blob: 4a6a754b5ff5f98972cd874f8e2e957f82c8112e [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "calling_convention_arm64.h"
#include <android-base/logging.h>
#include "arch/instruction_set.h"
#include "handle_scope-inl.h"
#include "utils/arm64/managed_register_arm64.h"
namespace art {
namespace arm64 {
static_assert(kArm64PointerSize == PointerSize::k64, "Unexpected ARM64 pointer size");
// Up to how many float-like (float, double) args can be enregistered.
// The rest of the args must go on the stack.
constexpr size_t kMaxFloatOrDoubleRegisterArguments = 8u;
// Up to how many integer-like (pointers, objects, longs, int, short, bool, etc) args can be
// enregistered. The rest of the args must go on the stack.
constexpr size_t kMaxIntLikeRegisterArguments = 8u;
static const XRegister kXArgumentRegisters[] = {
X0, X1, X2, X3, X4, X5, X6, X7
};
static const WRegister kWArgumentRegisters[] = {
W0, W1, W2, W3, W4, W5, W6, W7
};
static const DRegister kDArgumentRegisters[] = {
D0, D1, D2, D3, D4, D5, D6, D7
};
static const SRegister kSArgumentRegisters[] = {
S0, S1, S2, S3, S4, S5, S6, S7
};
static constexpr ManagedRegister kCalleeSaveRegisters[] = {
// Core registers.
// Note: The native jni function may call to some VM runtime functions which may suspend
// or trigger GC. And the jni method frame will become top quick frame in those cases.
// So we need to satisfy GC to save LR and callee-save registers which is similar to
// CalleeSaveMethod(RefOnly) frame.
// Jni function is the native function which the java code wants to call.
// Jni method is the method that is compiled by jni compiler.
// Call chain: managed code(java) --> jni method --> jni function.
// Thread register(X19) is saved on stack.
Arm64ManagedRegister::FromXRegister(X19),
Arm64ManagedRegister::FromXRegister(X20),
Arm64ManagedRegister::FromXRegister(X21),
Arm64ManagedRegister::FromXRegister(X22),
Arm64ManagedRegister::FromXRegister(X23),
Arm64ManagedRegister::FromXRegister(X24),
Arm64ManagedRegister::FromXRegister(X25),
Arm64ManagedRegister::FromXRegister(X26),
Arm64ManagedRegister::FromXRegister(X27),
Arm64ManagedRegister::FromXRegister(X28),
Arm64ManagedRegister::FromXRegister(X29),
Arm64ManagedRegister::FromXRegister(LR),
// Hard float registers.
// Considering the case, java_method_1 --> jni method --> jni function --> java_method_2,
// we may break on java_method_2 and we still need to find out the values of DEX registers
// in java_method_1. So all callee-saves(in managed code) need to be saved.
Arm64ManagedRegister::FromDRegister(D8),
Arm64ManagedRegister::FromDRegister(D9),
Arm64ManagedRegister::FromDRegister(D10),
Arm64ManagedRegister::FromDRegister(D11),
Arm64ManagedRegister::FromDRegister(D12),
Arm64ManagedRegister::FromDRegister(D13),
Arm64ManagedRegister::FromDRegister(D14),
Arm64ManagedRegister::FromDRegister(D15),
};
static constexpr uint32_t CalculateCoreCalleeSpillMask() {
uint32_t result = 0u;
for (auto&& r : kCalleeSaveRegisters) {
if (r.AsArm64().IsXRegister()) {
result |= (1 << r.AsArm64().AsXRegister());
}
}
return result;
}
static constexpr uint32_t CalculateFpCalleeSpillMask() {
uint32_t result = 0;
for (auto&& r : kCalleeSaveRegisters) {
if (r.AsArm64().IsDRegister()) {
result |= (1 << r.AsArm64().AsDRegister());
}
}
return result;
}
static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask();
static constexpr uint32_t kFpCalleeSpillMask = CalculateFpCalleeSpillMask();
// Calling convention
ManagedRegister Arm64ManagedRuntimeCallingConvention::InterproceduralScratchRegister() {
// X20 is safe to use as a scratch register:
// - with Baker read barriers (in the case of a non-critical native
// method), it is reserved as Marking Register, and thus does not
// actually need to be saved/restored; it is refreshed on exit
// (see Arm64JNIMacroAssembler::RemoveFrame);
// - in other cases, it is saved on entry (in
// Arm64JNIMacroAssembler::BuildFrame) and restored on exit (in
// Arm64JNIMacroAssembler::RemoveFrame). This is also expected in
// the case of a critical native method in the Baker read barrier
// configuration, where the value of MR must be preserved across
// the JNI call (as there is no MR refresh in that case).
return Arm64ManagedRegister::FromXRegister(X20);
}
ManagedRegister Arm64JniCallingConvention::InterproceduralScratchRegister() {
// X20 is safe to use as a scratch register:
// - with Baker read barriers (in the case of a non-critical native
// method), it is reserved as Marking Register, and thus does not
// actually need to be saved/restored; it is refreshed on exit
// (see Arm64JNIMacroAssembler::RemoveFrame);
// - in other cases, it is saved on entry (in
// Arm64JNIMacroAssembler::BuildFrame) and restored on exit (in
// Arm64JNIMacroAssembler::RemoveFrame). This is also expected in
// the case of a critical native method in the Baker read barrier
// configuration, where the value of MR must be preserved across
// the JNI call (as there is no MR refresh in that case).
return Arm64ManagedRegister::FromXRegister(X20);
}
static ManagedRegister ReturnRegisterForShorty(const char* shorty) {
if (shorty[0] == 'F') {
return Arm64ManagedRegister::FromSRegister(S0);
} else if (shorty[0] == 'D') {
return Arm64ManagedRegister::FromDRegister(D0);
} else if (shorty[0] == 'J') {
return Arm64ManagedRegister::FromXRegister(X0);
} else if (shorty[0] == 'V') {
return Arm64ManagedRegister::NoRegister();
} else {
return Arm64ManagedRegister::FromWRegister(W0);
}
}
ManagedRegister Arm64ManagedRuntimeCallingConvention::ReturnRegister() {
return ReturnRegisterForShorty(GetShorty());
}
ManagedRegister Arm64JniCallingConvention::ReturnRegister() {
return ReturnRegisterForShorty(GetShorty());
}
ManagedRegister Arm64JniCallingConvention::IntReturnRegister() {
return Arm64ManagedRegister::FromWRegister(W0);
}
// Managed runtime calling convention
ManagedRegister Arm64ManagedRuntimeCallingConvention::MethodRegister() {
return Arm64ManagedRegister::FromXRegister(X0);
}
bool Arm64ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
return false; // Everything moved to stack on entry.
}
bool Arm64ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
return true;
}
ManagedRegister Arm64ManagedRuntimeCallingConvention::CurrentParamRegister() {
LOG(FATAL) << "Should not reach here";
UNREACHABLE();
}
FrameOffset Arm64ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
CHECK(IsCurrentParamOnStack());
FrameOffset result =
FrameOffset(displacement_.Int32Value() + // displacement
kFramePointerSize + // Method ref
(itr_slots_ * sizeof(uint32_t))); // offset into in args
return result;
}
const ManagedRegisterEntrySpills& Arm64ManagedRuntimeCallingConvention::EntrySpills() {
// We spill the argument registers on ARM64 to free them up for scratch use, we then assume
// all arguments are on the stack.
if ((entry_spills_.size() == 0) && (NumArgs() > 0)) {
int gp_reg_index = 1; // we start from X1/W1, X0 holds ArtMethod*.
int fp_reg_index = 0; // D0/S0.
// We need to choose the correct register (D/S or X/W) since the managed
// stack uses 32bit stack slots.
ResetIterator(FrameOffset(0));
while (HasNext()) {
if (IsCurrentParamAFloatOrDouble()) { // FP regs.
if (fp_reg_index < 8) {
if (!IsCurrentParamADouble()) {
entry_spills_.push_back(Arm64ManagedRegister::FromSRegister(kSArgumentRegisters[fp_reg_index]));
} else {
entry_spills_.push_back(Arm64ManagedRegister::FromDRegister(kDArgumentRegisters[fp_reg_index]));
}
fp_reg_index++;
} else { // just increase the stack offset.
if (!IsCurrentParamADouble()) {
entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
} else {
entry_spills_.push_back(ManagedRegister::NoRegister(), 8);
}
}
} else { // GP regs.
if (gp_reg_index < 8) {
if (IsCurrentParamALong() && (!IsCurrentParamAReference())) {
entry_spills_.push_back(Arm64ManagedRegister::FromXRegister(kXArgumentRegisters[gp_reg_index]));
} else {
entry_spills_.push_back(Arm64ManagedRegister::FromWRegister(kWArgumentRegisters[gp_reg_index]));
}
gp_reg_index++;
} else { // just increase the stack offset.
if (IsCurrentParamALong() && (!IsCurrentParamAReference())) {
entry_spills_.push_back(ManagedRegister::NoRegister(), 8);
} else {
entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
}
}
}
Next();
}
}
return entry_spills_;
}
// JNI calling convention
Arm64JniCallingConvention::Arm64JniCallingConvention(bool is_static,
bool is_synchronized,
bool is_critical_native,
const char* shorty)
: JniCallingConvention(is_static,
is_synchronized,
is_critical_native,
shorty,
kArm64PointerSize) {
}
uint32_t Arm64JniCallingConvention::CoreSpillMask() const {
return kCoreCalleeSpillMask;
}
uint32_t Arm64JniCallingConvention::FpSpillMask() const {
return kFpCalleeSpillMask;
}
ManagedRegister Arm64JniCallingConvention::ReturnScratchRegister() const {
return ManagedRegister::NoRegister();
}
size_t Arm64JniCallingConvention::FrameSize() {
// Method*, callee save area size, local reference segment state
//
// (Unlike x86_64, do not include return address, and the segment state is uint32
// instead of pointer).
size_t method_ptr_size = static_cast<size_t>(kFramePointerSize);
size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
size_t frame_data_size = method_ptr_size + callee_save_area_size;
if (LIKELY(HasLocalReferenceSegmentState())) {
frame_data_size += sizeof(uint32_t);
}
// References plus 2 words for HandleScope header
size_t handle_scope_size = HandleScope::SizeOf(kArm64PointerSize, ReferenceCount());
size_t total_size = frame_data_size;
if (LIKELY(HasHandleScope())) {
// HandleScope is sometimes excluded.
total_size += handle_scope_size; // handle scope size
}
// Plus return value spill area size
total_size += SizeOfReturnValue();
return RoundUp(total_size, kStackAlignment);
}
size_t Arm64JniCallingConvention::OutArgSize() {
// Same as X86_64
return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize, kStackAlignment);
}
ArrayRef<const ManagedRegister> Arm64JniCallingConvention::CalleeSaveRegisters() const {
// Same as X86_64
return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
}
bool Arm64JniCallingConvention::IsCurrentParamInRegister() {
if (IsCurrentParamAFloatOrDouble()) {
return (itr_float_and_doubles_ < kMaxFloatOrDoubleRegisterArguments);
} else {
return ((itr_args_ - itr_float_and_doubles_) < kMaxIntLikeRegisterArguments);
}
// TODO: Can we just call CurrentParamRegister to figure this out?
}
bool Arm64JniCallingConvention::IsCurrentParamOnStack() {
// Is this ever not the same for all the architectures?
return !IsCurrentParamInRegister();
}
ManagedRegister Arm64JniCallingConvention::CurrentParamRegister() {
CHECK(IsCurrentParamInRegister());
if (IsCurrentParamAFloatOrDouble()) {
CHECK_LT(itr_float_and_doubles_, kMaxFloatOrDoubleRegisterArguments);
if (IsCurrentParamADouble()) {
return Arm64ManagedRegister::FromDRegister(kDArgumentRegisters[itr_float_and_doubles_]);
} else {
return Arm64ManagedRegister::FromSRegister(kSArgumentRegisters[itr_float_and_doubles_]);
}
} else {
int gp_reg = itr_args_ - itr_float_and_doubles_;
CHECK_LT(static_cast<unsigned int>(gp_reg), kMaxIntLikeRegisterArguments);
if (IsCurrentParamALong() || IsCurrentParamAReference() || IsCurrentParamJniEnv()) {
return Arm64ManagedRegister::FromXRegister(kXArgumentRegisters[gp_reg]);
} else {
return Arm64ManagedRegister::FromWRegister(kWArgumentRegisters[gp_reg]);
}
}
}
FrameOffset Arm64JniCallingConvention::CurrentParamStackOffset() {
CHECK(IsCurrentParamOnStack());
size_t args_on_stack = itr_args_
- std::min(kMaxFloatOrDoubleRegisterArguments,
static_cast<size_t>(itr_float_and_doubles_))
- std::min(kMaxIntLikeRegisterArguments,
static_cast<size_t>(itr_args_ - itr_float_and_doubles_));
size_t offset = displacement_.Int32Value() - OutArgSize() + (args_on_stack * kFramePointerSize);
CHECK_LT(offset, OutArgSize());
return FrameOffset(offset);
// TODO: Seems identical to X86_64 code.
}
size_t Arm64JniCallingConvention::NumberOfOutgoingStackArgs() {
// all arguments including JNI args
size_t all_args = NumArgs() + NumberOfExtraArgumentsForJni();
DCHECK_GE(all_args, NumFloatOrDoubleArgs());
size_t all_stack_args =
all_args
- std::min(kMaxFloatOrDoubleRegisterArguments,
static_cast<size_t>(NumFloatOrDoubleArgs()))
- std::min(kMaxIntLikeRegisterArguments,
static_cast<size_t>((all_args - NumFloatOrDoubleArgs())));
// TODO: Seems similar to X86_64 code except it doesn't count return pc.
return all_stack_args;
}
} // namespace arm64
} // namespace art