blob: bbf60f346aa74212454e75d649a4d2568cfadc31 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_SRC_SPACE_BITMAP_H_
#define ART_SRC_SPACE_BITMAP_H_
#include <limits.h>
#include <stdint.h>
#include <vector>
#include "UniquePtr.h"
#include "globals.h"
#include "logging.h"
#include "mem_map.h"
#include "utils.h"
namespace art {
class Object;
class SpaceBitmap {
public:
static const size_t kAlignment = 8;
typedef void Callback(Object* obj, void* arg);
typedef void ScanCallback(Object* obj, void* finger, void* arg);
typedef void SweepCallback(size_t ptr_count, Object** ptrs, void* arg);
// Initialize a HeapBitmap so that it points to a bitmap large enough to cover a heap at
// heap_begin of heap_capacity bytes, where objects are guaranteed to be kAlignment-aligned.
static SpaceBitmap* Create(const std::string& name, byte* heap_begin, size_t heap_capacity);
~SpaceBitmap();
// <offset> is the difference from .base to a pointer address.
// <index> is the index of .bits that contains the bit representing
// <offset>.
static size_t OffsetToIndex(size_t offset) {
return offset / kAlignment / kBitsPerWord;
}
static uintptr_t IndexToOffset(size_t index) {
return static_cast<uintptr_t>(index * kAlignment * kBitsPerWord);
}
// Pack the bits in backwards so they come out in address order when using CLZ.
static word OffsetToMask(uintptr_t offset_) {
return static_cast<uintptr_t>(kWordHighBitMask) >> ((offset_ / kAlignment) % kBitsPerWord);
}
inline void Set(const Object* obj) {
Modify(obj, true);
}
inline void Clear(const Object* obj) {
Modify(obj, false);
}
void Clear();
inline bool Test(const Object* obj) const {
uintptr_t addr = reinterpret_cast<uintptr_t>(obj);
DCHECK(HasAddress(obj)) << obj;
DCHECK(bitmap_begin_ != NULL);
DCHECK_GE(addr, heap_begin_);
if (addr <= heap_end_) {
const uintptr_t offset = addr - heap_begin_;
return (bitmap_begin_[OffsetToIndex(offset)] & OffsetToMask(offset)) != 0;
} else {
return false;
}
}
bool HasAddress(const void* addr) const;
void VisitRange(uintptr_t base, uintptr_t max, Callback* visitor, void* arg) const;
class ClearVisitor {
public:
explicit ClearVisitor(SpaceBitmap* const bitmap)
: bitmap_(bitmap) {
}
void operator ()(Object* obj) const {
bitmap_->Clear(obj);
}
private:
SpaceBitmap* const bitmap_;
};
template <typename Visitor>
void VisitRange(uintptr_t visit_begin, uintptr_t visit_end, const Visitor& visitor) const {
for (; visit_begin < visit_end; visit_begin += kAlignment ) {
visitor(reinterpret_cast<Object*>(visit_begin));
}
}
template <typename Visitor>
void VisitMarkedRange(uintptr_t visit_begin, uintptr_t visit_end, const Visitor& visitor) const
EXCLUSIVE_LOCKS_REQUIRED(GlobalSynchronization::heap_bitmap_lock_) {
DCHECK_LT(visit_begin, visit_end);
const size_t bit_index_start = (visit_begin - heap_begin_) / kAlignment;
const size_t bit_index_end = (visit_end - heap_begin_ - 1) / kAlignment;
size_t word_start = bit_index_start / kBitsPerWord;
size_t word_end = bit_index_end / kBitsPerWord;
DCHECK_LT(word_end * kWordSize, Size());
// Trim off left_bits of left bits.
size_t edge_word = bitmap_begin_[word_start];
// Handle bits on the left first as a special case
size_t left_bits = bit_index_start & (kBitsPerWord - 1);
if (left_bits != 0) {
edge_word &= (1 << (kBitsPerWord - left_bits)) - 1;
}
// If word_start == word_end then handle this case at the same place we handle the right edge.
if (edge_word != 0 && word_start < word_end) {
uintptr_t ptr_base = IndexToOffset(word_start) + heap_begin_;
do {
const size_t shift = CLZ(edge_word);
Object* obj = reinterpret_cast<Object*>(ptr_base + shift * kAlignment);
visitor(obj);
edge_word ^= static_cast<size_t>(kWordHighBitMask) >> shift;
} while (edge_word != 0);
}
word_start++;
for (size_t i = word_start; i < word_end; i++) {
size_t w = bitmap_begin_[i];
if (w != 0) {
uintptr_t ptr_base = IndexToOffset(i) + heap_begin_;
do {
const size_t shift = CLZ(w);
Object* obj = reinterpret_cast<Object*>(ptr_base + shift * kAlignment);
visitor(obj);
w ^= static_cast<size_t>(kWordHighBitMask) >> shift;
} while (w != 0);
}
}
// Handle the right edge, and also the left edge if both edges are on the same word.
size_t right_bits = bit_index_end & (kBitsPerWord - 1);
// If word_start == word_end then we need to use the word which we removed the left bits.
if (word_start <= word_end) {
edge_word = bitmap_begin_[word_end];
}
// Bits that we trim off the right.
const size_t trim_bits = kBitsPerWord - 1 - right_bits;
edge_word &= ~((1 << trim_bits) - 1);
uintptr_t ptr_base = IndexToOffset(word_end) + heap_begin_;
while (edge_word != 0) {
const size_t shift = CLZ(edge_word);
Object* obj = reinterpret_cast<Object*>(ptr_base + shift * kAlignment);
visitor(obj);
edge_word ^= static_cast<size_t>(kWordHighBitMask) >> shift;
}
}
void Walk(Callback* callback, void* arg);
void InOrderWalk(Callback* callback, void* arg)
SHARED_LOCKS_REQUIRED(GlobalSynchronization::mutator_lock_);
void ScanWalk(uintptr_t base, uintptr_t max, ScanCallback* thunk, void* arg);
static void SweepWalk(const SpaceBitmap& live,
const SpaceBitmap& mark,
uintptr_t base, uintptr_t max,
SweepCallback* thunk, void* arg);
// Starting address of our internal storage.
word* Begin() {
return bitmap_begin_;
}
// Size of our internal storage
size_t Size() const {
return bitmap_size_;
}
// Size in bytes of the memory that the bitmaps spans.
size_t HeapSize() const {
return IndexToOffset(Size() / kWordSize);
}
uintptr_t HeapBegin() const {
return heap_begin_;
}
// The maximum address which the bitmap can span. (HeapBegin() <= object < HeapLimit()).
uintptr_t HeapLimit() const {
return HeapBegin() + static_cast<uintptr_t>(HeapSize());
}
// Set the max address which can covered by the bitmap.
void SetHeapLimit(uintptr_t new_end);
private:
// TODO: heap_end_ is initialized so that the heap bitmap is empty, this doesn't require the -1,
// however, we document that this is expected on heap_end_
SpaceBitmap(const std::string& name, MemMap* mem_map, word* bitmap_begin, size_t bitmap_size, const void* heap_begin)
: mem_map_(mem_map), bitmap_begin_(bitmap_begin), bitmap_size_(bitmap_size),
heap_begin_(reinterpret_cast<uintptr_t>(heap_begin)), heap_end_(heap_begin_ - 1),
name_(name) {}
inline void Modify(const Object* obj, bool do_set) {
uintptr_t addr = reinterpret_cast<uintptr_t>(obj);
DCHECK_GE(addr, heap_begin_);
const uintptr_t offset = addr - heap_begin_;
const size_t index = OffsetToIndex(offset);
const word mask = OffsetToMask(offset);
DCHECK_LT(index, bitmap_size_ / kWordSize) << " bitmap_size_ = " << bitmap_size_;
if (do_set) {
if (addr > heap_end_) {
heap_end_ = addr;
}
bitmap_begin_[index] |= mask;
} else {
bitmap_begin_[index] &= ~mask;
}
}
// Backing storage for bitmap.
UniquePtr<MemMap> mem_map_;
// This bitmap itself, word sized for efficiency in scanning.
word* const bitmap_begin_;
// Size of this bitmap.
size_t bitmap_size_;
// The base address of the heap, which corresponds to the word containing the first bit in the
// bitmap.
const uintptr_t heap_begin_;
// The highest pointer value ever returned by an allocation from
// this heap. I.e., the highest address that may correspond to a
// set bit. If there are no bits set, (heap_end_ < heap_begin_).
uintptr_t heap_end_;
// Name of this bitmap.
std::string name_;
};
} // namespace art
#endif // ART_SRC_SPACE_BITMAP_H_