blob: 5f27338e6bafca07fd622c19171e69cac394ec4f [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_arm.h"
#include <inttypes.h>
#include <string>
#include <sstream>
#include "backend_arm.h"
#include "base/logging.h"
#include "dex/mir_graph.h"
#include "dex/quick/mir_to_lir-inl.h"
namespace art {
#ifdef ARM_R4_SUSPEND_FLAG
static constexpr RegStorage core_regs_arr[] =
{rs_r0, rs_r1, rs_r2, rs_r3, rs_rARM_SUSPEND, rs_r5, rs_r6, rs_r7, rs_r8, rs_rARM_SELF,
rs_r10, rs_r11, rs_r12, rs_rARM_SP, rs_rARM_LR, rs_rARM_PC};
#else
static constexpr RegStorage core_regs_arr[] =
{rs_r0, rs_r1, rs_r2, rs_r3, rs_r4, rs_r5, rs_r6, rs_r7, rs_r8, rs_rARM_SELF,
rs_r10, rs_r11, rs_r12, rs_rARM_SP, rs_rARM_LR, rs_rARM_PC};
#endif
static constexpr RegStorage sp_regs_arr[] =
{rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, rs_fr8, rs_fr9, rs_fr10,
rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15, rs_fr16, rs_fr17, rs_fr18, rs_fr19, rs_fr20,
rs_fr21, rs_fr22, rs_fr23, rs_fr24, rs_fr25, rs_fr26, rs_fr27, rs_fr28, rs_fr29, rs_fr30,
rs_fr31};
static constexpr RegStorage dp_regs_arr[] =
{rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, rs_dr8, rs_dr9, rs_dr10,
rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15};
#ifdef ARM_R4_SUSPEND_FLAG
static constexpr RegStorage reserved_regs_arr[] =
{rs_rARM_SUSPEND, rs_rARM_SELF, rs_rARM_SP, rs_rARM_LR, rs_rARM_PC};
static constexpr RegStorage core_temps_arr[] = {rs_r0, rs_r1, rs_r2, rs_r3, rs_r12};
#else
static constexpr RegStorage reserved_regs_arr[] =
{rs_rARM_SELF, rs_rARM_SP, rs_rARM_LR, rs_rARM_PC};
static constexpr RegStorage core_temps_arr[] = {rs_r0, rs_r1, rs_r2, rs_r3, rs_r4, rs_r12};
#endif
static constexpr RegStorage sp_temps_arr[] =
{rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, rs_fr8, rs_fr9, rs_fr10,
rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15};
static constexpr RegStorage dp_temps_arr[] =
{rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7};
static constexpr ArrayRef<const RegStorage> empty_pool;
static constexpr ArrayRef<const RegStorage> core_regs(core_regs_arr);
static constexpr ArrayRef<const RegStorage> sp_regs(sp_regs_arr);
static constexpr ArrayRef<const RegStorage> dp_regs(dp_regs_arr);
static constexpr ArrayRef<const RegStorage> reserved_regs(reserved_regs_arr);
static constexpr ArrayRef<const RegStorage> core_temps(core_temps_arr);
static constexpr ArrayRef<const RegStorage> sp_temps(sp_temps_arr);
static constexpr ArrayRef<const RegStorage> dp_temps(dp_temps_arr);
RegLocation ArmMir2Lir::LocCReturn() {
return arm_loc_c_return;
}
RegLocation ArmMir2Lir::LocCReturnRef() {
return arm_loc_c_return;
}
RegLocation ArmMir2Lir::LocCReturnWide() {
return arm_loc_c_return_wide;
}
RegLocation ArmMir2Lir::LocCReturnFloat() {
return arm_loc_c_return_float;
}
RegLocation ArmMir2Lir::LocCReturnDouble() {
return arm_loc_c_return_double;
}
// Return a target-dependent special register.
RegStorage ArmMir2Lir::TargetReg(SpecialTargetRegister reg) {
RegStorage res_reg;
switch (reg) {
case kSelf: res_reg = rs_rARM_SELF; break;
#ifdef ARM_R4_SUSPEND_FLAG
case kSuspend: res_reg = rs_rARM_SUSPEND; break;
#else
case kSuspend: res_reg = RegStorage::InvalidReg(); break;
#endif
case kLr: res_reg = rs_rARM_LR; break;
case kPc: res_reg = rs_rARM_PC; break;
case kSp: res_reg = rs_rARM_SP; break;
case kArg0: res_reg = rs_r0; break;
case kArg1: res_reg = rs_r1; break;
case kArg2: res_reg = rs_r2; break;
case kArg3: res_reg = rs_r3; break;
case kFArg0: res_reg = kArm32QuickCodeUseSoftFloat ? rs_r0 : rs_fr0; break;
case kFArg1: res_reg = kArm32QuickCodeUseSoftFloat ? rs_r1 : rs_fr1; break;
case kFArg2: res_reg = kArm32QuickCodeUseSoftFloat ? rs_r2 : rs_fr2; break;
case kFArg3: res_reg = kArm32QuickCodeUseSoftFloat ? rs_r3 : rs_fr3; break;
case kFArg4: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr4; break;
case kFArg5: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr5; break;
case kFArg6: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr6; break;
case kFArg7: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr7; break;
case kFArg8: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr8; break;
case kFArg9: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr9; break;
case kFArg10: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr10; break;
case kFArg11: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr11; break;
case kFArg12: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr12; break;
case kFArg13: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr13; break;
case kFArg14: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr14; break;
case kFArg15: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr15; break;
case kRet0: res_reg = rs_r0; break;
case kRet1: res_reg = rs_r1; break;
case kInvokeTgt: res_reg = rs_rARM_LR; break;
case kHiddenArg: res_reg = rs_r12; break;
case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
case kCount: res_reg = RegStorage::InvalidReg(); break;
default: res_reg = RegStorage::InvalidReg();
}
return res_reg;
}
/*
* Decode the register id.
*/
ResourceMask ArmMir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
return GetRegMaskArm(reg);
}
constexpr ResourceMask ArmMir2Lir::GetRegMaskArm(RegStorage reg) {
return reg.IsDouble()
/* Each double register is equal to a pair of single-precision FP registers */
? ResourceMask::TwoBits(reg.GetRegNum() * 2 + kArmFPReg0)
: ResourceMask::Bit(reg.IsSingle() ? reg.GetRegNum() + kArmFPReg0 : reg.GetRegNum());
}
constexpr ResourceMask ArmMir2Lir::EncodeArmRegList(int reg_list) {
return ResourceMask::RawMask(static_cast<uint64_t >(reg_list), 0u);
}
constexpr ResourceMask ArmMir2Lir::EncodeArmRegFpcsList(int reg_list) {
return ResourceMask::RawMask(static_cast<uint64_t >(reg_list) << kArmFPReg16, 0u);
}
ResourceMask ArmMir2Lir::GetPCUseDefEncoding() const {
return ResourceMask::Bit(kArmRegPC);
}
// Thumb2 specific setup. TODO: inline?:
void ArmMir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
ResourceMask* use_mask, ResourceMask* def_mask) {
DCHECK_EQ(cu_->instruction_set, kThumb2);
DCHECK(!lir->flags.use_def_invalid);
int opcode = lir->opcode;
// These flags are somewhat uncommon - bypass if we can.
if ((flags & (REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0 | REG_DEF_LIST1 |
REG_DEF_FPCS_LIST0 | REG_DEF_FPCS_LIST2 | REG_USE_PC | IS_IT | REG_USE_LIST0 |
REG_USE_LIST1 | REG_USE_FPCS_LIST0 | REG_USE_FPCS_LIST2 | REG_DEF_LR)) != 0) {
if (flags & REG_DEF_SP) {
def_mask->SetBit(kArmRegSP);
}
if (flags & REG_USE_SP) {
use_mask->SetBit(kArmRegSP);
}
if (flags & REG_DEF_LIST0) {
def_mask->SetBits(EncodeArmRegList(lir->operands[0]));
}
if (flags & REG_DEF_LIST1) {
def_mask->SetBits(EncodeArmRegList(lir->operands[1]));
}
if (flags & REG_DEF_FPCS_LIST0) {
def_mask->SetBits(EncodeArmRegList(lir->operands[0]));
}
if (flags & REG_DEF_FPCS_LIST2) {
for (int i = 0; i < lir->operands[2]; i++) {
SetupRegMask(def_mask, lir->operands[1] + i);
}
}
if (flags & REG_USE_PC) {
use_mask->SetBit(kArmRegPC);
}
/* Conservatively treat the IT block */
if (flags & IS_IT) {
*def_mask = kEncodeAll;
}
if (flags & REG_USE_LIST0) {
use_mask->SetBits(EncodeArmRegList(lir->operands[0]));
}
if (flags & REG_USE_LIST1) {
use_mask->SetBits(EncodeArmRegList(lir->operands[1]));
}
if (flags & REG_USE_FPCS_LIST0) {
use_mask->SetBits(EncodeArmRegList(lir->operands[0]));
}
if (flags & REG_USE_FPCS_LIST2) {
for (int i = 0; i < lir->operands[2]; i++) {
SetupRegMask(use_mask, lir->operands[1] + i);
}
}
/* Fixup for kThumbPush/lr and kThumbPop/pc */
if (opcode == kThumbPush || opcode == kThumbPop) {
constexpr ResourceMask r8Mask = GetRegMaskArm(rs_r8);
if ((opcode == kThumbPush) && (use_mask->Intersects(r8Mask))) {
use_mask->ClearBits(r8Mask);
use_mask->SetBit(kArmRegLR);
} else if ((opcode == kThumbPop) && (def_mask->Intersects(r8Mask))) {
def_mask->ClearBits(r8Mask);
def_mask->SetBit(kArmRegPC);;
}
}
if (flags & REG_DEF_LR) {
def_mask->SetBit(kArmRegLR);
}
}
}
ArmConditionCode ArmMir2Lir::ArmConditionEncoding(ConditionCode ccode) {
ArmConditionCode res;
switch (ccode) {
case kCondEq: res = kArmCondEq; break;
case kCondNe: res = kArmCondNe; break;
case kCondCs: res = kArmCondCs; break;
case kCondCc: res = kArmCondCc; break;
case kCondUlt: res = kArmCondCc; break;
case kCondUge: res = kArmCondCs; break;
case kCondMi: res = kArmCondMi; break;
case kCondPl: res = kArmCondPl; break;
case kCondVs: res = kArmCondVs; break;
case kCondVc: res = kArmCondVc; break;
case kCondHi: res = kArmCondHi; break;
case kCondLs: res = kArmCondLs; break;
case kCondGe: res = kArmCondGe; break;
case kCondLt: res = kArmCondLt; break;
case kCondGt: res = kArmCondGt; break;
case kCondLe: res = kArmCondLe; break;
case kCondAl: res = kArmCondAl; break;
case kCondNv: res = kArmCondNv; break;
default:
LOG(FATAL) << "Bad condition code " << ccode;
res = static_cast<ArmConditionCode>(0); // Quiet gcc
}
return res;
}
static const char* core_reg_names[16] = {
"r0",
"r1",
"r2",
"r3",
"r4",
"r5",
"r6",
"r7",
"r8",
"rSELF",
"r10",
"r11",
"r12",
"sp",
"lr",
"pc",
};
static const char* shift_names[4] = {
"lsl",
"lsr",
"asr",
"ror"};
/* Decode and print a ARM register name */
static char* DecodeRegList(int opcode, int vector, char* buf, size_t buf_size) {
int i;
bool printed = false;
buf[0] = 0;
for (i = 0; i < 16; i++, vector >>= 1) {
if (vector & 0x1) {
int reg_id = i;
if (opcode == kThumbPush && i == 8) {
reg_id = rs_rARM_LR.GetRegNum();
} else if (opcode == kThumbPop && i == 8) {
reg_id = rs_rARM_PC.GetRegNum();
}
if (printed) {
snprintf(buf + strlen(buf), buf_size - strlen(buf), ", r%d", reg_id);
} else {
printed = true;
snprintf(buf, buf_size, "r%d", reg_id);
}
}
}
return buf;
}
static char* DecodeFPCSRegList(int count, int base, char* buf, size_t buf_size) {
snprintf(buf, buf_size, "s%d", base);
for (int i = 1; i < count; i++) {
snprintf(buf + strlen(buf), buf_size - strlen(buf), ", s%d", base + i);
}
return buf;
}
static int32_t ExpandImmediate(int value) {
int32_t mode = (value & 0xf00) >> 8;
uint32_t bits = value & 0xff;
switch (mode) {
case 0:
return bits;
case 1:
return (bits << 16) | bits;
case 2:
return (bits << 24) | (bits << 8);
case 3:
return (bits << 24) | (bits << 16) | (bits << 8) | bits;
default:
break;
}
bits = (bits | 0x80) << 24;
return bits >> (((value & 0xf80) >> 7) - 8);
}
const char* cc_names[] = {"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
"hi", "ls", "ge", "lt", "gt", "le", "al", "nv"};
/*
* Interpret a format string and build a string no longer than size
* See format key in Assemble.c.
*/
std::string ArmMir2Lir::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) {
std::string buf;
int i;
const char* fmt_end = &fmt[strlen(fmt)];
char tbuf[256];
const char* name;
char nc;
while (fmt < fmt_end) {
int operand;
if (*fmt == '!') {
fmt++;
DCHECK_LT(fmt, fmt_end);
nc = *fmt++;
if (nc == '!') {
strcpy(tbuf, "!");
} else {
DCHECK_LT(fmt, fmt_end);
DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
operand = lir->operands[nc-'0'];
switch (*fmt++) {
case 'H':
if (operand != 0) {
snprintf(tbuf, arraysize(tbuf), ", %s %d", shift_names[operand & 0x3], operand >> 2);
} else {
strcpy(tbuf, "");
}
break;
case 'B':
switch (operand) {
case kSY:
name = "sy";
break;
case kST:
name = "st";
break;
case kISH:
name = "ish";
break;
case kISHST:
name = "ishst";
break;
case kNSH:
name = "nsh";
break;
case kNSHST:
name = "shst";
break;
default:
name = "DecodeError2";
break;
}
strcpy(tbuf, name);
break;
case 'b':
strcpy(tbuf, "0000");
for (i = 3; i >= 0; i--) {
tbuf[i] += operand & 1;
operand >>= 1;
}
break;
case 'n':
operand = ~ExpandImmediate(operand);
snprintf(tbuf, arraysize(tbuf), "%d [%#x]", operand, operand);
break;
case 'm':
operand = ExpandImmediate(operand);
snprintf(tbuf, arraysize(tbuf), "%d [%#x]", operand, operand);
break;
case 's':
snprintf(tbuf, arraysize(tbuf), "s%d", RegStorage::RegNum(operand));
break;
case 'S':
snprintf(tbuf, arraysize(tbuf), "d%d", RegStorage::RegNum(operand));
break;
case 'h':
snprintf(tbuf, arraysize(tbuf), "%04x", operand);
break;
case 'M':
case 'd':
snprintf(tbuf, arraysize(tbuf), "%d", operand);
break;
case 'C':
operand = RegStorage::RegNum(operand);
DCHECK_LT(operand, static_cast<int>(
sizeof(core_reg_names)/sizeof(core_reg_names[0])));
snprintf(tbuf, arraysize(tbuf), "%s", core_reg_names[operand]);
break;
case 'E':
snprintf(tbuf, arraysize(tbuf), "%d", operand*4);
break;
case 'F':
snprintf(tbuf, arraysize(tbuf), "%d", operand*2);
break;
case 'c':
strcpy(tbuf, cc_names[operand]);
break;
case 't':
snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)",
reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4 + (operand << 1),
lir->target);
break;
case 'T':
snprintf(tbuf, arraysize(tbuf), "%s", PrettyMethod(
static_cast<uint32_t>(lir->operands[1]),
*UnwrapPointer<DexFile>(lir->operands[2])).c_str());
break;
case 'u': {
int offset_1 = lir->operands[0];
int offset_2 = NEXT_LIR(lir)->operands[0];
uintptr_t target =
(((reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4) &
~3) + (offset_1 << 21 >> 9) + (offset_2 << 1)) &
0xfffffffc;
snprintf(tbuf, arraysize(tbuf), "%p", reinterpret_cast<void *>(target));
break;
}
/* Nothing to print for BLX_2 */
case 'v':
strcpy(tbuf, "see above");
break;
case 'R':
DecodeRegList(lir->opcode, operand, tbuf, arraysize(tbuf));
break;
case 'P':
DecodeFPCSRegList(operand, 16, tbuf, arraysize(tbuf));
break;
case 'Q':
DecodeFPCSRegList(operand, 0, tbuf, arraysize(tbuf));
break;
default:
strcpy(tbuf, "DecodeError1");
break;
}
buf += tbuf;
}
} else {
buf += *fmt++;
}
}
// Dump thread offset.
std::string fmt_str = GetTargetInstFmt(lir->opcode);
if (std::string::npos != fmt_str.find(", [!1C, #!2") && rARM_SELF == lir->operands[1] &&
std::string::npos != buf.find(", [")) {
int offset = lir->operands[2];
if (std::string::npos != fmt_str.find("#!2d")) {
} else if (std::string::npos != fmt_str.find("#!2E")) {
offset *= 4;
} else if (std::string::npos != fmt_str.find("#!2F")) {
offset *= 2;
} else {
LOG(FATAL) << "Should not reach here";
}
std::ostringstream tmp_stream;
Thread::DumpThreadOffset<4>(tmp_stream, offset);
buf += " ; ";
buf += tmp_stream.str();
}
return buf;
}
void ArmMir2Lir::DumpResourceMask(LIR* arm_lir, const ResourceMask& mask, const char* prefix) {
char buf[256];
buf[0] = 0;
if (mask.Equals(kEncodeAll)) {
strcpy(buf, "all");
} else {
char num[8];
int i;
for (i = 0; i < kArmRegEnd; i++) {
if (mask.HasBit(i)) {
snprintf(num, arraysize(num), "%d ", i);
strcat(buf, num);
}
}
if (mask.HasBit(ResourceMask::kCCode)) {
strcat(buf, "cc ");
}
if (mask.HasBit(ResourceMask::kFPStatus)) {
strcat(buf, "fpcc ");
}
/* Memory bits */
if (arm_lir && (mask.HasBit(ResourceMask::kDalvikReg))) {
snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
DECODE_ALIAS_INFO_REG(arm_lir->flags.alias_info),
DECODE_ALIAS_INFO_WIDE(arm_lir->flags.alias_info) ? "(+1)" : "");
}
if (mask.HasBit(ResourceMask::kLiteral)) {
strcat(buf, "lit ");
}
if (mask.HasBit(ResourceMask::kHeapRef)) {
strcat(buf, "heap ");
}
if (mask.HasBit(ResourceMask::kMustNotAlias)) {
strcat(buf, "noalias ");
}
}
if (buf[0]) {
LOG(INFO) << prefix << ": " << buf;
}
}
bool ArmMir2Lir::IsUnconditionalBranch(LIR* lir) {
return ((lir->opcode == kThumbBUncond) || (lir->opcode == kThumb2BUncond));
}
RegisterClass ArmMir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
if (UNLIKELY(is_volatile)) {
// On arm, atomic 64-bit load/store requires a core register pair.
// Smaller aligned load/store is atomic for both core and fp registers.
if (size == k64 || size == kDouble) {
return kCoreReg;
}
}
return RegClassBySize(size);
}
ArmMir2Lir::ArmMir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
: Mir2Lir(cu, mir_graph, arena),
call_method_insns_(arena->Adapter()),
dex_cache_access_insns_(arena->Adapter()),
dex_cache_arrays_base_reg_(RegStorage::InvalidReg()) {
call_method_insns_.reserve(100);
// Sanity check - make sure encoding map lines up.
for (int i = 0; i < kArmLast; i++) {
DCHECK_EQ(ArmMir2Lir::EncodingMap[i].opcode, i)
<< "Encoding order for " << ArmMir2Lir::EncodingMap[i].name
<< " is wrong: expecting " << i << ", seeing "
<< static_cast<int>(ArmMir2Lir::EncodingMap[i].opcode);
}
}
Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena) {
return new ArmMir2Lir(cu, mir_graph, arena);
}
void ArmMir2Lir::CompilerInitializeRegAlloc() {
reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs, empty_pool /* core64 */,
sp_regs, dp_regs,
reserved_regs, empty_pool /* reserved64 */,
core_temps, empty_pool /* core64_temps */,
sp_temps, dp_temps));
// Target-specific adjustments.
// Alias single precision floats to appropriate half of overlapping double.
for (RegisterInfo* info : reg_pool_->sp_regs_) {
int sp_reg_num = info->GetReg().GetRegNum();
int dp_reg_num = sp_reg_num >> 1;
RegStorage dp_reg = RegStorage::Solo64(RegStorage::kFloatingPoint | dp_reg_num);
RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
// Double precision register's master storage should refer to itself.
DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
// Redirect single precision's master storage to master.
info->SetMaster(dp_reg_info);
// Singles should show a single 32-bit mask bit, at first referring to the low half.
DCHECK_EQ(info->StorageMask(), RegisterInfo::kLowSingleStorageMask);
if (sp_reg_num & 1) {
// For odd singles, change to use the high word of the backing double.
info->SetStorageMask(RegisterInfo::kHighSingleStorageMask);
}
}
#ifdef ARM_R4_SUSPEND_FLAG
// TODO: re-enable this when we can safely save r4 over the suspension code path.
bool no_suspend = NO_SUSPEND; // || !Runtime::Current()->ExplicitSuspendChecks();
if (no_suspend) {
GetRegInfo(rs_rARM_SUSPEND)->MarkFree();
}
#endif
// Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
// TODO: adjust when we roll to hard float calling convention.
reg_pool_->next_core_reg_ = 2;
reg_pool_->next_sp_reg_ = 0;
reg_pool_->next_dp_reg_ = 0;
}
/*
* TUNING: is true leaf? Can't just use METHOD_IS_LEAF to determine as some
* instructions might call out to C/assembly helper functions. Until
* machinery is in place, always spill lr.
*/
void ArmMir2Lir::AdjustSpillMask() {
core_spill_mask_ |= (1 << rs_rARM_LR.GetRegNum());
num_core_spills_++;
}
/*
* Mark a callee-save fp register as promoted. Note that
* vpush/vpop uses contiguous register lists so we must
* include any holes in the mask. Associate holes with
* Dalvik register INVALID_VREG (0xFFFFU).
*/
void ArmMir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) {
DCHECK_GE(reg.GetRegNum(), ARM_FP_CALLEE_SAVE_BASE);
int adjusted_reg_num = reg.GetRegNum() - ARM_FP_CALLEE_SAVE_BASE;
// Ensure fp_vmap_table is large enough
int table_size = fp_vmap_table_.size();
for (int i = table_size; i < (adjusted_reg_num + 1); i++) {
fp_vmap_table_.push_back(INVALID_VREG);
}
// Add the current mapping
fp_vmap_table_[adjusted_reg_num] = v_reg;
// Size of fp_vmap_table is high-water mark, use to set mask
num_fp_spills_ = fp_vmap_table_.size();
fp_spill_mask_ = ((1 << num_fp_spills_) - 1) << ARM_FP_CALLEE_SAVE_BASE;
}
void ArmMir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) {
// TEMP: perform as 2 singles.
int reg_num = reg.GetRegNum() << 1;
RegStorage lo = RegStorage::Solo32(RegStorage::kFloatingPoint | reg_num);
RegStorage hi = RegStorage::Solo32(RegStorage::kFloatingPoint | reg_num | 1);
MarkPreservedSingle(v_reg, lo);
MarkPreservedSingle(v_reg + 1, hi);
}
/* Clobber all regs that might be used by an external C call */
void ArmMir2Lir::ClobberCallerSave() {
// TODO: rework this - it's gotten even more ugly.
Clobber(rs_r0);
Clobber(rs_r1);
Clobber(rs_r2);
Clobber(rs_r3);
Clobber(rs_r12);
Clobber(rs_r14lr);
Clobber(rs_fr0);
Clobber(rs_fr1);
Clobber(rs_fr2);
Clobber(rs_fr3);
Clobber(rs_fr4);
Clobber(rs_fr5);
Clobber(rs_fr6);
Clobber(rs_fr7);
Clobber(rs_fr8);
Clobber(rs_fr9);
Clobber(rs_fr10);
Clobber(rs_fr11);
Clobber(rs_fr12);
Clobber(rs_fr13);
Clobber(rs_fr14);
Clobber(rs_fr15);
Clobber(rs_dr0);
Clobber(rs_dr1);
Clobber(rs_dr2);
Clobber(rs_dr3);
Clobber(rs_dr4);
Clobber(rs_dr5);
Clobber(rs_dr6);
Clobber(rs_dr7);
}
RegLocation ArmMir2Lir::GetReturnWideAlt() {
RegLocation res = LocCReturnWide();
res.reg.SetLowReg(rs_r2.GetReg());
res.reg.SetHighReg(rs_r3.GetReg());
Clobber(rs_r2);
Clobber(rs_r3);
MarkInUse(rs_r2);
MarkInUse(rs_r3);
MarkWide(res.reg);
return res;
}
RegLocation ArmMir2Lir::GetReturnAlt() {
RegLocation res = LocCReturn();
res.reg.SetReg(rs_r1.GetReg());
Clobber(rs_r1);
MarkInUse(rs_r1);
return res;
}
/* To be used when explicitly managing register use */
void ArmMir2Lir::LockCallTemps() {
LockTemp(rs_r0);
LockTemp(rs_r1);
LockTemp(rs_r2);
LockTemp(rs_r3);
if (!kArm32QuickCodeUseSoftFloat) {
LockTemp(rs_fr0);
LockTemp(rs_fr1);
LockTemp(rs_fr2);
LockTemp(rs_fr3);
LockTemp(rs_fr4);
LockTemp(rs_fr5);
LockTemp(rs_fr6);
LockTemp(rs_fr7);
LockTemp(rs_fr8);
LockTemp(rs_fr9);
LockTemp(rs_fr10);
LockTemp(rs_fr11);
LockTemp(rs_fr12);
LockTemp(rs_fr13);
LockTemp(rs_fr14);
LockTemp(rs_fr15);
LockTemp(rs_dr0);
LockTemp(rs_dr1);
LockTemp(rs_dr2);
LockTemp(rs_dr3);
LockTemp(rs_dr4);
LockTemp(rs_dr5);
LockTemp(rs_dr6);
LockTemp(rs_dr7);
}
}
/* To be used when explicitly managing register use */
void ArmMir2Lir::FreeCallTemps() {
FreeTemp(rs_r0);
FreeTemp(rs_r1);
FreeTemp(rs_r2);
FreeTemp(rs_r3);
FreeTemp(TargetReg(kHiddenArg));
if (!kArm32QuickCodeUseSoftFloat) {
FreeTemp(rs_fr0);
FreeTemp(rs_fr1);
FreeTemp(rs_fr2);
FreeTemp(rs_fr3);
FreeTemp(rs_fr4);
FreeTemp(rs_fr5);
FreeTemp(rs_fr6);
FreeTemp(rs_fr7);
FreeTemp(rs_fr8);
FreeTemp(rs_fr9);
FreeTemp(rs_fr10);
FreeTemp(rs_fr11);
FreeTemp(rs_fr12);
FreeTemp(rs_fr13);
FreeTemp(rs_fr14);
FreeTemp(rs_fr15);
FreeTemp(rs_dr0);
FreeTemp(rs_dr1);
FreeTemp(rs_dr2);
FreeTemp(rs_dr3);
FreeTemp(rs_dr4);
FreeTemp(rs_dr5);
FreeTemp(rs_dr6);
FreeTemp(rs_dr7);
}
}
RegStorage ArmMir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
LoadWordDisp(rs_rARM_SELF, GetThreadOffset<4>(trampoline).Int32Value(), rs_rARM_LR);
return rs_rARM_LR;
}
LIR* ArmMir2Lir::CheckSuspendUsingLoad() {
RegStorage tmp = rs_r0;
Load32Disp(rs_rARM_SELF, Thread::ThreadSuspendTriggerOffset<4>().Int32Value(), tmp);
LIR* load2 = Load32Disp(tmp, 0, tmp);
return load2;
}
uint64_t ArmMir2Lir::GetTargetInstFlags(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return ArmMir2Lir::EncodingMap[opcode].flags;
}
const char* ArmMir2Lir::GetTargetInstName(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return ArmMir2Lir::EncodingMap[opcode].name;
}
const char* ArmMir2Lir::GetTargetInstFmt(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return ArmMir2Lir::EncodingMap[opcode].fmt;
}
/*
* Somewhat messy code here. We want to allocate a pair of contiguous
* physical single-precision floating point registers starting with
* an even numbered reg. It is possible that the paired s_reg (s_reg+1)
* has already been allocated - try to fit if possible. Fail to
* allocate if we can't meet the requirements for the pair of
* s_reg<=sX[even] & (s_reg+1)<= sX+1.
*/
// TODO: needs rewrite to support non-backed 64-bit float regs.
RegStorage ArmMir2Lir::AllocPreservedDouble(int s_reg) {
RegStorage res;
int v_reg = mir_graph_->SRegToVReg(s_reg);
int p_map_idx = SRegToPMap(s_reg);
if (promotion_map_[p_map_idx+1].fp_location == kLocPhysReg) {
// Upper reg is already allocated. Can we fit?
int high_reg = promotion_map_[p_map_idx+1].fp_reg;
if ((high_reg & 1) == 0) {
// High reg is even - fail.
return res; // Invalid.
}
// Is the low reg of the pair free?
// FIXME: rework.
RegisterInfo* p = GetRegInfo(RegStorage::FloatSolo32(high_reg - 1));
if (p->InUse() || p->IsTemp()) {
// Already allocated or not preserved - fail.
return res; // Invalid.
}
// OK - good to go.
res = RegStorage::FloatSolo64(p->GetReg().GetRegNum() >> 1);
p->MarkInUse();
MarkPreservedSingle(v_reg, p->GetReg());
} else {
/*
* TODO: until runtime support is in, make sure we avoid promoting the same vreg to
* different underlying physical registers.
*/
for (RegisterInfo* info : reg_pool_->dp_regs_) {
if (!info->IsTemp() && !info->InUse()) {
res = info->GetReg();
info->MarkInUse();
MarkPreservedDouble(v_reg, info->GetReg());
break;
}
}
}
if (res.Valid()) {
RegisterInfo* info = GetRegInfo(res);
promotion_map_[p_map_idx].fp_location = kLocPhysReg;
promotion_map_[p_map_idx].fp_reg =
info->FindMatchingView(RegisterInfo::kLowSingleStorageMask)->GetReg().GetReg();
promotion_map_[p_map_idx+1].fp_location = kLocPhysReg;
promotion_map_[p_map_idx+1].fp_reg =
info->FindMatchingView(RegisterInfo::kHighSingleStorageMask)->GetReg().GetReg();
}
return res;
}
// Reserve a callee-save sp single register.
RegStorage ArmMir2Lir::AllocPreservedSingle(int s_reg) {
RegStorage res;
for (RegisterInfo* info : reg_pool_->sp_regs_) {
if (!info->IsTemp() && !info->InUse()) {
res = info->GetReg();
int p_map_idx = SRegToPMap(s_reg);
int v_reg = mir_graph_->SRegToVReg(s_reg);
GetRegInfo(res)->MarkInUse();
MarkPreservedSingle(v_reg, res);
promotion_map_[p_map_idx].fp_location = kLocPhysReg;
promotion_map_[p_map_idx].fp_reg = res.GetReg();
break;
}
}
return res;
}
void ArmMir2Lir::InstallLiteralPools() {
patches_.reserve(call_method_insns_.size() + dex_cache_access_insns_.size());
// PC-relative calls to methods.
for (LIR* p : call_method_insns_) {
DCHECK_EQ(p->opcode, kThumb2Bl);
uint32_t target_method_idx = p->operands[1];
const DexFile* target_dex_file = UnwrapPointer<DexFile>(p->operands[2]);
patches_.push_back(LinkerPatch::RelativeCodePatch(p->offset,
target_dex_file, target_method_idx));
}
// PC-relative dex cache array accesses.
for (LIR* p : dex_cache_access_insns_) {
DCHECK(p->opcode = kThumb2MovImm16 || p->opcode == kThumb2MovImm16H);
const LIR* add_pc = UnwrapPointer<LIR>(p->operands[4]);
DCHECK(add_pc->opcode == kThumbAddRRLH || add_pc->opcode == kThumbAddRRHH);
const DexFile* dex_file = UnwrapPointer<DexFile>(p->operands[2]);
uint32_t offset = p->operands[3];
DCHECK(!p->flags.is_nop);
DCHECK(!add_pc->flags.is_nop);
patches_.push_back(LinkerPatch::DexCacheArrayPatch(p->offset,
dex_file, add_pc->offset, offset));
}
// And do the normal processing.
Mir2Lir::InstallLiteralPools();
}
RegStorage ArmMir2Lir::InToRegStorageArmMapper::GetNextReg(ShortyArg arg) {
const RegStorage coreArgMappingToPhysicalReg[] =
{rs_r1, rs_r2, rs_r3};
const int coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
const RegStorage fpArgMappingToPhysicalReg[] =
{rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15};
constexpr uint32_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg);
static_assert(fpArgMappingToPhysicalRegSize % 2 == 0, "Number of FP Arg regs is not even");
RegStorage result = RegStorage::InvalidReg();
// Regard double as long, float as int for kArm32QuickCodeUseSoftFloat.
if (arg.IsFP() && !kArm32QuickCodeUseSoftFloat) {
if (arg.IsWide()) {
cur_fp_double_reg_ = std::max(cur_fp_double_reg_, RoundUp(cur_fp_reg_, 2));
if (cur_fp_double_reg_ < fpArgMappingToPhysicalRegSize) {
result = RegStorage::MakeRegPair(fpArgMappingToPhysicalReg[cur_fp_double_reg_],
fpArgMappingToPhysicalReg[cur_fp_double_reg_ + 1]);
result = As64BitFloatReg(result);
cur_fp_double_reg_ += 2;
}
} else {
if (cur_fp_reg_ % 2 == 0) {
cur_fp_reg_ = std::max(cur_fp_double_reg_, cur_fp_reg_);
}
if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
result = fpArgMappingToPhysicalReg[cur_fp_reg_];
cur_fp_reg_++;
}
}
} else {
if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
if (!kArm32QuickCodeUseSoftFloat && arg.IsWide() && cur_core_reg_ == 0) {
// Skip r1, and use r2-r3 for the register pair.
cur_core_reg_++;
}
result = coreArgMappingToPhysicalReg[cur_core_reg_++];
if (arg.IsWide() && cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
result = RegStorage::MakeRegPair(result, coreArgMappingToPhysicalReg[cur_core_reg_++]);
}
}
}
return result;
}
int ArmMir2Lir::GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) {
if (kArm32QuickCodeUseSoftFloat) {
return Mir2Lir::GenDalvikArgsBulkCopy(info, first, count);
}
/*
* TODO: Improve by adding block copy for large number of arguments. For now, just
* copy a Dalvik vreg at a time.
*/
return count;
}
void ArmMir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
UNUSED(bb);
DCHECK(MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode));
RegLocation rl_src[3];
RegLocation rl_dest = mir_graph_->GetBadLoc();
rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc();
switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
case kMirOpMaddInt:
rl_dest = mir_graph_->GetDest(mir);
rl_src[0] = mir_graph_->GetSrc(mir, 0);
rl_src[1] = mir_graph_->GetSrc(mir, 1);
rl_src[2]= mir_graph_->GetSrc(mir, 2);
GenMaddMsubInt(rl_dest, rl_src[0], rl_src[1], rl_src[2], false);
break;
case kMirOpMsubInt:
rl_dest = mir_graph_->GetDest(mir);
rl_src[0] = mir_graph_->GetSrc(mir, 0);
rl_src[1] = mir_graph_->GetSrc(mir, 1);
rl_src[2]= mir_graph_->GetSrc(mir, 2);
GenMaddMsubInt(rl_dest, rl_src[0], rl_src[1], rl_src[2], true);
break;
default:
LOG(FATAL) << "Unexpected opcode: " << mir->dalvikInsn.opcode;
}
}
} // namespace art