blob: 814d86a3e90c8d882bb0e0d3caa988cb2cc70ce8 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_OBJECT_INL_H_
#define ART_RUNTIME_MIRROR_OBJECT_INL_H_
#include "object.h"
#include "array-inl.h"
#include "art_field.h"
#include "art_method.h"
#include "base/atomic.h"
#include "class-inl.h"
#include "class_flags.h"
#include "class_linker.h"
#include "dex_cache.h"
#include "heap_poisoning.h"
#include "lock_word-inl.h"
#include "monitor.h"
#include "obj_ptr-inl.h"
#include "object-readbarrier-inl.h"
#include "object_array-inl.h"
#include "object_reference-inl.h"
#include "read_barrier-inl.h"
#include "reference.h"
#include "runtime.h"
#include "string.h"
#include "throwable.h"
#include "write_barrier-inl.h"
namespace art {
namespace mirror {
inline uint32_t Object::ClassSize(PointerSize pointer_size) {
uint32_t vtable_entries = kVTableLength;
return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline Class* Object::GetClass() {
return GetFieldObject<Class, kVerifyFlags, kReadBarrierOption>(ClassOffset());
}
template<VerifyObjectFlags kVerifyFlags>
inline void Object::SetClass(ObjPtr<Class> new_klass) {
// new_klass may be null prior to class linker initialization.
// We don't mark the card as this occurs as part of object allocation. Not all objects have
// backing cards, such as large objects.
// We use non transactional version since we can't undo this write. We also disable checking as
// we may run in transaction mode here.
SetFieldObjectWithoutWriteBarrier<false, false, RemoveThisFlags(kVerifyFlags)>(ClassOffset(),
new_klass);
}
template<VerifyObjectFlags kVerifyFlags>
inline void Object::SetLockWord(LockWord new_val, bool as_volatile) {
// Force use of non-transactional mode and do not check.
if (as_volatile) {
SetField32Volatile<false, false, kVerifyFlags>(MonitorOffset(), new_val.GetValue());
} else {
SetField32<false, false, kVerifyFlags>(MonitorOffset(), new_val.GetValue());
}
}
inline uint32_t Object::GetLockOwnerThreadId() {
return Monitor::GetLockOwnerThreadId(this);
}
inline mirror::Object* Object::MonitorEnter(Thread* self) {
return Monitor::MonitorEnter(self, this, /*trylock=*/false);
}
inline mirror::Object* Object::MonitorTryEnter(Thread* self) {
return Monitor::MonitorEnter(self, this, /*trylock=*/true);
}
inline bool Object::MonitorExit(Thread* self) {
return Monitor::MonitorExit(self, this);
}
inline void Object::Notify(Thread* self) {
Monitor::Notify(self, this);
}
inline void Object::NotifyAll(Thread* self) {
Monitor::NotifyAll(self, this);
}
inline void Object::Wait(Thread* self, int64_t ms, int32_t ns) {
Monitor::Wait(self, this, ms, ns, true, kTimedWaiting);
}
inline uint32_t Object::GetMarkBit() {
CHECK(kUseReadBarrier);
return GetLockWord(false).MarkBitState();
}
inline void Object::SetReadBarrierState(uint32_t rb_state) {
CHECK(kUseBakerReadBarrier);
DCHECK(ReadBarrier::IsValidReadBarrierState(rb_state)) << rb_state;
LockWord lw = GetLockWord(false);
lw.SetReadBarrierState(rb_state);
SetLockWord(lw, false);
}
inline void Object::AssertReadBarrierState() const {
CHECK(kUseBakerReadBarrier);
Object* obj = const_cast<Object*>(this);
DCHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::NonGrayState())
<< "Bad Baker pointer: obj=" << obj << " rb_state" << obj->GetReadBarrierState();
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::VerifierInstanceOf(ObjPtr<Class> klass) {
DCHECK(klass != nullptr);
DCHECK(GetClass<kVerifyFlags>() != nullptr);
return klass->IsInterface() || InstanceOf(klass);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::InstanceOf(ObjPtr<Class> klass) {
DCHECK(klass != nullptr);
DCHECK(GetClass<kVerifyNone>() != nullptr) << "this=" << this;
return klass->IsAssignableFrom(GetClass<kVerifyFlags>());
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsClass() {
// OK to look at from-space copies since java.lang.Class.class is non-moveable
// (even when running without boot image, see ClassLinker::InitWithoutImage())
// and we're reading constant references for comparison only. See ReadBarrierOption.
ObjPtr<Class> klass = GetClass<kVerifyFlags, kWithoutReadBarrier>();
ObjPtr<Class> java_lang_Class = klass->GetClass<kVerifyFlags, kWithoutReadBarrier>();
return klass == java_lang_Class;
}
template<VerifyObjectFlags kVerifyFlags>
inline Class* Object::AsClass() {
DCHECK((IsClass<kVerifyFlags>()));
return down_cast<Class*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsObjectArray() {
// We do not need a read barrier here as the primitive type is constant,
// both from-space and to-space component type classes shall yield the same result.
constexpr VerifyObjectFlags kNewFlags = RemoveThisFlags(kVerifyFlags);
return IsArrayInstance<kVerifyFlags>() &&
!GetClass<kNewFlags, kWithoutReadBarrier>()->
template GetComponentType<kNewFlags, kWithoutReadBarrier>()->IsPrimitive();
}
template<class T, VerifyObjectFlags kVerifyFlags>
inline ObjectArray<T>* Object::AsObjectArray() {
DCHECK((IsObjectArray<kVerifyFlags>()));
return down_cast<ObjectArray<T>*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsArrayInstance() {
// We do not need a read barrier here, both from-space and to-space version of the class
// shall return the same result from IsArrayClass().
return GetClass<kVerifyFlags, kWithoutReadBarrier>()->template IsArrayClass<kVerifyFlags>();
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline bool Object::IsReferenceInstance() {
return GetClass<kVerifyFlags, kReadBarrierOption>()->IsTypeOfReferenceClass();
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline Reference* Object::AsReference() {
DCHECK((IsReferenceInstance<kVerifyFlags, kReadBarrierOption>()));
return down_cast<Reference*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline Array* Object::AsArray() {
DCHECK((IsArrayInstance<kVerifyFlags>()));
return down_cast<Array*>(this);
}
template<VerifyObjectFlags kVerifyFlags, Primitive::Type kType>
ALWAYS_INLINE bool Object::IsSpecificPrimitiveArray() {
// We do not need a read barrier here as the primitive type is constant, both from-space
// and to-space component type classes shall yield the same result. See ReadBarrierOption.
ObjPtr<Class> klass = GetClass<kVerifyFlags, kWithoutReadBarrier>();
constexpr VerifyObjectFlags kNewFlags = RemoveThisFlags(kVerifyFlags);
ObjPtr<Class> const component_type = klass->GetComponentType<kNewFlags, kWithoutReadBarrier>();
return component_type != nullptr &&
component_type->GetPrimitiveType<kNewFlags>() == kType;
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsBooleanArray() {
return IsSpecificPrimitiveArray<kVerifyFlags, Primitive::kPrimBoolean>();
}
template<VerifyObjectFlags kVerifyFlags>
inline BooleanArray* Object::AsBooleanArray() {
DCHECK(IsBooleanArray<kVerifyFlags>());
return down_cast<BooleanArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsByteArray() {
return IsSpecificPrimitiveArray<kVerifyFlags, Primitive::kPrimByte>();
}
template<VerifyObjectFlags kVerifyFlags>
inline ByteArray* Object::AsByteArray() {
DCHECK(IsByteArray<kVerifyFlags>());
return down_cast<ByteArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsCharArray() {
return IsSpecificPrimitiveArray<kVerifyFlags, Primitive::kPrimChar>();
}
template<VerifyObjectFlags kVerifyFlags>
inline CharArray* Object::AsCharArray() {
DCHECK(IsCharArray<kVerifyFlags>());
return down_cast<CharArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsShortArray() {
return IsSpecificPrimitiveArray<kVerifyFlags, Primitive::kPrimShort>();
}
template<VerifyObjectFlags kVerifyFlags>
inline ShortArray* Object::AsShortArray() {
DCHECK(IsShortArray<kVerifyFlags>());
return down_cast<ShortArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsIntArray() {
return IsSpecificPrimitiveArray<kVerifyFlags, Primitive::kPrimInt>();
}
template<VerifyObjectFlags kVerifyFlags>
inline IntArray* Object::AsIntArrayUnchecked() {
return down_cast<IntArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline IntArray* Object::AsIntArray() {
DCHECK((IsIntArray<kVerifyFlags>()));
return AsIntArrayUnchecked<kVerifyFlags>();
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsLongArray() {
return IsSpecificPrimitiveArray<kVerifyFlags, Primitive::kPrimLong>();
}
template<VerifyObjectFlags kVerifyFlags>
inline LongArray* Object::AsLongArrayUnchecked() {
return down_cast<LongArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline LongArray* Object::AsLongArray() {
DCHECK((IsLongArray<kVerifyFlags>()));
return AsLongArrayUnchecked<kVerifyFlags>();
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsFloatArray() {
return IsSpecificPrimitiveArray<kVerifyFlags, Primitive::kPrimFloat>();
}
template<VerifyObjectFlags kVerifyFlags>
inline FloatArray* Object::AsFloatArray() {
DCHECK(IsFloatArray<kVerifyFlags>());
return down_cast<FloatArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsDoubleArray() {
return IsSpecificPrimitiveArray<kVerifyFlags, Primitive::kPrimDouble>();
}
template<VerifyObjectFlags kVerifyFlags>
inline DoubleArray* Object::AsDoubleArray() {
DCHECK(IsDoubleArray<kVerifyFlags>());
return down_cast<DoubleArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline bool Object::IsString() {
return GetClass<kVerifyFlags, kReadBarrierOption>()->IsStringClass();
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline String* Object::AsString() {
DCHECK((IsString<kVerifyFlags, kReadBarrierOption>()));
return down_cast<String*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline Throwable* Object::AsThrowable() {
DCHECK(GetClass<kVerifyFlags>()->IsThrowableClass());
return down_cast<Throwable*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsWeakReferenceInstance() {
return GetClass<kVerifyFlags>()->IsWeakReferenceClass();
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsSoftReferenceInstance() {
return GetClass<kVerifyFlags>()->IsSoftReferenceClass();
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsFinalizerReferenceInstance() {
return GetClass<kVerifyFlags>()->IsFinalizerReferenceClass();
}
template<VerifyObjectFlags kVerifyFlags>
inline FinalizerReference* Object::AsFinalizerReference() {
DCHECK(IsFinalizerReferenceInstance<kVerifyFlags>());
return down_cast<FinalizerReference*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsPhantomReferenceInstance() {
return GetClass<kVerifyFlags>()->IsPhantomReferenceClass();
}
template<VerifyObjectFlags kVerifyFlags>
inline size_t Object::SizeOf() {
// Read barrier is never required for SizeOf since objects sizes are constant. Reading from-space
// values is OK because of that.
static constexpr ReadBarrierOption kRBO = kWithoutReadBarrier;
size_t result;
constexpr VerifyObjectFlags kNewFlags = RemoveThisFlags(kVerifyFlags);
if (IsArrayInstance<kVerifyFlags>()) {
result = AsArray<kNewFlags>()->template SizeOf<kNewFlags, kRBO>();
} else if (IsClass<kNewFlags>()) {
result = AsClass<kNewFlags>()->template SizeOf<kNewFlags, kRBO>();
} else if (GetClass<kNewFlags, kRBO>()->IsStringClass()) {
result = AsString<kNewFlags, kRBO>()->template SizeOf<kNewFlags>();
} else {
result = GetClass<kNewFlags, kRBO>()->template GetObjectSize<kNewFlags>();
}
DCHECK_GE(result, sizeof(Object)) << " class=" << Class::PrettyClass(GetClass<kNewFlags, kRBO>());
return result;
}
template<VerifyObjectFlags kVerifyFlags, bool kIsVolatile>
inline int8_t Object::GetFieldByte(MemberOffset field_offset) {
Verify<kVerifyFlags>();
return GetFieldPrimitive<int8_t, kIsVolatile>(field_offset);
}
template<VerifyObjectFlags kVerifyFlags>
inline uint8_t Object::GetFieldBooleanVolatile(MemberOffset field_offset) {
return GetFieldBoolean<kVerifyFlags, true>(field_offset);
}
template<VerifyObjectFlags kVerifyFlags>
inline int8_t Object::GetFieldByteVolatile(MemberOffset field_offset) {
return GetFieldByte<kVerifyFlags, true>(field_offset);
}
template<bool kTransactionActive,
bool kCheckTransaction,
VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetFieldBoolean(MemberOffset field_offset, uint8_t new_value) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
Runtime::Current()->RecordWriteFieldBoolean(
this,
field_offset,
GetFieldBoolean<kVerifyFlags, kIsVolatile>(field_offset),
kIsVolatile);
}
Verify<kVerifyFlags>();
SetFieldPrimitive<uint8_t, kIsVolatile>(field_offset, new_value);
}
template<bool kTransactionActive,
bool kCheckTransaction,
VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetFieldByte(MemberOffset field_offset, int8_t new_value) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
Runtime::Current()->RecordWriteFieldByte(this,
field_offset,
GetFieldByte<kVerifyFlags, kIsVolatile>(field_offset),
kIsVolatile);
}
Verify<kVerifyFlags>();
SetFieldPrimitive<int8_t, kIsVolatile>(field_offset, new_value);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::SetFieldBooleanVolatile(MemberOffset field_offset, uint8_t new_value) {
return SetFieldBoolean<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(
field_offset, new_value);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::SetFieldByteVolatile(MemberOffset field_offset, int8_t new_value) {
return SetFieldByte<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(
field_offset, new_value);
}
template<VerifyObjectFlags kVerifyFlags, bool kIsVolatile>
inline uint16_t Object::GetFieldChar(MemberOffset field_offset) {
Verify<kVerifyFlags>();
return GetFieldPrimitive<uint16_t, kIsVolatile>(field_offset);
}
template<VerifyObjectFlags kVerifyFlags, bool kIsVolatile>
inline int16_t Object::GetFieldShort(MemberOffset field_offset) {
Verify<kVerifyFlags>();
return GetFieldPrimitive<int16_t, kIsVolatile>(field_offset);
}
template<VerifyObjectFlags kVerifyFlags>
inline uint16_t Object::GetFieldCharVolatile(MemberOffset field_offset) {
return GetFieldChar<kVerifyFlags, true>(field_offset);
}
template<VerifyObjectFlags kVerifyFlags>
inline int16_t Object::GetFieldShortVolatile(MemberOffset field_offset) {
return GetFieldShort<kVerifyFlags, true>(field_offset);
}
template<bool kTransactionActive,
bool kCheckTransaction,
VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetFieldChar(MemberOffset field_offset, uint16_t new_value) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
Runtime::Current()->RecordWriteFieldChar(this,
field_offset,
GetFieldChar<kVerifyFlags, kIsVolatile>(field_offset),
kIsVolatile);
}
Verify<kVerifyFlags>();
SetFieldPrimitive<uint16_t, kIsVolatile>(field_offset, new_value);
}
template<bool kTransactionActive,
bool kCheckTransaction,
VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetFieldShort(MemberOffset field_offset, int16_t new_value) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
Runtime::Current()->RecordWriteFieldChar(this,
field_offset,
GetFieldShort<kVerifyFlags, kIsVolatile>(field_offset),
kIsVolatile);
}
Verify<kVerifyFlags>();
SetFieldPrimitive<int16_t, kIsVolatile>(field_offset, new_value);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::SetFieldCharVolatile(MemberOffset field_offset, uint16_t new_value) {
return SetFieldChar<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(
field_offset, new_value);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::SetFieldShortVolatile(MemberOffset field_offset, int16_t new_value) {
return SetFieldShort<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(
field_offset, new_value);
}
template<bool kTransactionActive,
bool kCheckTransaction,
VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetField32(MemberOffset field_offset, int32_t new_value) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
Runtime::Current()->RecordWriteField32(this,
field_offset,
GetField32<kVerifyFlags, kIsVolatile>(field_offset),
kIsVolatile);
}
Verify<kVerifyFlags>();
SetFieldPrimitive<int32_t, kIsVolatile>(field_offset, new_value);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::SetField32Volatile(MemberOffset field_offset, int32_t new_value) {
SetField32<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset, new_value);
}
template<bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile>
inline void Object::SetField32Transaction(MemberOffset field_offset, int32_t new_value) {
if (Runtime::Current()->IsActiveTransaction()) {
SetField32<true, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value);
} else {
SetField32<false, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value);
}
}
template<bool kTransactionActive,
bool kCheckTransaction,
VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetField64(MemberOffset field_offset, int64_t new_value) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
Runtime::Current()->RecordWriteField64(this,
field_offset,
GetField64<kVerifyFlags, kIsVolatile>(field_offset),
kIsVolatile);
}
Verify<kVerifyFlags>();
SetFieldPrimitive<int64_t, kIsVolatile>(field_offset, new_value);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::SetField64Volatile(MemberOffset field_offset, int64_t new_value) {
return SetField64<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset,
new_value);
}
template<bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile>
inline void Object::SetField64Transaction(MemberOffset field_offset, int32_t new_value) {
if (Runtime::Current()->IsActiveTransaction()) {
SetField64<true, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value);
} else {
SetField64<false, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value);
}
}
template<typename kSize>
inline kSize Object::GetFieldAcquire(MemberOffset field_offset) {
const uint8_t* raw_addr = reinterpret_cast<const uint8_t*>(this) + field_offset.Int32Value();
const kSize* addr = reinterpret_cast<const kSize*>(raw_addr);
return reinterpret_cast<const Atomic<kSize>*>(addr)->load(std::memory_order_acquire);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline bool Object::CasFieldWeakSequentiallyConsistent64(MemberOffset field_offset,
int64_t old_value,
int64_t new_value) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true);
}
Verify<kVerifyFlags>();
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
Atomic<int64_t>* atomic_addr = reinterpret_cast<Atomic<int64_t>*>(raw_addr);
return atomic_addr->CompareAndSetWeakSequentiallyConsistent(old_value, new_value);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline bool Object::CasFieldStrongSequentiallyConsistent64(MemberOffset field_offset,
int64_t old_value,
int64_t new_value) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true);
}
Verify<kVerifyFlags>();
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
Atomic<int64_t>* atomic_addr = reinterpret_cast<Atomic<int64_t>*>(raw_addr);
return atomic_addr->CompareAndSetStrongSequentiallyConsistent(old_value, new_value);
}
/*
* Returns a pointer to an object representing what the field points to, not an
* object representing the field.
*/
template<class T,
VerifyObjectFlags kVerifyFlags,
ReadBarrierOption kReadBarrierOption,
bool kIsVolatile>
inline T* Object::GetFieldObject(MemberOffset field_offset) {
Verify<kVerifyFlags>();
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
HeapReference<T>* objref_addr = reinterpret_cast<HeapReference<T>*>(raw_addr);
T* result = ReadBarrier::Barrier<T, kIsVolatile, kReadBarrierOption>(
this,
field_offset,
objref_addr);
VerifyRead<kVerifyFlags>(result);
return result;
}
template<class T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline T* Object::GetFieldObjectVolatile(MemberOffset field_offset) {
return GetFieldObject<T, kVerifyFlags, kReadBarrierOption, true>(field_offset);
}
template<bool kTransactionActive,
bool kCheckTransaction,
VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetFieldObjectWithoutWriteBarrier(MemberOffset field_offset,
ObjPtr<Object> new_value) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
ObjPtr<Object> obj;
if (kIsVolatile) {
obj = GetFieldObjectVolatile<Object>(field_offset);
} else {
obj = GetFieldObject<Object>(field_offset);
}
Runtime::Current()->RecordWriteFieldReference(this, field_offset, obj, true);
}
Verify<kVerifyFlags>();
VerifyWrite<kVerifyFlags>(new_value);
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
HeapReference<Object>* objref_addr = reinterpret_cast<HeapReference<Object>*>(raw_addr);
objref_addr->Assign<kIsVolatile>(new_value.Ptr());
}
template<bool kTransactionActive,
bool kCheckTransaction,
VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetFieldObject(MemberOffset field_offset, ObjPtr<Object> new_value) {
SetFieldObjectWithoutWriteBarrier<kTransactionActive, kCheckTransaction, kVerifyFlags,
kIsVolatile>(field_offset, new_value);
if (new_value != nullptr) {
WriteBarrier::ForFieldWrite<WriteBarrier::kWithoutNullCheck>(this, field_offset, new_value);
// TODO: Check field assignment could theoretically cause thread suspension, TODO: fix this.
CheckFieldAssignment(field_offset, new_value);
}
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::SetFieldObjectVolatile(MemberOffset field_offset, ObjPtr<Object> new_value) {
SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset,
new_value);
}
template<bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile>
inline void Object::SetFieldObjectTransaction(MemberOffset field_offset, ObjPtr<Object> new_value) {
if (Runtime::Current()->IsActiveTransaction()) {
SetFieldObject<true, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value);
} else {
SetFieldObject<false, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value);
}
}
template <VerifyObjectFlags kVerifyFlags>
inline HeapReference<Object>* Object::GetFieldObjectReferenceAddr(MemberOffset field_offset) {
Verify<kVerifyFlags>();
return reinterpret_cast<HeapReference<Object>*>(reinterpret_cast<uint8_t*>(this) +
field_offset.Int32Value());
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline bool Object::CasFieldObjectWithoutWriteBarrier(MemberOffset field_offset,
ObjPtr<Object> old_value,
ObjPtr<Object> new_value,
CASMode mode,
std::memory_order memory_order) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
VerifyCAS<kVerifyFlags>(new_value, old_value);
if (kTransactionActive) {
Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true);
}
uint32_t old_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(old_value));
uint32_t new_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(new_value));
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr);
return atomic_addr->CompareAndSet(old_ref, new_ref, mode, memory_order);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline bool Object::CasFieldObject(MemberOffset field_offset,
ObjPtr<Object> old_value,
ObjPtr<Object> new_value,
CASMode mode,
std::memory_order memory_order) {
bool success = CasFieldObjectWithoutWriteBarrier<
kTransactionActive, kCheckTransaction, kVerifyFlags>(field_offset,
old_value,
new_value,
mode,
memory_order);
if (success) {
WriteBarrier::ForFieldWrite(this, field_offset, new_value);
}
return success;
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline ObjPtr<Object> Object::CompareAndExchangeFieldObject(MemberOffset field_offset,
ObjPtr<Object> old_value,
ObjPtr<Object> new_value) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
VerifyCAS<kVerifyFlags>(new_value, old_value);
uint32_t old_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(old_value));
uint32_t new_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(new_value));
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr);
bool success = atomic_addr->compare_exchange_strong(old_ref, new_ref, std::memory_order_seq_cst);
ObjPtr<Object> witness_value(PtrCompression<kPoisonHeapReferences, Object>::Decompress(old_ref));
if (kIsDebugBuild) {
// Ensure caller has done read barrier on the reference field so it's in the to-space.
ReadBarrier::AssertToSpaceInvariant(witness_value.Ptr());
}
if (success) {
if (kTransactionActive) {
Runtime::Current()->RecordWriteFieldReference(this, field_offset, witness_value, true);
}
WriteBarrier::ForFieldWrite(this, field_offset, new_value);
}
VerifyRead<kVerifyFlags>(witness_value);
return witness_value;
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline ObjPtr<Object> Object::ExchangeFieldObject(MemberOffset field_offset,
ObjPtr<Object> new_value) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
VerifyCAS<kVerifyFlags>(new_value, /*old_value=*/ nullptr);
uint32_t new_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(new_value));
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr);
uint32_t old_ref = atomic_addr->exchange(new_ref, std::memory_order_seq_cst);
ObjPtr<Object> old_value(PtrCompression<kPoisonHeapReferences, Object>::Decompress(old_ref));
if (kIsDebugBuild) {
// Ensure caller has done read barrier on the reference field so it's in the to-space.
ReadBarrier::AssertToSpaceInvariant(old_value.Ptr());
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true);
}
WriteBarrier::ForFieldWrite(this, field_offset, new_value);
VerifyRead<kVerifyFlags>(old_value);
return old_value;
}
template<typename T, VerifyObjectFlags kVerifyFlags>
inline void Object::GetPrimitiveFieldViaAccessor(MemberOffset field_offset, Accessor<T>* accessor) {
Verify<kVerifyFlags>();
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
T* addr = reinterpret_cast<T*>(raw_addr);
accessor->Access(addr);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::UpdateFieldBooleanViaAccessor(MemberOffset field_offset,
Accessor<uint8_t>* accessor) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
static const bool kIsVolatile = true;
uint8_t old_value = GetFieldBoolean<kVerifyFlags, kIsVolatile>(field_offset);
Runtime::Current()->RecordWriteFieldBoolean(this, field_offset, old_value, kIsVolatile);
}
Verify<kVerifyFlags>();
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
uint8_t* addr = raw_addr;
accessor->Access(addr);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::UpdateFieldByteViaAccessor(MemberOffset field_offset,
Accessor<int8_t>* accessor) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
static const bool kIsVolatile = true;
int8_t old_value = GetFieldByte<kVerifyFlags, kIsVolatile>(field_offset);
Runtime::Current()->RecordWriteFieldByte(this, field_offset, old_value, kIsVolatile);
}
Verify<kVerifyFlags>();
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
int8_t* addr = reinterpret_cast<int8_t*>(raw_addr);
accessor->Access(addr);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::UpdateFieldCharViaAccessor(MemberOffset field_offset,
Accessor<uint16_t>* accessor) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
static const bool kIsVolatile = true;
uint16_t old_value = GetFieldChar<kVerifyFlags, kIsVolatile>(field_offset);
Runtime::Current()->RecordWriteFieldChar(this, field_offset, old_value, kIsVolatile);
}
Verify<kVerifyFlags>();
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
uint16_t* addr = reinterpret_cast<uint16_t*>(raw_addr);
accessor->Access(addr);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::UpdateFieldShortViaAccessor(MemberOffset field_offset,
Accessor<int16_t>* accessor) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
static const bool kIsVolatile = true;
int16_t old_value = GetFieldShort<kVerifyFlags, kIsVolatile>(field_offset);
Runtime::Current()->RecordWriteFieldShort(this, field_offset, old_value, kIsVolatile);
}
Verify<kVerifyFlags>();
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
int16_t* addr = reinterpret_cast<int16_t*>(raw_addr);
accessor->Access(addr);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::UpdateField32ViaAccessor(MemberOffset field_offset,
Accessor<int32_t>* accessor) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
static const bool kIsVolatile = true;
int32_t old_value = GetField32<kVerifyFlags, kIsVolatile>(field_offset);
Runtime::Current()->RecordWriteField32(this, field_offset, old_value, kIsVolatile);
}
Verify<kVerifyFlags>();
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
int32_t* addr = reinterpret_cast<int32_t*>(raw_addr);
accessor->Access(addr);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::UpdateField64ViaAccessor(MemberOffset field_offset,
Accessor<int64_t>* accessor) {
VerifyTransaction<kTransactionActive, kCheckTransaction>();
if (kTransactionActive) {
static const bool kIsVolatile = true;
int64_t old_value = GetField64<kVerifyFlags, kIsVolatile>(field_offset);
Runtime::Current()->RecordWriteField64(this, field_offset, old_value, kIsVolatile);
}
Verify<kVerifyFlags>();
uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
int64_t* addr = reinterpret_cast<int64_t*>(raw_addr);
accessor->Access(addr);
}
template<bool kIsStatic,
VerifyObjectFlags kVerifyFlags,
ReadBarrierOption kReadBarrierOption,
typename Visitor>
inline void Object::VisitFieldsReferences(uint32_t ref_offsets, const Visitor& visitor) {
if (!kIsStatic && (ref_offsets != mirror::Class::kClassWalkSuper)) {
// Instance fields and not the slow-path.
uint32_t field_offset = mirror::kObjectHeaderSize;
while (ref_offsets != 0) {
if ((ref_offsets & 1) != 0) {
visitor(this, MemberOffset(field_offset), kIsStatic);
}
ref_offsets >>= 1;
field_offset += sizeof(mirror::HeapReference<mirror::Object>);
}
} else {
// There is no reference offset bitmap. In the non-static case, walk up the class
// inheritance hierarchy and find reference offsets the hard way. In the static case, just
// consider this class.
for (ObjPtr<Class> klass = kIsStatic
? AsClass<kVerifyFlags>()
: GetClass<kVerifyFlags, kReadBarrierOption>();
klass != nullptr;
klass = kIsStatic ? nullptr : klass->GetSuperClass<kVerifyFlags, kReadBarrierOption>()) {
const size_t num_reference_fields =
kIsStatic ? klass->NumReferenceStaticFields() : klass->NumReferenceInstanceFields();
if (num_reference_fields == 0u) {
continue;
}
// Presumably GC can happen when we are cross compiling, it should not cause performance
// problems to do pointer size logic.
MemberOffset field_offset = kIsStatic
? klass->GetFirstReferenceStaticFieldOffset<kVerifyFlags>(
Runtime::Current()->GetClassLinker()->GetImagePointerSize())
: klass->GetFirstReferenceInstanceFieldOffset<kVerifyFlags, kReadBarrierOption>();
for (size_t i = 0u; i < num_reference_fields; ++i) {
// TODO: Do a simpler check?
if (field_offset.Uint32Value() != ClassOffset().Uint32Value()) {
visitor(this, field_offset, kIsStatic);
}
field_offset = MemberOffset(field_offset.Uint32Value() +
sizeof(mirror::HeapReference<mirror::Object>));
}
}
}
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void Object::VisitInstanceFieldsReferences(ObjPtr<Class> klass, const Visitor& visitor) {
VisitFieldsReferences<false, kVerifyFlags, kReadBarrierOption>(
klass->GetReferenceInstanceOffsets<kVerifyFlags>(), visitor);
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void Object::VisitStaticFieldsReferences(ObjPtr<Class> klass, const Visitor& visitor) {
DCHECK(!klass->IsTemp<kVerifyFlags>());
klass->VisitFieldsReferences<true, kVerifyFlags, kReadBarrierOption>(0, visitor);
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline bool Object::IsClassLoader() {
return GetClass<kVerifyFlags, kReadBarrierOption>()->template IsClassLoaderClass<kVerifyFlags>();
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline mirror::ClassLoader* Object::AsClassLoader() {
DCHECK((IsClassLoader<kVerifyFlags, kReadBarrierOption>()));
return down_cast<mirror::ClassLoader*>(this);
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline bool Object::IsDexCache() {
return GetClass<kVerifyFlags, kReadBarrierOption>()->template IsDexCacheClass<kVerifyFlags>();
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline mirror::DexCache* Object::AsDexCache() {
DCHECK((IsDexCache<kVerifyFlags, kReadBarrierOption>()));
return down_cast<mirror::DexCache*>(this);
}
template<bool kTransactionActive, bool kCheckTransaction>
inline void Object::VerifyTransaction() {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_OBJECT_INL_H_