blob: 40aaa7dfb500c36113089b8a99768856ad5aa250 [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include "thread.h"
#include <pthread.h>
#include <sys/mman.h>
#include <algorithm>
#include <cerrno>
#include <list>
#include "class_linker.h"
#include "heap.h"
#include "jni_internal.h"
#include "object.h"
#include "runtime.h"
#include "utils.h"
#include "runtime_support.h"
namespace art {
pthread_key_t Thread::pthread_key_self_;
void Thread::InitFunctionPointers() {
#if defined(__arm__)
pShlLong = art_shl_long;
pShrLong = art_shr_long;
pUshrLong = art_ushr_long;
#endif
pArtAllocArrayByClass = Array::Alloc;
pMemcpy = memcpy;
#if 0
//void* (Thread::*pMemcpy)(void*, const void*, size_t) /* = memcpy*/ ;
float (Thread::*pI2f)(int);
int (Thread::*pF2iz)(float);
float (Thread::*pD2f)(double);
double (Thread::*pF2d)(float);
double (Thread::*pI2d)(int);
int (Thread::*pD2iz)(double);
float (Thread::*pL2f)(long);
double (Thread::*pL2d)(long);
long long (Thread::*pArtF2l)(float);
long long (Thread::*pArtD2l)(double);
float (Thread::*pFadd)(float, float);
float (Thread::*pFsub)(float, float);
float (Thread::*pFdiv)(float, float);
float (Thread::*pFmul)(float, float);
float (Thread::*pFmodf)(float, float);
double (Thread::*pDadd)(double, double);
double (Thread::*pDsub)(double, double);
double (Thread::*pDdiv)(double, double);
double (Thread::*pDmul)(double, double);
double (Thread::*pFmod)(double, double);
int (Thread::*pIdivmod)(int, int);
int (Thread::*pIdiv)(int, int);
long long (Thread::*pLdivmod)(long long, long long);
bool (Thread::*pArtUnlockObject)(struct Thread*, struct Object*);
bool (Thread::*pArtCanPutArrayElementNoThrow)(const struct ClassObject*,
const struct ClassObject*);
int (Thread::*pArtInstanceofNonTrivialNoThrow)
(const struct ClassObject*, const struct ClassObject*);
int (Thread::*pArtInstanceofNonTrivial) (const struct ClassObject*,
const struct ClassObject*);
struct Method* (Thread::*pArtFindInterfaceMethodInCache)(ClassObject*, uint32_t,
const struct Method*, struct DvmDex*);
bool (Thread::*pArtUnlockObjectNoThrow)(struct Thread*, struct Object*);
void (Thread::*pArtLockObjectNoThrow)(struct Thread*, struct Object*);
struct Object* (Thread::*pArtAllocObjectNoThrow)(struct ClassObject*, int);
void (Thread::*pArtThrowException)(struct Thread*, struct Object*);
bool (Thread::*pArtHandleFillArrayDataNoThrow)(struct ArrayObject*, const uint16_t*);
#endif
}
Mutex* Mutex::Create(const char* name) {
Mutex* mu = new Mutex(name);
int result = pthread_mutex_init(&mu->lock_impl_, NULL);
CHECK_EQ(0, result);
return mu;
}
void Mutex::Lock() {
int result = pthread_mutex_lock(&lock_impl_);
CHECK_EQ(result, 0);
SetOwner(Thread::Current());
}
bool Mutex::TryLock() {
int result = pthread_mutex_lock(&lock_impl_);
if (result == EBUSY) {
return false;
} else {
CHECK_EQ(result, 0);
SetOwner(Thread::Current());
return true;
}
}
void Mutex::Unlock() {
CHECK(GetOwner() == Thread::Current());
int result = pthread_mutex_unlock(&lock_impl_);
CHECK_EQ(result, 0);
SetOwner(NULL);
}
void Frame::Next() {
byte* next_sp = reinterpret_cast<byte*>(sp_) +
GetMethod()->GetFrameSizeInBytes();
sp_ = reinterpret_cast<const Method**>(next_sp);
}
void* Frame::GetPC() const {
byte* pc_addr = reinterpret_cast<byte*>(sp_) +
GetMethod()->GetReturnPcOffsetInBytes();
return reinterpret_cast<void*>(pc_addr);
}
const Method* Frame::NextMethod() const {
byte* next_sp = reinterpret_cast<byte*>(sp_) +
GetMethod()->GetFrameSizeInBytes();
return reinterpret_cast<const Method*>(next_sp);
}
void* ThreadStart(void *arg) {
UNIMPLEMENTED(FATAL);
return NULL;
}
Thread* Thread::Create(const Runtime* runtime) {
size_t stack_size = runtime->GetStackSize();
scoped_ptr<MemMap> stack(MemMap::Map(stack_size, PROT_READ | PROT_WRITE));
if (stack == NULL) {
LOG(FATAL) << "failed to allocate thread stack";
// notreached
return NULL;
}
Thread* new_thread = new Thread;
new_thread->InitCpu();
new_thread->stack_.reset(stack.release());
// Since stacks are assumed to grown downward the base is the limit and the limit is the base.
new_thread->stack_limit_ = stack->GetAddress();
new_thread->stack_base_ = stack->GetLimit();
pthread_attr_t attr;
int result = pthread_attr_init(&attr);
CHECK_EQ(result, 0);
result = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
CHECK_EQ(result, 0);
pthread_t handle;
result = pthread_create(&handle, &attr, ThreadStart, new_thread);
CHECK_EQ(result, 0);
result = pthread_attr_destroy(&attr);
CHECK_EQ(result, 0);
return new_thread;
}
Thread* Thread::Attach(const Runtime* runtime) {
Thread* thread = new Thread;
thread->InitCpu();
thread->stack_limit_ = reinterpret_cast<byte*>(-1); // TODO: getrlimit
uintptr_t addr = reinterpret_cast<uintptr_t>(&thread); // TODO: ask pthreads
uintptr_t stack_base = RoundUp(addr, kPageSize);
thread->stack_base_ = reinterpret_cast<byte*>(stack_base);
// TODO: set the stack size
thread->handle_ = pthread_self();
thread->state_ = kRunnable;
errno = pthread_setspecific(Thread::pthread_key_self_, thread);
if (errno != 0) {
PLOG(FATAL) << "pthread_setspecific failed";
}
thread->jni_env_ = new JNIEnvExt(thread, runtime->GetJavaVM());
return thread;
}
static void ThreadExitCheck(void* arg) {
LG << "Thread exit check";
}
bool Thread::Startup() {
// Allocate a TLS slot.
errno = pthread_key_create(&Thread::pthread_key_self_, ThreadExitCheck);
if (errno != 0) {
PLOG(WARNING) << "pthread_key_create failed";
return false;
}
// Double-check the TLS slot allocation.
if (pthread_getspecific(pthread_key_self_) != NULL) {
LOG(WARNING) << "newly-created pthread TLS slot is not NULL";
return false;
}
// TODO: initialize other locks and condition variables
return true;
}
void Thread::Shutdown() {
errno = pthread_key_delete(Thread::pthread_key_self_);
if (errno != 0) {
PLOG(WARNING) << "pthread_key_delete failed";
}
}
Thread::~Thread() {
delete jni_env_;
}
size_t Thread::NumSirtReferences() {
size_t count = 0;
for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->Link()) {
count += cur->NumberOfReferences();
}
return count;
}
bool Thread::SirtContains(jobject obj) {
Object** sirt_entry = reinterpret_cast<Object**>(obj);
for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->Link()) {
size_t num_refs = cur->NumberOfReferences();
// A SIRT should always have a jobject/jclass as a native method is passed
// in a this pointer or a class
DCHECK_GT(num_refs, 0u);
if ((&cur->References()[0] >= sirt_entry) &&
(sirt_entry <= (&cur->References()[num_refs-1]))) {
return true;
}
}
return false;
}
Object* Thread::DecodeJObject(jobject obj) {
// TODO: Only allowed to hold Object* when in the runnable state
// DCHECK(state_ == kRunnable);
if (obj == NULL) {
return NULL;
}
IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
IndirectRefKind kind = GetIndirectRefKind(ref);
Object* result;
switch (kind) {
case kLocal:
{
IndirectReferenceTable& locals = jni_env_->locals;
result = locals.Get(ref);
break;
}
case kGlobal:
{
JavaVMExt* vm = Runtime::Current()->GetJavaVM();
IndirectReferenceTable& globals = vm->globals;
MutexLock mu(vm->globals_lock);
result = globals.Get(ref);
break;
}
case kWeakGlobal:
{
JavaVMExt* vm = Runtime::Current()->GetJavaVM();
IndirectReferenceTable& weak_globals = vm->weak_globals;
MutexLock mu(vm->weak_globals_lock);
result = weak_globals.Get(ref);
if (result == kClearedJniWeakGlobal) {
// This is a special case where it's okay to return NULL.
return NULL;
}
break;
}
case kSirtOrInvalid:
default:
// TODO: make stack indirect reference table lookup more efficient
// Check if this is a local reference in the SIRT
if (SirtContains(obj)) {
result = *reinterpret_cast<Object**>(obj); // Read from SIRT
} else if (false /*gDvmJni.workAroundAppJniBugs*/) { // TODO
// Assume an invalid local reference is actually a direct pointer.
result = reinterpret_cast<Object*>(obj);
} else {
LOG(FATAL) << "Invalid indirect reference " << obj;
result = reinterpret_cast<Object*>(kInvalidIndirectRefObject);
}
}
if (result == NULL) {
LOG(FATAL) << "JNI ERROR (app bug): use of deleted " << kind << ": "
<< obj;
}
Heap::VerifyObject(result);
return result;
}
void Thread::ThrowNewException(const char* exception_class_descriptor, const char* fmt, ...) {
std::string msg;
va_list args;
va_start(args, fmt);
StringAppendV(&msg, fmt, args);
va_end(args);
// Convert "Ljava/lang/Exception;" into JNI-style "java/lang/Exception".
CHECK(exception_class_descriptor[0] == 'L');
std::string descriptor(exception_class_descriptor + 1);
CHECK(descriptor[descriptor.length() - 1] == ';');
descriptor.erase(descriptor.length() - 1);
JNIEnv* env = GetJniEnv();
jclass exception_class = env->FindClass(descriptor.c_str());
CHECK(exception_class != NULL) << "descriptor=\"" << descriptor << "\"";
int rc = env->ThrowNew(exception_class, msg.c_str());
CHECK_EQ(rc, JNI_OK);
}
void Thread::ThrowOutOfMemoryError() {
UNIMPLEMENTED(FATAL);
}
Frame Thread::FindExceptionHandler(void* throw_pc, void** handler_pc) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
DCHECK(class_linker != NULL);
Frame cur_frame = GetTopOfStack();
for (int unwind_depth = 0; ; unwind_depth++) {
const Method* cur_method = cur_frame.GetMethod();
DexCache* dex_cache = cur_method->GetDeclaringClass()->GetDexCache();
const DexFile& dex_file = class_linker->FindDexFile(dex_cache);
void* handler_addr = FindExceptionHandlerInMethod(cur_method,
throw_pc,
dex_file,
class_linker);
if (handler_addr) {
*handler_pc = handler_addr;
return cur_frame;
} else {
// Check if we are at the last frame
if (cur_frame.HasNext()) {
cur_frame.Next();
} else {
// Either at the top of stack or next frame is native.
break;
}
}
}
*handler_pc = NULL;
return Frame();
}
void* Thread::FindExceptionHandlerInMethod(const Method* method,
void* throw_pc,
const DexFile& dex_file,
ClassLinker* class_linker) {
Throwable* exception_obj = exception_;
exception_ = NULL;
intptr_t dex_pc = -1;
const DexFile::CodeItem* code_item = dex_file.GetCodeItem(method->code_off_);
DexFile::CatchHandlerIterator iter;
for (iter = dex_file.dexFindCatchHandler(*code_item,
method->ToDexPC(reinterpret_cast<intptr_t>(throw_pc)));
!iter.HasNext();
iter.Next()) {
Class* klass = class_linker->FindSystemClass(dex_file.dexStringByTypeIdx(iter.Get().type_idx_));
DCHECK(klass != NULL);
if (exception_obj->InstanceOf(klass)) {
dex_pc = iter.Get().address_;
break;
}
}
exception_ = exception_obj;
if (iter.HasNext()) {
return NULL;
} else {
return reinterpret_cast<void*>( method->ToNativePC(dex_pc) );
}
}
static const char* kStateNames[] = {
"New",
"Runnable",
"Blocked",
"Waiting",
"TimedWaiting",
"Native",
"Terminated",
};
std::ostream& operator<<(std::ostream& os, const Thread::State& state) {
if (state >= Thread::kNew && state <= Thread::kTerminated) {
os << kStateNames[state-Thread::kNew];
} else {
os << "State[" << static_cast<int>(state) << "]";
}
return os;
}
std::ostream& operator<<(std::ostream& os, const Thread& thread) {
os << "Thread[" << &thread
<< ",id=" << thread.GetId()
<< ",tid=" << thread.GetNativeId()
<< ",state=" << thread.GetState() << "]";
return os;
}
ThreadList* ThreadList::Create() {
return new ThreadList;
}
ThreadList::ThreadList() {
lock_ = Mutex::Create("ThreadList::Lock");
}
ThreadList::~ThreadList() {
if (Contains(Thread::Current())) {
Runtime::Current()->DetachCurrentThread();
}
// All threads should have exited and unregistered when we
// reach this point. This means that all daemon threads had been
// shutdown cleanly.
// TODO: dump ThreadList if non-empty.
CHECK_EQ(list_.size(), 0U);
delete lock_;
lock_ = NULL;
}
bool ThreadList::Contains(Thread* thread) {
return find(list_.begin(), list_.end(), thread) != list_.end();
}
void ThreadList::Register(Thread* thread) {
MutexLock mu(lock_);
CHECK(!Contains(thread));
list_.push_front(thread);
}
void ThreadList::Unregister(Thread* thread) {
MutexLock mu(lock_);
CHECK(Contains(thread));
list_.remove(thread);
}
} // namespace