaseline() || !invoke->IsStaticWithExplicitClinitCheck());
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
LocationSummary* locations = invoke->GetLocations();
codegen_->GenerateStaticOrDirectCall(invoke,
locations->HasTemps()
? locations->GetTemp(0)
: Location::NoLocation());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void InstructionCodeGeneratorMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
LocationSummary* locations = invoke->GetLocations();
Location receiver = locations->InAt(0);
Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
invoke->GetVTableIndex(), kMipsPointerSize).SizeValue();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsWordSize);
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
__ LoadFromOffset(kLoadWord, temp, temp, class_offset);
} else {
DCHECK(receiver.IsRegister());
__ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// temp = temp->GetMethodAt(method_offset);
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
// T9 = temp->GetEntryPoint();
__ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
// T9();
__ Jalr(T9);
__ Nop();
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderMIPS::VisitLoadClass(HLoadClass* cls) {
InvokeRuntimeCallingConvention calling_convention;
CodeGenerator::CreateLoadClassLocationSummary(
cls,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Location::RegisterLocation(V0));
}
void InstructionCodeGeneratorMIPS::VisitLoadClass(HLoadClass* cls) {
LocationSummary* locations = cls->GetLocations();
if (cls->NeedsAccessCheck()) {
codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex());
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
cls,
cls->GetDexPc(),
nullptr,
IsDirectEntrypoint(kQuickInitializeTypeAndVerifyAccess));
CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
return;
}
Register out = locations->Out().AsRegister<Register>();
Register current_method = locations->InAt(0).AsRegister<Register>();
if (cls->IsReferrersClass()) {
DCHECK(!cls->CanCallRuntime());
DCHECK(!cls->MustGenerateClinitCheck());
__ LoadFromOffset(kLoadWord, out, current_method,
ArtMethod::DeclaringClassOffset().Int32Value());
} else {
__ LoadFromOffset(kLoadWord, out, current_method,
ArtMethod::DexCacheResolvedTypesOffset(kMipsPointerSize).Int32Value());
__ LoadFromOffset(kLoadWord, out, out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex()));
if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
DCHECK(cls->CanCallRuntime());
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS(
cls,
cls,
cls->GetDexPc(),
cls->MustGenerateClinitCheck());
codegen_->AddSlowPath(slow_path);
if (!cls->IsInDexCache()) {
__ Beqz(out, slow_path->GetEntryLabel());
}
if (cls->MustGenerateClinitCheck()) {
GenerateClassInitializationCheck(slow_path, out);
} else {
__ Bind(slow_path->GetExitLabel());
}
}
}
}
static int32_t GetExceptionTlsOffset() {
return Thread::ExceptionOffset<kMipsWordSize>().Int32Value();
}
void LocationsBuilderMIPS::VisitLoadException(HLoadException* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitLoadException(HLoadException* load) {
Register out = load->GetLocations()->Out().AsRegister<Register>();
__ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
}
void LocationsBuilderMIPS::VisitClearException(HClearException* clear) {
new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
}
void InstructionCodeGeneratorMIPS::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
__ StoreToOffset(kStoreWord, ZERO, TR, GetExceptionTlsOffset());
}
void LocationsBuilderMIPS::VisitLoadLocal(HLoadLocal* load) {
load->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitLoadLocal(HLoadLocal* load ATTRIBUTE_UNUSED) {
// Nothing to do, this is driven by the code generator.
}
void LocationsBuilderMIPS::VisitLoadString(HLoadString* load) {
LocationSummary::CallKind call_kind = load->IsInDexCache()
? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitLoadString(HLoadString* load) {
LocationSummary* locations = load->GetLocations();
Register out = locations->Out().AsRegister<Register>();
Register current_method = locations->InAt(0).AsRegister<Register>();
__ LoadFromOffset(kLoadWord, out, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
__ LoadFromOffset(kLoadWord, out, out, mirror::Class::DexCacheStringsOffset().Int32Value());
__ LoadFromOffset(kLoadWord, out, out, CodeGenerator::GetCacheOffset(load->GetStringIndex()));
if (!load->IsInDexCache()) {
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathMIPS(load);
codegen_->AddSlowPath(slow_path);
__ Beqz(out, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
}
void LocationsBuilderMIPS::VisitLocal(HLocal* local) {
local->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitLocal(HLocal* local) {
DCHECK_EQ(local->GetBlock(), GetGraph()->GetEntryBlock());
}
void LocationsBuilderMIPS::VisitLongConstant(HLongConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
if (instruction->IsEnter()) {
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLockObject),
instruction,
instruction->GetDexPc(),
nullptr,
IsDirectEntrypoint(kQuickLockObject));
CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
} else {
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pUnlockObject),
instruction,
instruction->GetDexPc(),
nullptr,
IsDirectEntrypoint(kQuickUnlockObject));
}
CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
}
void LocationsBuilderMIPS::VisitMul(HMul* mul) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
switch (mul->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorMIPS::VisitMul(HMul* instruction) {
Primitive::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
switch (type) {
case Primitive::kPrimInt: {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
Register rhs = locations->InAt(1).AsRegister<Register>();
if (isR6) {
__ MulR6(dst, lhs, rhs);
} else {
__ MulR2(dst, lhs, rhs);
}
break;
}
case Primitive::kPrimLong: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
// Extra checks to protect caused by the existance of A1_A2.
// The algorithm is wrong if dst_high is either lhs_lo or rhs_lo:
// (e.g. lhs=a0_a1, rhs=a2_a3 and dst=a1_a2).
DCHECK_NE(dst_high, lhs_low);
DCHECK_NE(dst_high, rhs_low);
// A_B * C_D
// dst_hi: [ low(A*D) + low(B*C) + hi(B*D) ]
// dst_lo: [ low(B*D) ]
// Note: R2 and R6 MUL produce the low 32 bit of the multiplication result.
if (isR6) {
__ MulR6(TMP, lhs_high, rhs_low);
__ MulR6(dst_high, lhs_low, rhs_high);
__ Addu(dst_high, dst_high, TMP);
__ MuhuR6(TMP, lhs_low, rhs_low);
__ Addu(dst_high, dst_high, TMP);
__ MulR6(dst_low, lhs_low, rhs_low);
} else {
__ MulR2(TMP, lhs_high, rhs_low);
__ MulR2(dst_high, lhs_low, rhs_high);
__ Addu(dst_high, dst_high, TMP);
__ MultuR2(lhs_low, rhs_low);
__ Mfhi(TMP);
__ Addu(dst_high, dst_high, TMP);
__ Mflo(dst_low);
}
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ MulS(dst, lhs, rhs);
} else {
__ MulD(dst, lhs, rhs);
}
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << type;
}
}
void LocationsBuilderMIPS::VisitNeg(HNeg* neg) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void InstructionCodeGeneratorMIPS::VisitNeg(HNeg* instruction) {
Primitive::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case Primitive::kPrimInt: {
Register dst = locations->Out().AsRegister<Register>();
Register src = locations->InAt(0).AsRegister<Register>();
__ Subu(dst, ZERO, src);
break;
}
case Primitive::kPrimLong: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
__ Subu(dst_low, ZERO, src_low);
__ Sltu(TMP, ZERO, dst_low);
__ Subu(dst_high, ZERO, src_high);
__ Subu(dst_high, dst_high, TMP);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ NegS(dst, src);
} else {
__ NegD(dst, src);
}
break;
}
default:
LOG(FATAL) << "Unexpected neg type " << type;
}
}
void LocationsBuilderMIPS::VisitNewArray(HNewArray* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
}
void InstructionCodeGeneratorMIPS::VisitNewArray(HNewArray* instruction) {
InvokeRuntimeCallingConvention calling_convention;
Register current_method_register = calling_convention.GetRegisterAt(2);
__ Lw(current_method_register, SP, kCurrentMethodStackOffset);
// Move an uint16_t value to a register.
__ LoadConst32(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex());
codegen_->InvokeRuntime(
GetThreadOffset<kMipsWordSize>(instruction->GetEntrypoint()).Int32Value(),
instruction,
instruction->GetDexPc(),
nullptr,
IsDirectEntrypoint(kQuickAllocArrayWithAccessCheck));
CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck,
void*, uint32_t, int32_t, ArtMethod*>();
}
void LocationsBuilderMIPS::VisitNewInstance(HNewInstance* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
}
void InstructionCodeGeneratorMIPS::VisitNewInstance(HNewInstance* instruction) {
codegen_->InvokeRuntime(
GetThreadOffset<kMipsWordSize>(instruction->GetEntrypoint()).Int32Value(),
instruction,
instruction->GetDexPc(),
nullptr,
IsDirectEntrypoint(kQuickAllocObjectWithAccessCheck));
CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
}
void LocationsBuilderMIPS::VisitNot(HNot* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitNot(HNot* instruction) {
Primitive::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case Primitive::kPrimInt: {
Register dst = locations->Out().AsRegister<Register>();
Register src = locations->InAt(0).AsRegister<Register>();
__ Nor(dst, src, ZERO);
break;
}
case Primitive::kPrimLong: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
__ Nor(dst_high, src_high, ZERO);
__ Nor(dst_low, src_low, ZERO);
break;
}
default:
LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
}
}
void LocationsBuilderMIPS::VisitBooleanNot(HBooleanNot* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitBooleanNot(HBooleanNot* instruction) {
LocationSummary* locations = instruction->GetLocations();
__ Xori(locations->Out().AsRegister<Register>(),
locations->InAt(0).AsRegister<Register>(),
1);
}
void LocationsBuilderMIPS::VisitNullCheck(HNullCheck* instruction) {
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorMIPS::GenerateImplicitNullCheck(HNullCheck* instruction) {
if (codegen_->CanMoveNullCheckToUser(instruction)) {
return;
}
Location obj = instruction->GetLocations()->InAt(0);
__ Lw(ZERO, obj.AsRegister<Register>(), 0);
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
void InstructionCodeGeneratorMIPS::GenerateExplicitNullCheck(HNullCheck* instruction) {
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
Location obj = instruction->GetLocations()->InAt(0);
__ Beqz(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
}
void InstructionCodeGeneratorMIPS::VisitNullCheck(HNullCheck* instruction) {
if (codegen_->IsImplicitNullCheckAllowed(instruction)) {
GenerateImplicitNullCheck(instruction);
} else {
GenerateExplicitNullCheck(instruction);
}
}
void LocationsBuilderMIPS::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorMIPS::VisitParallelMove(HParallelMove* instruction) {
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}
void LocationsBuilderMIPS::VisitParameterValue(HParameterValue* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
if (location.IsStackSlot()) {
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
} else if (location.IsDoubleStackSlot()) {
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
}
locations->SetOut(location);
}
void InstructionCodeGeneratorMIPS::VisitParameterValue(HParameterValue* instruction
ATTRIBUTE_UNUSED) {
// Nothing to do, the parameter is already at its location.
}
void LocationsBuilderMIPS::VisitCurrentMethod(HCurrentMethod* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
}
void InstructionCodeGeneratorMIPS::VisitCurrentMethod(HCurrentMethod* instruction
ATTRIBUTE_UNUSED) {
// Nothing to do, the method is already at its location.
}
void LocationsBuilderMIPS::VisitPhi(HPhi* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
locations->SetInAt(i, Location::Any());
}
locations->SetOut(Location::Any());
}
void InstructionCodeGeneratorMIPS::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void LocationsBuilderMIPS::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
LocationSummary::CallKind call_kind =
(type == Primitive::kPrimInt) ? LocationSummary::kNoCall : LocationSummary::kCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
switch (type) {
case Primitive::kPrimInt:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
locations->SetOut(calling_convention.GetReturnLocation(type));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(type));
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void InstructionCodeGeneratorMIPS::VisitRem(HRem* instruction) {
Primitive::Type type = instruction->GetType();
switch (type) {
case Primitive::kPrimInt:
GenerateDivRemIntegral(instruction);
break;
case Primitive::kPrimLong: {
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod),
instruction,
instruction->GetDexPc(),
nullptr,
IsDirectEntrypoint(kQuickLmod));
CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
break;
}
case Primitive::kPrimFloat: {
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmodf),
instruction, instruction->GetDexPc(),
nullptr,
IsDirectEntrypoint(kQuickFmodf));
CheckEntrypointTypes<kQuickFmodf, float, float, float>();
break;
}
case Primitive::kPrimDouble: {
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmod),
instruction, instruction->GetDexPc(),
nullptr,
IsDirectEntrypoint(kQuickFmod));
CheckEntrypointTypes<kQuickFmod, double, double, double>();
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void LocationsBuilderMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
memory_barrier->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
}
void LocationsBuilderMIPS::VisitReturn(HReturn* ret) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret);
Primitive::Type return_type = ret->InputAt(0)->GetType();
locations->SetInAt(0, MipsReturnLocation(return_type));
}
void InstructionCodeGeneratorMIPS::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderMIPS::VisitReturnVoid(HReturnVoid* ret) {
ret->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderMIPS::VisitRor(HRor* ror ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
void InstructionCodeGeneratorMIPS::VisitRor(HRor* ror ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
void LocationsBuilderMIPS::VisitShl(HShl* shl) {
HandleShift(shl);
}
void InstructionCodeGeneratorMIPS::VisitShl(HShl* shl) {
HandleShift(shl);
}
void LocationsBuilderMIPS::VisitShr(HShr* shr) {
HandleShift(shr);
}
void InstructionCodeGeneratorMIPS::VisitShr(HShr* shr) {
HandleShift(shr);
}
void LocationsBuilderMIPS::VisitStoreLocal(HStoreLocal* store) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(store);
Primitive::Type field_type = store->InputAt(1)->GetType();
switch (field_type) {
case Primitive::kPrimNot:
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
locations->SetInAt(1, Location::StackSlot(codegen_->GetStackSlot(store->GetLocal())));
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
locations->SetInAt(1, Location::DoubleStackSlot(codegen_->GetStackSlot(store->GetLocal())));
break;
default:
LOG(FATAL) << "Unimplemented local type " << field_type;
}
}
void InstructionCodeGeneratorMIPS::VisitStoreLocal(HStoreLocal* store ATTRIBUTE_UNUSED) {
}
void LocationsBuilderMIPS::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
}
void LocationsBuilderMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
}
void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
}
void InstructionCodeGeneratorMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (block->GetLoopInformation() != nullptr) {
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
// The back edge will generate the suspend check.
return;
}
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
// The goto will generate the suspend check.
return;
}
GenerateSuspendCheck(instruction, nullptr);
}
void LocationsBuilderMIPS::VisitTemporary(HTemporary* temp) {
temp->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitTemporary(HTemporary* temp ATTRIBUTE_UNUSED) {
// Nothing to do, this is driven by the code generator.
}
void LocationsBuilderMIPS::VisitThrow(HThrow* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorMIPS::VisitThrow(HThrow* instruction) {
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pDeliverException),
instruction,
instruction->GetDexPc(),
nullptr,
IsDirectEntrypoint(kQuickDeliverException));
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
}
void LocationsBuilderMIPS::VisitTypeConversion(HTypeConversion* conversion) {
Primitive::Type input_type = conversion->GetInputType();
Primitive::Type result_type = conversion->GetResultType();
DCHECK_NE(input_type, result_type);
if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) ||
(result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) {
LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
}
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
if ((Primitive::IsFloatingPointType(result_type) && input_type == Primitive::kPrimLong) ||
(Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type))) {
call_kind = LocationSummary::kCall;
}
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
if (call_kind == LocationSummary::kNoCall) {
if (Primitive::IsFloatingPointType(input_type)) {
locations->SetInAt(0, Location::RequiresFpuRegister());
} else {
locations->SetInAt(0, Location::RequiresRegister());
}
if (Primitive::IsFloatingPointType(result_type)) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
} else {
InvokeRuntimeCallingConvention calling_convention;
if (Primitive::IsFloatingPointType(input_type)) {
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
} else {
DCHECK_EQ(input_type, Primitive::kPrimLong);
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
}
locations->SetOut(calling_convention.GetReturnLocation(result_type));
}
}
void InstructionCodeGeneratorMIPS::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations = conversion->GetLocations();
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
bool has_sign_extension = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
DCHECK_NE(input_type, result_type);
if (result_type == Primitive::kPrimLong && Primitive::IsIntegralType(input_type)) {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register src = locations->InAt(0).AsRegister<Register>();
__ Move(dst_low, src);
__ Sra(dst_high, src, 31);
} else if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) {
Register dst = locations->Out().AsRegister<Register>();
Register src = (input_type == Primitive::kPrimLong)
? locations->InAt(0).AsRegisterPairLow<Register>()
: locations->InAt(0).AsRegister<Register>();
switch (result_type) {
case Primitive::kPrimChar:
__ Andi(dst, src, 0xFFFF);
break;
case Primitive::kPrimByte:
if (has_sign_extension) {
__ Seb(dst, src);
} else {
__ Sll(dst, src, 24);
__ Sra(dst, dst, 24);
}
break;
case Primitive::kPrimShort:
if (has_sign_extension) {
__ Seh(dst, src);
} else {
__ Sll(dst, src, 16);
__ Sra(dst, dst, 16);
}
break;
case Primitive::kPrimInt:
__ Move(dst, src);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
} else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) {
if (input_type != Primitive::kPrimLong) {
Register src = locations->InAt(0).AsRegister<Register>();
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
__ Mtc1(src, FTMP);
if (result_type == Primitive::kPrimFloat) {
__ Cvtsw(dst, FTMP);
} else {
__ Cvtdw(dst, FTMP);
}
} else {
int32_t entry_offset = (result_type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pL2f)
: QUICK_ENTRY_POINT(pL2d);
bool direct = (result_type == Primitive::kPrimFloat) ? IsDirectEntrypoint(kQuickL2f)
: IsDirectEntrypoint(kQuickL2d);
codegen_->InvokeRuntime(entry_offset,
conversion,
conversion->GetDexPc(),
nullptr,
direct);
if (result_type == Primitive::kPrimFloat) {
CheckEntrypointTypes<kQuickL2f, float, int64_t>();
} else {
CheckEntrypointTypes<kQuickL2d, double, int64_t>();
}
}
} else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) {
CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong);
int32_t entry_offset;
bool direct;
if (result_type != Primitive::kPrimLong) {
entry_offset = (input_type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pF2iz)
: QUICK_ENTRY_POINT(pD2iz);
direct = (result_type == Primitive::kPrimFloat) ? IsDirectEntrypoint(kQuickF2iz)
: IsDirectEntrypoint(kQuickD2iz);
} else {
entry_offset = (input_type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pF2l)
: QUICK_ENTRY_POINT(pD2l);
direct = (result_type == Primitive::kPrimFloat) ? IsDirectEntrypoint(kQuickF2l)
: IsDirectEntrypoint(kQuickD2l);
}
codegen_->InvokeRuntime(entry_offset,
conversion,
conversion->GetDexPc(),
nullptr,
direct);
if (result_type != Primitive::kPrimLong) {
if (input_type == Primitive::kPrimFloat) {
CheckEntrypointTypes<kQuickF2iz, int32_t, float>();
} else {
CheckEntrypointTypes<kQuickD2iz, int32_t, double>();
}
} else {
if (input_type == Primitive::kPrimFloat) {
CheckEntrypointTypes<kQuickF2l, int64_t, float>();
} else {
CheckEntrypointTypes<kQuickD2l, int64_t, double>();
}
}
} else if (Primitive::IsFloatingPointType(result_type) &&
Primitive::IsFloatingPointType(input_type)) {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
if (result_type == Primitive::kPrimFloat) {
__ Cvtsd(dst, src);
} else {
__ Cvtds(dst, src);
}
} else {
LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
<< " to " << result_type;
}
}
void LocationsBuilderMIPS::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void InstructionCodeGeneratorMIPS::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void LocationsBuilderMIPS::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
void LocationsBuilderMIPS::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitFakeString(HFakeString* instruction) {
DCHECK(codegen_->IsBaseline());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(GetGraph()->GetNullConstant()));
}
void InstructionCodeGeneratorMIPS::VisitFakeString(HFakeString* instruction ATTRIBUTE_UNUSED) {
DCHECK(codegen_->IsBaseline());
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
int32_t lower_bound = switch_instr->GetStartValue();
int32_t num_entries = switch_instr->GetNumEntries();
LocationSummary* locations = switch_instr->GetLocations();
Register value_reg = locations->InAt(0).AsRegister<Register>();
HBasicBlock* default_block = switch_instr->GetDefaultBlock();
// Create a set of compare/jumps.
Register temp_reg = TMP;
__ Addiu32(temp_reg, value_reg, -lower_bound);
// Jump to default if index is negative
// Note: We don't check the case that index is positive while value < lower_bound, because in
// this case, index >= num_entries must be true. So that we can save one branch instruction.
__ Bltz(temp_reg, codegen_->GetLabelOf(default_block));
const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
// Jump to successors[0] if value == lower_bound.
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[0]));
int32_t last_index = 0;
for (; num_entries - last_index > 2; last_index += 2) {
__ Addiu(temp_reg, temp_reg, -2);
// Jump to successors[last_index + 1] if value < case_value[last_index + 2].
__ Bltz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
// Jump to successors[last_index + 2] if value == case_value[last_index + 2].
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 2]));
}
if (num_entries - last_index == 2) {
// The last missing case_value.
__ Addiu(temp_reg, temp_reg, -1);
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
}
// And the default for any other value.
if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
__ B(codegen_->GetLabelOf(default_block));
}
}
void LocationsBuilderMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
// The trampoline uses the same calling convention as dex calling conventions,
// except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
// the method_idx.
HandleInvoke(invoke);
}
void InstructionCodeGeneratorMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
}
#undef __
#undef QUICK_ENTRY_POINT
} // namespace mips
} // namespace art