blob: 60e62669cc9bb8e6e202b76541c587c9f445820e [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Mterp entry point and support functions.
*/
#include "interpreter/interpreter_common.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "mterp.h"
#include "jit/jit.h"
#include "jit/jit_instrumentation.h"
#include "debugger.h"
namespace art {
namespace interpreter {
/*
* Verify some constants used by the mterp interpreter.
*/
void CheckMterpAsmConstants() {
/*
* If we're using computed goto instruction transitions, make sure
* none of the handlers overflows the 128-byte limit. This won't tell
* which one did, but if any one is too big the total size will
* overflow.
*/
const int width = 128;
int interp_size = (uintptr_t) artMterpAsmInstructionEnd -
(uintptr_t) artMterpAsmInstructionStart;
if ((interp_size == 0) || (interp_size != (art::kNumPackedOpcodes * width))) {
LOG(art::FATAL) << "ERROR: unexpected asm interp size " << interp_size
<< "(did an instruction handler exceed " << width << " bytes?)";
}
}
void InitMterpTls(Thread* self) {
self->SetMterpDefaultIBase(artMterpAsmInstructionStart);
self->SetMterpAltIBase(artMterpAsmAltInstructionStart);
self->SetMterpCurrentIBase(TraceExecutionEnabled() ?
artMterpAsmAltInstructionStart :
artMterpAsmInstructionStart);
}
/*
* Find the matching case. Returns the offset to the handler instructions.
*
* Returns 3 if we don't find a match (it's the size of the sparse-switch
* instruction).
*/
extern "C" int32_t MterpDoSparseSwitch(const uint16_t* switchData, int32_t testVal) {
const int kInstrLen = 3;
uint16_t size;
const int32_t* keys;
const int32_t* entries;
/*
* Sparse switch data format:
* ushort ident = 0x0200 magic value
* ushort size number of entries in the table; > 0
* int keys[size] keys, sorted low-to-high; 32-bit aligned
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (2+size*4) 16-bit code units.
*/
uint16_t signature = *switchData++;
DCHECK_EQ(signature, static_cast<uint16_t>(art::Instruction::kSparseSwitchSignature));
size = *switchData++;
/* The keys are guaranteed to be aligned on a 32-bit boundary;
* we can treat them as a native int array.
*/
keys = reinterpret_cast<const int32_t*>(switchData);
/* The entries are guaranteed to be aligned on a 32-bit boundary;
* we can treat them as a native int array.
*/
entries = keys + size;
/*
* Binary-search through the array of keys, which are guaranteed to
* be sorted low-to-high.
*/
int lo = 0;
int hi = size - 1;
while (lo <= hi) {
int mid = (lo + hi) >> 1;
int32_t foundVal = keys[mid];
if (testVal < foundVal) {
hi = mid - 1;
} else if (testVal > foundVal) {
lo = mid + 1;
} else {
return entries[mid];
}
}
return kInstrLen;
}
extern "C" int32_t MterpDoPackedSwitch(const uint16_t* switchData, int32_t testVal) {
const int kInstrLen = 3;
/*
* Packed switch data format:
* ushort ident = 0x0100 magic value
* ushort size number of entries in the table
* int first_key first (and lowest) switch case value
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (4+size*2) 16-bit code units.
*/
uint16_t signature = *switchData++;
DCHECK_EQ(signature, static_cast<uint16_t>(art::Instruction::kPackedSwitchSignature));
uint16_t size = *switchData++;
int32_t firstKey = *switchData++;
firstKey |= (*switchData++) << 16;
int index = testVal - firstKey;
if (index < 0 || index >= size) {
return kInstrLen;
}
/*
* The entries are guaranteed to be aligned on a 32-bit boundary;
* we can treat them as a native int array.
*/
const int32_t* entries = reinterpret_cast<const int32_t*>(switchData);
return entries[index];
}
extern "C" bool MterpShouldSwitchInterpreters()
SHARED_REQUIRES(Locks::mutator_lock_) {
const instrumentation::Instrumentation* const instrumentation =
Runtime::Current()->GetInstrumentation();
return instrumentation->NonJitProfilingActive() || Dbg::IsDebuggerActive();
}
extern "C" bool MterpInvokeVirtual(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvoke<kVirtual, false, false>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" bool MterpInvokeSuper(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvoke<kSuper, false, false>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" bool MterpInvokeInterface(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvoke<kInterface, false, false>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" bool MterpInvokeDirect(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvoke<kDirect, false, false>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" bool MterpInvokeStatic(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvoke<kStatic, false, false>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" bool MterpInvokeVirtualRange(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvoke<kVirtual, true, false>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" bool MterpInvokeSuperRange(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvoke<kSuper, true, false>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" bool MterpInvokeInterfaceRange(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvoke<kInterface, true, false>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" bool MterpInvokeDirectRange(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvoke<kDirect, true, false>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" bool MterpInvokeStaticRange(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvoke<kStatic, true, false>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" bool MterpInvokeVirtualQuick(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvokeVirtualQuick<false>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" bool MterpInvokeVirtualQuickRange(Thread* self, ShadowFrame* shadow_frame,
uint16_t* dex_pc_ptr, uint16_t inst_data )
SHARED_REQUIRES(Locks::mutator_lock_) {
JValue* result_register = shadow_frame->GetResultRegister();
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoInvokeVirtualQuick<true>(
self, *shadow_frame, inst, inst_data, result_register);
}
extern "C" void MterpThreadFenceForConstructor() {
QuasiAtomic::ThreadFenceForConstructor();
}
extern "C" bool MterpConstString(uint32_t index, uint32_t tgt_vreg, ShadowFrame* shadow_frame,
Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
String* s = ResolveString(self, *shadow_frame, index);
if (UNLIKELY(s == nullptr)) {
return true;
}
shadow_frame->SetVRegReference(tgt_vreg, s);
return false;
}
extern "C" bool MterpConstClass(uint32_t index, uint32_t tgt_vreg, ShadowFrame* shadow_frame,
Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
Class* c = ResolveVerifyAndClinit(index, shadow_frame->GetMethod(), self, false, false);
if (UNLIKELY(c == nullptr)) {
return true;
}
shadow_frame->SetVRegReference(tgt_vreg, c);
return false;
}
extern "C" bool MterpCheckCast(uint32_t index, StackReference<mirror::Object>* vreg_addr,
art::ArtMethod* method, Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
Class* c = ResolveVerifyAndClinit(index, method, self, false, false);
if (UNLIKELY(c == nullptr)) {
return true;
}
// Must load obj from vreg following ResolveVerifyAndClinit due to moving gc.
Object* obj = vreg_addr->AsMirrorPtr();
if (UNLIKELY(obj != nullptr && !obj->InstanceOf(c))) {
ThrowClassCastException(c, obj->GetClass());
return true;
}
return false;
}
extern "C" bool MterpInstanceOf(uint32_t index, StackReference<mirror::Object>* vreg_addr,
art::ArtMethod* method, Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
Class* c = ResolveVerifyAndClinit(index, method, self, false, false);
if (UNLIKELY(c == nullptr)) {
return false; // Caller will check for pending exception. Return value unimportant.
}
// Must load obj from vreg following ResolveVerifyAndClinit due to moving gc.
Object* obj = vreg_addr->AsMirrorPtr();
return (obj != nullptr) && obj->InstanceOf(c);
}
extern "C" bool MterpFillArrayData(Object* obj, const Instruction::ArrayDataPayload* payload)
SHARED_REQUIRES(Locks::mutator_lock_) {
return FillArrayData(obj, payload);
}
extern "C" bool MterpNewInstance(ShadowFrame* shadow_frame, Thread* self, uint32_t inst_data)
SHARED_REQUIRES(Locks::mutator_lock_) {
const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
Object* obj = nullptr;
Class* c = ResolveVerifyAndClinit(inst->VRegB_21c(), shadow_frame->GetMethod(),
self, false, false);
if (LIKELY(c != nullptr)) {
if (UNLIKELY(c->IsStringClass())) {
gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator();
mirror::SetStringCountVisitor visitor(0);
obj = String::Alloc<true>(self, 0, allocator_type, visitor);
} else {
obj = AllocObjectFromCode<false, true>(
inst->VRegB_21c(), shadow_frame->GetMethod(), self,
Runtime::Current()->GetHeap()->GetCurrentAllocator());
}
}
if (UNLIKELY(obj == nullptr)) {
return false;
}
obj->GetClass()->AssertInitializedOrInitializingInThread(self);
shadow_frame->SetVRegReference(inst->VRegA_21c(inst_data), obj);
return true;
}
extern "C" bool MterpSputObject(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr,
uint32_t inst_data, Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoFieldPut<StaticObjectWrite, Primitive::kPrimNot, false, false>
(self, *shadow_frame, inst, inst_data);
}
extern "C" bool MterpIputObject(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr,
uint32_t inst_data, Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoFieldPut<InstanceObjectWrite, Primitive::kPrimNot, false, false>
(self, *shadow_frame, inst, inst_data);
}
extern "C" bool MterpIputObjectQuick(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr,
uint32_t inst_data)
SHARED_REQUIRES(Locks::mutator_lock_) {
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoIPutQuick<Primitive::kPrimNot, false>(*shadow_frame, inst, inst_data);
}
extern "C" bool MterpAputObject(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr,
uint32_t inst_data)
SHARED_REQUIRES(Locks::mutator_lock_) {
const Instruction* inst = Instruction::At(dex_pc_ptr);
Object* a = shadow_frame->GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == nullptr)) {
return false;
}
int32_t index = shadow_frame->GetVReg(inst->VRegC_23x());
Object* val = shadow_frame->GetVRegReference(inst->VRegA_23x(inst_data));
ObjectArray<Object>* array = a->AsObjectArray<Object>();
if (array->CheckIsValidIndex(index) && array->CheckAssignable(val)) {
array->SetWithoutChecks<false>(index, val);
return true;
}
return false;
}
extern "C" bool MterpFilledNewArray(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr,
Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoFilledNewArray<false, false, false>(inst, *shadow_frame, self,
shadow_frame->GetResultRegister());
}
extern "C" bool MterpFilledNewArrayRange(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr,
Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
const Instruction* inst = Instruction::At(dex_pc_ptr);
return DoFilledNewArray<true, false, false>(inst, *shadow_frame, self,
shadow_frame->GetResultRegister());
}
extern "C" bool MterpNewArray(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr,
uint32_t inst_data, Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
const Instruction* inst = Instruction::At(dex_pc_ptr);
int32_t length = shadow_frame->GetVReg(inst->VRegB_22c(inst_data));
Object* obj = AllocArrayFromCode<false, true>(
inst->VRegC_22c(), length, shadow_frame->GetMethod(), self,
Runtime::Current()->GetHeap()->GetCurrentAllocator());
if (UNLIKELY(obj == nullptr)) {
return false;
}
shadow_frame->SetVRegReference(inst->VRegA_22c(inst_data), obj);
return true;
}
extern "C" bool MterpHandleException(Thread* self, ShadowFrame* shadow_frame)
SHARED_REQUIRES(Locks::mutator_lock_) {
DCHECK(self->IsExceptionPending());
const instrumentation::Instrumentation* const instrumentation =
Runtime::Current()->GetInstrumentation();
uint32_t found_dex_pc = FindNextInstructionFollowingException(self, *shadow_frame,
shadow_frame->GetDexPC(),
instrumentation);
if (found_dex_pc == DexFile::kDexNoIndex) {
return false;
}
// OK - we can deal with it. Update and continue.
shadow_frame->SetDexPC(found_dex_pc);
return true;
}
extern "C" void MterpCheckBefore(Thread* self, ShadowFrame* shadow_frame)
SHARED_REQUIRES(Locks::mutator_lock_) {
const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
uint16_t inst_data = inst->Fetch16(0);
if (inst->Opcode(inst_data) == Instruction::MOVE_EXCEPTION) {
self->AssertPendingException();
} else {
self->AssertNoPendingException();
}
TraceExecution(*shadow_frame, inst, shadow_frame->GetDexPC());
}
extern "C" void MterpLogDivideByZeroException(Thread* self, ShadowFrame* shadow_frame)
SHARED_REQUIRES(Locks::mutator_lock_) {
UNUSED(self);
const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
uint16_t inst_data = inst->Fetch16(0);
LOG(INFO) << "DivideByZero: " << inst->Opcode(inst_data);
}
extern "C" void MterpLogArrayIndexException(Thread* self, ShadowFrame* shadow_frame)
SHARED_REQUIRES(Locks::mutator_lock_) {
UNUSED(self);
const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
uint16_t inst_data = inst->Fetch16(0);
LOG(INFO) << "ArrayIndex: " << inst->Opcode(inst_data);
}
extern "C" void MterpLogNegativeArraySizeException(Thread* self, ShadowFrame* shadow_frame)
SHARED_REQUIRES(Locks::mutator_lock_) {
UNUSED(self);
const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
uint16_t inst_data = inst->Fetch16(0);
LOG(INFO) << "NegativeArraySize: " << inst->Opcode(inst_data);
}
extern "C" void MterpLogNoSuchMethodException(Thread* self, ShadowFrame* shadow_frame)
SHARED_REQUIRES(Locks::mutator_lock_) {
UNUSED(self);
const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
uint16_t inst_data = inst->Fetch16(0);
LOG(INFO) << "NoSuchMethod: " << inst->Opcode(inst_data);
}
extern "C" void MterpLogExceptionThrownException(Thread* self, ShadowFrame* shadow_frame)
SHARED_REQUIRES(Locks::mutator_lock_) {
UNUSED(self);
const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
uint16_t inst_data = inst->Fetch16(0);
LOG(INFO) << "ExceptionThrown: " << inst->Opcode(inst_data);
}
extern "C" void MterpLogNullObjectException(Thread* self, ShadowFrame* shadow_frame)
SHARED_REQUIRES(Locks::mutator_lock_) {
UNUSED(self);
const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
uint16_t inst_data = inst->Fetch16(0);
LOG(INFO) << "NullObject: " << inst->Opcode(inst_data);
}
extern "C" void MterpLogFallback(Thread* self, ShadowFrame* shadow_frame)
SHARED_REQUIRES(Locks::mutator_lock_) {
UNUSED(self);
const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
uint16_t inst_data = inst->Fetch16(0);
LOG(INFO) << "Fallback: " << inst->Opcode(inst_data) << ", Suspend Pending?: "
<< self->IsExceptionPending();
}
extern "C" void MterpLogOSR(Thread* self, ShadowFrame* shadow_frame, int32_t offset)
SHARED_REQUIRES(Locks::mutator_lock_) {
UNUSED(self);
const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
uint16_t inst_data = inst->Fetch16(0);
LOG(INFO) << "OSR: " << inst->Opcode(inst_data) << ", offset = " << offset;
}
extern "C" void MterpLogSuspendFallback(Thread* self, ShadowFrame* shadow_frame, uint32_t flags)
SHARED_REQUIRES(Locks::mutator_lock_) {
UNUSED(self);
const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
uint16_t inst_data = inst->Fetch16(0);
if (flags & kCheckpointRequest) {
LOG(INFO) << "Checkpoint fallback: " << inst->Opcode(inst_data);
} else if (flags & kSuspendRequest) {
LOG(INFO) << "Suspend fallback: " << inst->Opcode(inst_data);
}
}
extern "C" bool MterpSuspendCheck(Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
self->AllowThreadSuspension();
return MterpShouldSwitchInterpreters();
}
extern "C" int artSet64IndirectStaticFromMterp(uint32_t field_idx, ArtMethod* referrer,
uint64_t* new_value, Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
ScopedQuickEntrypointChecks sqec(self);
ArtField* field = FindFieldFast(field_idx, referrer, StaticPrimitiveWrite, sizeof(int64_t));
if (LIKELY(field != nullptr)) {
// Compiled code can't use transactional mode.
field->Set64<false>(field->GetDeclaringClass(), *new_value);
return 0; // success
}
field = FindFieldFromCode<StaticPrimitiveWrite, true>(field_idx, referrer, self, sizeof(int64_t));
if (LIKELY(field != nullptr)) {
// Compiled code can't use transactional mode.
field->Set64<false>(field->GetDeclaringClass(), *new_value);
return 0; // success
}
return -1; // failure
}
extern "C" int artSet8InstanceFromMterp(uint32_t field_idx, mirror::Object* obj, uint8_t new_value,
ArtMethod* referrer)
SHARED_REQUIRES(Locks::mutator_lock_) {
ArtField* field = FindFieldFast(field_idx, referrer, InstancePrimitiveWrite, sizeof(int8_t));
if (LIKELY(field != nullptr && obj != nullptr)) {
Primitive::Type type = field->GetTypeAsPrimitiveType();
if (type == Primitive::kPrimBoolean) {
field->SetBoolean<false>(obj, new_value);
} else {
DCHECK_EQ(Primitive::kPrimByte, type);
field->SetByte<false>(obj, new_value);
}
return 0; // success
}
return -1; // failure
}
extern "C" int artSet16InstanceFromMterp(uint32_t field_idx, mirror::Object* obj, uint16_t new_value,
ArtMethod* referrer)
SHARED_REQUIRES(Locks::mutator_lock_) {
ArtField* field = FindFieldFast(field_idx, referrer, InstancePrimitiveWrite,
sizeof(int16_t));
if (LIKELY(field != nullptr && obj != nullptr)) {
Primitive::Type type = field->GetTypeAsPrimitiveType();
if (type == Primitive::kPrimChar) {
field->SetChar<false>(obj, new_value);
} else {
DCHECK_EQ(Primitive::kPrimShort, type);
field->SetShort<false>(obj, new_value);
}
return 0; // success
}
return -1; // failure
}
extern "C" int artSet32InstanceFromMterp(uint32_t field_idx, mirror::Object* obj,
uint32_t new_value, ArtMethod* referrer)
SHARED_REQUIRES(Locks::mutator_lock_) {
ArtField* field = FindFieldFast(field_idx, referrer, InstancePrimitiveWrite,
sizeof(int32_t));
if (LIKELY(field != nullptr && obj != nullptr)) {
field->Set32<false>(obj, new_value);
return 0; // success
}
return -1; // failure
}
extern "C" int artSet64InstanceFromMterp(uint32_t field_idx, mirror::Object* obj,
uint64_t* new_value, ArtMethod* referrer)
SHARED_REQUIRES(Locks::mutator_lock_) {
ArtField* field = FindFieldFast(field_idx, referrer, InstancePrimitiveWrite,
sizeof(int64_t));
if (LIKELY(field != nullptr && obj != nullptr)) {
field->Set64<false>(obj, *new_value);
return 0; // success
}
return -1; // failure
}
extern "C" int artSetObjInstanceFromMterp(uint32_t field_idx, mirror::Object* obj,
mirror::Object* new_value, ArtMethod* referrer)
SHARED_REQUIRES(Locks::mutator_lock_) {
ArtField* field = FindFieldFast(field_idx, referrer, InstanceObjectWrite,
sizeof(mirror::HeapReference<mirror::Object>));
if (LIKELY(field != nullptr && obj != nullptr)) {
field->SetObj<false>(obj, new_value);
return 0; // success
}
return -1; // failure
}
extern "C" mirror::Object* artAGetObjectFromMterp(mirror::Object* arr, int32_t index)
SHARED_REQUIRES(Locks::mutator_lock_) {
if (UNLIKELY(arr == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
return nullptr;
}
ObjectArray<Object>* array = arr->AsObjectArray<Object>();
if (LIKELY(array->CheckIsValidIndex(index))) {
return array->GetWithoutChecks(index);
} else {
return nullptr;
}
}
extern "C" mirror::Object* artIGetObjectFromMterp(mirror::Object* obj, uint32_t field_offset)
SHARED_REQUIRES(Locks::mutator_lock_) {
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerExceptionFromInterpreter();
return nullptr;
}
return obj->GetFieldObject<mirror::Object>(MemberOffset(field_offset));
}
/*
* Create a hotness_countdown based on the current method hotness_count and profiling
* mode. In short, determine how many hotness events we hit before reporting back
* to the full instrumentation via MterpAddHotnessBatch. Called once on entry to the method,
* and regenerated following batch updates.
*/
extern "C" int MterpSetUpHotnessCountdown(ArtMethod* method, ShadowFrame* shadow_frame)
SHARED_REQUIRES(Locks::mutator_lock_) {
uint16_t hotness_count = method->GetCounter();
int32_t countdown_value = jit::kJitHotnessDisabled;
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr) {
jit::JitInstrumentationCache* cache = jit->GetInstrumentationCache();
int32_t warm_threshold = cache->WarmMethodThreshold();
int32_t hot_threshold = cache->HotMethodThreshold();
if (hotness_count < warm_threshold) {
countdown_value = warm_threshold - hotness_count;
} else if (hotness_count < hot_threshold) {
countdown_value = hot_threshold - hotness_count;
} else {
countdown_value = jit::kJitCheckForOSR;
}
}
/*
* The actual hotness threshold may exceed the range of our int16_t countdown value. This is
* not a problem, though. We can just break it down into smaller chunks.
*/
countdown_value = std::min(countdown_value,
static_cast<int32_t>(std::numeric_limits<int16_t>::max()));
shadow_frame->SetCachedHotnessCountdown(countdown_value);
shadow_frame->SetHotnessCountdown(countdown_value);
return countdown_value;
}
/*
* Report a batch of hotness events to the instrumentation and then return the new
* countdown value to the next time we should report.
*/
extern "C" int16_t MterpAddHotnessBatch(ArtMethod* method,
ShadowFrame* shadow_frame,
Thread* self)
SHARED_REQUIRES(Locks::mutator_lock_) {
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr) {
int16_t count = shadow_frame->GetCachedHotnessCountdown() - shadow_frame->GetHotnessCountdown();
jit->GetInstrumentationCache()->AddSamples(self, method, count);
}
return MterpSetUpHotnessCountdown(method, shadow_frame);
}
// TUNING: Unused by arm/arm64. Remove when x86/x86_64/mips/mips64 mterps support batch updates.
extern "C" bool MterpProfileBranch(Thread* self, ShadowFrame* shadow_frame, int32_t offset)
SHARED_REQUIRES(Locks::mutator_lock_) {
ArtMethod* method = shadow_frame->GetMethod();
JValue* result = shadow_frame->GetResultRegister();
uint32_t dex_pc = shadow_frame->GetDexPC();
jit::Jit* jit = Runtime::Current()->GetJit();
if ((jit != nullptr) && (offset <= 0)) {
jit->GetInstrumentationCache()->AddSamples(self, method, 1);
}
int16_t countdown_value = MterpSetUpHotnessCountdown(method, shadow_frame);
if (countdown_value == jit::kJitCheckForOSR) {
return jit::Jit::MaybeDoOnStackReplacement(self, method, dex_pc, offset, result);
} else {
return false;
}
}
extern "C" bool MterpMaybeDoOnStackReplacement(Thread* self,
ShadowFrame* shadow_frame,
int32_t offset)
SHARED_REQUIRES(Locks::mutator_lock_) {
ArtMethod* method = shadow_frame->GetMethod();
JValue* result = shadow_frame->GetResultRegister();
uint32_t dex_pc = shadow_frame->GetDexPC();
// Assumes caller has already determined that an OSR check is appropriate.
return jit::Jit::MaybeDoOnStackReplacement(self, method, dex_pc, offset, result);
}
} // namespace interpreter
} // namespace art