blob: 42e6498148c8d091b5b9933a14de63211932af9c [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "register_allocator_graph_color.h"
#include "code_generator.h"
#include "linear_order.h"
#include "register_allocation_resolver.h"
#include "ssa_liveness_analysis.h"
#include "thread-current-inl.h"
namespace art {
// Highest number of registers that we support for any platform. This can be used for std::bitset,
// for example, which needs to know its size at compile time.
static constexpr size_t kMaxNumRegs = 32;
// The maximum number of graph coloring attempts before triggering a DCHECK.
// This is meant to catch changes to the graph coloring algorithm that undermine its forward
// progress guarantees. Forward progress for the algorithm means splitting live intervals on
// every graph coloring attempt so that eventually the interference graph will be sparse enough
// to color. The main threat to forward progress is trying to split short intervals which cannot be
// split further; this could cause infinite looping because the interference graph would never
// change. This is avoided by prioritizing short intervals before long ones, so that long
// intervals are split when coloring fails.
static constexpr size_t kMaxGraphColoringAttemptsDebug = 100;
// We always want to avoid spilling inside loops.
static constexpr size_t kLoopSpillWeightMultiplier = 10;
// If we avoid moves in single jump blocks, we can avoid jumps to jumps.
static constexpr size_t kSingleJumpBlockWeightMultiplier = 2;
// We avoid moves in blocks that dominate the exit block, since these blocks will
// be executed on every path through the method.
static constexpr size_t kDominatesExitBlockWeightMultiplier = 2;
enum class CoalesceKind {
kAdjacentSibling, // Prevents moves at interval split points.
kFixedOutputSibling, // Prevents moves from a fixed output location.
kFixedInput, // Prevents moves into a fixed input location.
kNonlinearControlFlow, // Prevents moves between blocks.
kPhi, // Prevents phi resolution moves.
kFirstInput, // Prevents a single input move.
kAnyInput, // May lead to better instruction selection / smaller encodings.
};
std::ostream& operator<<(std::ostream& os, const CoalesceKind& kind) {
return os << static_cast<typename std::underlying_type<CoalesceKind>::type>(kind);
}
static size_t LoopDepthAt(HBasicBlock* block) {
HLoopInformation* loop_info = block->GetLoopInformation();
size_t depth = 0;
while (loop_info != nullptr) {
++depth;
loop_info = loop_info->GetPreHeader()->GetLoopInformation();
}
return depth;
}
// Return the runtime cost of inserting a move instruction at the specified location.
static size_t CostForMoveAt(size_t position, const SsaLivenessAnalysis& liveness) {
HBasicBlock* block = liveness.GetBlockFromPosition(position / 2);
DCHECK(block != nullptr);
size_t cost = 1;
if (block->IsSingleJump()) {
cost *= kSingleJumpBlockWeightMultiplier;
}
if (block->Dominates(block->GetGraph()->GetExitBlock())) {
cost *= kDominatesExitBlockWeightMultiplier;
}
for (size_t loop_depth = LoopDepthAt(block); loop_depth > 0; --loop_depth) {
cost *= kLoopSpillWeightMultiplier;
}
return cost;
}
// In general, we estimate coalesce priority by whether it will definitely avoid a move,
// and by how likely it is to create an interference graph that's harder to color.
static size_t ComputeCoalescePriority(CoalesceKind kind,
size_t position,
const SsaLivenessAnalysis& liveness) {
if (kind == CoalesceKind::kAnyInput) {
// This type of coalescing can affect instruction selection, but not moves, so we
// give it the lowest priority.
return 0;
} else {
return CostForMoveAt(position, liveness);
}
}
enum class CoalesceStage {
kWorklist, // Currently in the iterative coalescing worklist.
kActive, // Not in a worklist, but could be considered again during iterative coalescing.
kInactive, // No longer considered until last-chance coalescing.
kDefunct, // Either the two nodes interfere, or have already been coalesced.
};
std::ostream& operator<<(std::ostream& os, const CoalesceStage& stage) {
return os << static_cast<typename std::underlying_type<CoalesceStage>::type>(stage);
}
// Represents a coalesce opportunity between two nodes.
struct CoalesceOpportunity : public ArenaObject<kArenaAllocRegisterAllocator> {
CoalesceOpportunity(InterferenceNode* a,
InterferenceNode* b,
CoalesceKind kind,
size_t position,
const SsaLivenessAnalysis& liveness)
: node_a(a),
node_b(b),
stage(CoalesceStage::kWorklist),
priority(ComputeCoalescePriority(kind, position, liveness)) {}
// Compare two coalesce opportunities based on their priority.
// Return true if lhs has a lower priority than that of rhs.
static bool CmpPriority(const CoalesceOpportunity* lhs,
const CoalesceOpportunity* rhs) {
return lhs->priority < rhs->priority;
}
InterferenceNode* const node_a;
InterferenceNode* const node_b;
// The current stage of this coalesce opportunity, indicating whether it is in a worklist,
// and whether it should still be considered.
CoalesceStage stage;
// The priority of this coalesce opportunity, based on heuristics.
const size_t priority;
};
enum class NodeStage {
kInitial, // Uninitialized.
kPrecolored, // Marks fixed nodes.
kSafepoint, // Marks safepoint nodes.
kPrunable, // Marks uncolored nodes in the interference graph.
kSimplifyWorklist, // Marks non-move-related nodes with degree less than the number of registers.
kFreezeWorklist, // Marks move-related nodes with degree less than the number of registers.
kSpillWorklist, // Marks nodes with degree greater or equal to the number of registers.
kPruned // Marks nodes already pruned from the interference graph.
};
std::ostream& operator<<(std::ostream& os, const NodeStage& stage) {
return os << static_cast<typename std::underlying_type<NodeStage>::type>(stage);
}
// Returns the estimated cost of spilling a particular live interval.
static float ComputeSpillWeight(LiveInterval* interval, const SsaLivenessAnalysis& liveness) {
if (interval->HasRegister()) {
// Intervals with a fixed register cannot be spilled.
return std::numeric_limits<float>::min();
}
size_t length = interval->GetLength();
if (length == 1) {
// Tiny intervals should have maximum priority, since they cannot be split any further.
return std::numeric_limits<float>::max();
}
size_t use_weight = 0;
if (interval->GetDefinedBy() != nullptr && interval->DefinitionRequiresRegister()) {
// Cost for spilling at a register definition point.
use_weight += CostForMoveAt(interval->GetStart() + 1, liveness);
}
// Process uses in the range (interval->GetStart(), interval->GetEnd()], i.e.
// [interval->GetStart() + 1, interval->GetEnd() + 1)
auto matching_use_range = FindMatchingUseRange(interval->GetUses().begin(),
interval->GetUses().end(),
interval->GetStart() + 1u,
interval->GetEnd() + 1u);
for (const UsePosition& use : matching_use_range) {
if (use.GetUser() != nullptr && use.RequiresRegister()) {
// Cost for spilling at a register use point.
use_weight += CostForMoveAt(use.GetUser()->GetLifetimePosition() - 1, liveness);
}
}
// We divide by the length of the interval because we want to prioritize
// short intervals; we do not benefit much if we split them further.
return static_cast<float>(use_weight) / static_cast<float>(length);
}
// Interference nodes make up the interference graph, which is the primary data structure in
// graph coloring register allocation. Each node represents a single live interval, and contains
// a set of adjacent nodes corresponding to intervals overlapping with its own. To save memory,
// pre-colored nodes never contain outgoing edges (only incoming ones).
//
// As nodes are pruned from the interference graph, incoming edges of the pruned node are removed,
// but outgoing edges remain in order to later color the node based on the colors of its neighbors.
//
// Note that a pair interval is represented by a single node in the interference graph, which
// essentially requires two colors. One consequence of this is that the degree of a node is not
// necessarily equal to the number of adjacent nodes--instead, the degree reflects the maximum
// number of colors with which a node could interfere. We model this by giving edges different
// weights (1 or 2) to control how much it increases the degree of adjacent nodes.
// For example, the edge between two single nodes will have weight 1. On the other hand,
// the edge between a single node and a pair node will have weight 2. This is because the pair
// node could block up to two colors for the single node, and because the single node could
// block an entire two-register aligned slot for the pair node.
// The degree is defined this way because we use it to decide whether a node is guaranteed a color,
// and thus whether it is safe to prune it from the interference graph early on.
class InterferenceNode : public ArenaObject<kArenaAllocRegisterAllocator> {
public:
InterferenceNode(LiveInterval* interval,
const SsaLivenessAnalysis& liveness)
: stage(NodeStage::kInitial),
interval_(interval),
adjacent_nodes_(nullptr),
coalesce_opportunities_(nullptr),
out_degree_(interval->HasRegister() ? std::numeric_limits<size_t>::max() : 0),
alias_(this),
spill_weight_(ComputeSpillWeight(interval, liveness)),
requires_color_(interval->RequiresRegister()),
needs_spill_slot_(false) {
DCHECK(!interval->IsHighInterval()) << "Pair nodes should be represented by the low interval";
}
void AddInterference(InterferenceNode* other,
bool guaranteed_not_interfering_yet,
ScopedArenaDeque<ScopedArenaVector<InterferenceNode*>>* storage) {
DCHECK(!IsPrecolored()) << "To save memory, fixed nodes should not have outgoing interferences";
DCHECK_NE(this, other) << "Should not create self loops in the interference graph";
DCHECK_EQ(this, alias_) << "Should not add interferences to a node that aliases another";
DCHECK_NE(stage, NodeStage::kPruned);
DCHECK_NE(other->stage, NodeStage::kPruned);
if (adjacent_nodes_ == nullptr) {
ScopedArenaVector<InterferenceNode*>::allocator_type adapter(storage->get_allocator());
storage->emplace_back(adapter);
adjacent_nodes_ = &storage->back();
}
if (guaranteed_not_interfering_yet) {
DCHECK(!ContainsElement(GetAdjacentNodes(), other));
adjacent_nodes_->push_back(other);
out_degree_ += EdgeWeightWith(other);
} else {
if (!ContainsElement(GetAdjacentNodes(), other)) {
adjacent_nodes_->push_back(other);
out_degree_ += EdgeWeightWith(other);
}
}
}
void RemoveInterference(InterferenceNode* other) {
DCHECK_EQ(this, alias_) << "Should not remove interferences from a coalesced node";
DCHECK_EQ(other->stage, NodeStage::kPruned) << "Should only remove interferences when pruning";
if (adjacent_nodes_ != nullptr) {
auto it = std::find(adjacent_nodes_->begin(), adjacent_nodes_->end(), other);
if (it != adjacent_nodes_->end()) {
adjacent_nodes_->erase(it);
out_degree_ -= EdgeWeightWith(other);
}
}
}
bool ContainsInterference(InterferenceNode* other) const {
DCHECK(!IsPrecolored()) << "Should not query fixed nodes for interferences";
DCHECK_EQ(this, alias_) << "Should not query a coalesced node for interferences";
return ContainsElement(GetAdjacentNodes(), other);
}
LiveInterval* GetInterval() const {
return interval_;
}
ArrayRef<InterferenceNode*> GetAdjacentNodes() const {
return adjacent_nodes_ != nullptr
? ArrayRef<InterferenceNode*>(*adjacent_nodes_)
: ArrayRef<InterferenceNode*>();
}
size_t GetOutDegree() const {
// Pre-colored nodes have infinite degree.
DCHECK(!IsPrecolored() || out_degree_ == std::numeric_limits<size_t>::max());
return out_degree_;
}
void AddCoalesceOpportunity(CoalesceOpportunity* opportunity,
ScopedArenaDeque<ScopedArenaVector<CoalesceOpportunity*>>* storage) {
if (coalesce_opportunities_ == nullptr) {
ScopedArenaVector<CoalesceOpportunity*>::allocator_type adapter(storage->get_allocator());
storage->emplace_back(adapter);
coalesce_opportunities_ = &storage->back();
}
coalesce_opportunities_->push_back(opportunity);
}
void ClearCoalesceOpportunities() {
coalesce_opportunities_ = nullptr;
}
bool IsMoveRelated() const {
for (CoalesceOpportunity* opportunity : GetCoalesceOpportunities()) {
if (opportunity->stage == CoalesceStage::kWorklist ||
opportunity->stage == CoalesceStage::kActive) {
return true;
}
}
return false;
}
// Return whether this node already has a color.
// Used to find fixed nodes in the interference graph before coloring.
bool IsPrecolored() const {
return interval_->HasRegister();
}
bool IsPair() const {
return interval_->HasHighInterval();
}
void SetAlias(InterferenceNode* rep) {
DCHECK_NE(rep->stage, NodeStage::kPruned);
DCHECK_EQ(this, alias_) << "Should only set a node's alias once";
alias_ = rep;
}
InterferenceNode* GetAlias() {
if (alias_ != this) {
// Recurse in order to flatten tree of alias pointers.
alias_ = alias_->GetAlias();
}
return alias_;
}
ArrayRef<CoalesceOpportunity*> GetCoalesceOpportunities() const {
return coalesce_opportunities_ != nullptr
? ArrayRef<CoalesceOpportunity*>(*coalesce_opportunities_)
: ArrayRef<CoalesceOpportunity*>();
}
float GetSpillWeight() const {
return spill_weight_;
}
bool RequiresColor() const {
return requires_color_;
}
// We give extra weight to edges adjacent to pair nodes. See the general comment on the
// interference graph above.
size_t EdgeWeightWith(const InterferenceNode* other) const {
return (IsPair() || other->IsPair()) ? 2 : 1;
}
bool NeedsSpillSlot() const {
return needs_spill_slot_;
}
void SetNeedsSpillSlot() {
needs_spill_slot_ = true;
}
// The current stage of this node, indicating which worklist it belongs to.
NodeStage stage;
private:
// The live interval that this node represents.
LiveInterval* const interval_;
// All nodes interfering with this one.
// We use an unsorted vector as a set, since a tree or hash set is too heavy for the
// set sizes that we encounter. Using a vector leads to much better performance.
ScopedArenaVector<InterferenceNode*>* adjacent_nodes_; // Owned by ColoringIteration.
// Interference nodes that this node should be coalesced with to reduce moves.
ScopedArenaVector<CoalesceOpportunity*>* coalesce_opportunities_; // Owned by ColoringIteration.
// The maximum number of colors with which this node could interfere. This could be more than
// the number of adjacent nodes if this is a pair node, or if some adjacent nodes are pair nodes.
// We use "out" degree because incoming edges come from nodes already pruned from the graph,
// and do not affect the coloring of this node.
// Pre-colored nodes are treated as having infinite degree.
size_t out_degree_;
// The node representing this node in the interference graph.
// Initially set to `this`, and only changed if this node is coalesced into another.
InterferenceNode* alias_;
// The cost of splitting and spilling this interval to the stack.
// Nodes with a higher spill weight should be prioritized when assigning registers.
// This is essentially based on use density and location; short intervals with many uses inside
// deeply nested loops have a high spill weight.
const float spill_weight_;
const bool requires_color_;
bool needs_spill_slot_;
DISALLOW_COPY_AND_ASSIGN(InterferenceNode);
};
// The order in which we color nodes is important. To guarantee forward progress,
// we prioritize intervals that require registers, and after that we prioritize
// short intervals. That way, if we fail to color a node, it either won't require a
// register, or it will be a long interval that can be split in order to make the
// interference graph sparser.
// To improve code quality, we prioritize intervals used frequently in deeply nested loops.
// (This metric is secondary to the forward progress requirements above.)
// TODO: May also want to consider:
// - Constants (since they can be rematerialized)
// - Allocated spill slots
static bool HasGreaterNodePriority(const InterferenceNode* lhs,
const InterferenceNode* rhs) {
// (1) Prioritize the node that requires a color.
if (lhs->RequiresColor() != rhs->RequiresColor()) {
return lhs->RequiresColor();
}
// (2) Prioritize the interval that has a higher spill weight.
return lhs->GetSpillWeight() > rhs->GetSpillWeight();
}
// A ColoringIteration holds the many data structures needed for a single graph coloring attempt,
// and provides methods for each phase of the attempt.
class ColoringIteration {
public:
ColoringIteration(RegisterAllocatorGraphColor* register_allocator,
ScopedArenaAllocator* allocator,
bool processing_core_regs,
size_t num_regs)
: register_allocator_(register_allocator),
allocator_(allocator),
processing_core_regs_(processing_core_regs),
num_regs_(num_regs),
interval_node_map_(allocator->Adapter(kArenaAllocRegisterAllocator)),
prunable_nodes_(allocator->Adapter(kArenaAllocRegisterAllocator)),
pruned_nodes_(allocator->Adapter(kArenaAllocRegisterAllocator)),
simplify_worklist_(allocator->Adapter(kArenaAllocRegisterAllocator)),
freeze_worklist_(allocator->Adapter(kArenaAllocRegisterAllocator)),
spill_worklist_(HasGreaterNodePriority, allocator->Adapter(kArenaAllocRegisterAllocator)),
coalesce_worklist_(CoalesceOpportunity::CmpPriority,
allocator->Adapter(kArenaAllocRegisterAllocator)),
adjacent_nodes_links_(allocator->Adapter(kArenaAllocRegisterAllocator)),
coalesce_opportunities_links_(allocator->Adapter(kArenaAllocRegisterAllocator)) {}
// Use the intervals collected from instructions to construct an
// interference graph mapping intervals to adjacency lists.
// Also, collect synthesized safepoint nodes, used to keep
// track of live intervals across safepoints.
// TODO: Should build safepoints elsewhere.
void BuildInterferenceGraph(const ScopedArenaVector<LiveInterval*>& intervals,
const ScopedArenaVector<InterferenceNode*>& physical_nodes);
// Add coalesce opportunities to interference nodes.
void FindCoalesceOpportunities();
// Prune nodes from the interference graph to be colored later. Build
// a stack (pruned_nodes) containing these intervals in an order determined
// by various heuristics.
void PruneInterferenceGraph();
// Process pruned_intervals_ to color the interference graph, spilling when
// necessary. Returns true if successful. Else, some intervals have been
// split, and the interference graph should be rebuilt for another attempt.
bool ColorInterferenceGraph();
// Return prunable nodes.
// The register allocator will need to access prunable nodes after coloring
// in order to tell the code generator which registers have been assigned.
ArrayRef<InterferenceNode* const> GetPrunableNodes() const {
return ArrayRef<InterferenceNode* const>(prunable_nodes_);
}
private:
// Create a coalesce opportunity between two nodes.
void CreateCoalesceOpportunity(InterferenceNode* a,
InterferenceNode* b,
CoalesceKind kind,
size_t position);
// Add an edge in the interference graph, if valid.
// Note that `guaranteed_not_interfering_yet` is used to optimize adjacency set insertion
// when possible.
void AddPotentialInterference(InterferenceNode* from,
InterferenceNode* to,
bool guaranteed_not_interfering_yet,
bool both_directions = true);
// Invalidate all coalesce opportunities this node has, so that it (and possibly its neighbors)
// may be pruned from the interference graph.
void FreezeMoves(InterferenceNode* node);
// Prune a node from the interference graph, updating worklists if necessary.
void PruneNode(InterferenceNode* node);
// Add coalesce opportunities associated with this node to the coalesce worklist.
void EnableCoalesceOpportunities(InterferenceNode* node);
// If needed, from `node` from the freeze worklist to the simplify worklist.
void CheckTransitionFromFreezeWorklist(InterferenceNode* node);
// Return true if `into` is colored, and `from` can be coalesced with `into` conservatively.
bool PrecoloredHeuristic(InterferenceNode* from, InterferenceNode* into);
// Return true if `from` and `into` are uncolored, and can be coalesced conservatively.
bool UncoloredHeuristic(InterferenceNode* from, InterferenceNode* into);
void Coalesce(CoalesceOpportunity* opportunity);
// Merge `from` into `into` in the interference graph.
void Combine(InterferenceNode* from, InterferenceNode* into);
// A reference to the register allocator instance,
// needed to split intervals and assign spill slots.
RegisterAllocatorGraphColor* register_allocator_;
// A scoped arena allocator used for a single graph coloring attempt.
ScopedArenaAllocator* allocator_;
const bool processing_core_regs_;
const size_t num_regs_;
// A map from live intervals to interference nodes.
ScopedArenaHashMap<LiveInterval*, InterferenceNode*> interval_node_map_;
// Uncolored nodes that should be pruned from the interference graph.
ScopedArenaVector<InterferenceNode*> prunable_nodes_;
// A stack of nodes pruned from the interference graph, waiting to be pruned.
ScopedArenaStdStack<InterferenceNode*> pruned_nodes_;
// A queue containing low degree, non-move-related nodes that can pruned immediately.
ScopedArenaDeque<InterferenceNode*> simplify_worklist_;
// A queue containing low degree, move-related nodes.
ScopedArenaDeque<InterferenceNode*> freeze_worklist_;
// A queue containing high degree nodes.
// If we have to prune from the spill worklist, we cannot guarantee
// the pruned node a color, so we order the worklist by priority.
ScopedArenaPriorityQueue<InterferenceNode*, decltype(&HasGreaterNodePriority)> spill_worklist_;
// A queue containing coalesce opportunities.
// We order the coalesce worklist by priority, since some coalesce opportunities (e.g., those
// inside of loops) are more important than others.
ScopedArenaPriorityQueue<CoalesceOpportunity*,
decltype(&CoalesceOpportunity::CmpPriority)> coalesce_worklist_;
// Storage for links to adjacent nodes for interference nodes.
// Using std::deque so that elements do not move when adding new ones.
ScopedArenaDeque<ScopedArenaVector<InterferenceNode*>> adjacent_nodes_links_;
// Storage for links to coalesce opportunities for interference nodes.
// Using std::deque so that elements do not move when adding new ones.
ScopedArenaDeque<ScopedArenaVector<CoalesceOpportunity*>> coalesce_opportunities_links_;
DISALLOW_COPY_AND_ASSIGN(ColoringIteration);
};
static bool IsCoreInterval(LiveInterval* interval) {
return !DataType::IsFloatingPointType(interval->GetType());
}
static size_t ComputeReservedArtMethodSlots(const CodeGenerator& codegen) {
return static_cast<size_t>(InstructionSetPointerSize(codegen.GetInstructionSet())) / kVRegSize;
}
RegisterAllocatorGraphColor::RegisterAllocatorGraphColor(ScopedArenaAllocator* allocator,
CodeGenerator* codegen,
const SsaLivenessAnalysis& liveness,
bool iterative_move_coalescing)
: RegisterAllocator(allocator, codegen, liveness),
iterative_move_coalescing_(iterative_move_coalescing),
core_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
fp_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
temp_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
safepoints_(allocator->Adapter(kArenaAllocRegisterAllocator)),
physical_core_nodes_(allocator->Adapter(kArenaAllocRegisterAllocator)),
physical_fp_nodes_(allocator->Adapter(kArenaAllocRegisterAllocator)),
num_int_spill_slots_(0),
num_double_spill_slots_(0),
num_float_spill_slots_(0),
num_long_spill_slots_(0),
catch_phi_spill_slot_counter_(0),
reserved_art_method_slots_(ComputeReservedArtMethodSlots(*codegen)),
reserved_out_slots_(codegen->GetGraph()->GetMaximumNumberOfOutVRegs()) {
// Before we ask for blocked registers, set them up in the code generator.
codegen->SetupBlockedRegisters();
// Initialize physical core register live intervals and blocked registers.
// This includes globally blocked registers, such as the stack pointer.
physical_core_nodes_.resize(codegen_->GetNumberOfCoreRegisters(), nullptr);
for (size_t i = 0; i < codegen_->GetNumberOfCoreRegisters(); ++i) {
LiveInterval* interval = LiveInterval::MakeFixedInterval(allocator_, i, DataType::Type::kInt32);
physical_core_nodes_[i] = new (allocator_) InterferenceNode(interval, liveness);
physical_core_nodes_[i]->stage = NodeStage::kPrecolored;
core_intervals_.push_back(interval);
if (codegen_->IsBlockedCoreRegister(i)) {
interval->AddRange(0, liveness.GetMaxLifetimePosition());
}
}
// Initialize physical floating point register live intervals and blocked registers.
physical_fp_nodes_.resize(codegen_->GetNumberOfFloatingPointRegisters(), nullptr);
for (size_t i = 0; i < codegen_->GetNumberOfFloatingPointRegisters(); ++i) {
LiveInterval* interval =
LiveInterval::MakeFixedInterval(allocator_, i, DataType::Type::kFloat32);
physical_fp_nodes_[i] = new (allocator_) InterferenceNode(interval, liveness);
physical_fp_nodes_[i]->stage = NodeStage::kPrecolored;
fp_intervals_.push_back(interval);
if (codegen_->IsBlockedFloatingPointRegister(i)) {
interval->AddRange(0, liveness.GetMaxLifetimePosition());
}
}
}
RegisterAllocatorGraphColor::~RegisterAllocatorGraphColor() {}
void RegisterAllocatorGraphColor::AllocateRegisters() {
// (1) Collect and prepare live intervals.
ProcessInstructions();
for (bool processing_core_regs : {true, false}) {
ScopedArenaVector<LiveInterval*>& intervals = processing_core_regs
? core_intervals_
: fp_intervals_;
size_t num_registers = processing_core_regs
? codegen_->GetNumberOfCoreRegisters()
: codegen_->GetNumberOfFloatingPointRegisters();
size_t attempt = 0;
while (true) {
++attempt;
DCHECK(attempt <= kMaxGraphColoringAttemptsDebug)
<< "Exceeded debug max graph coloring register allocation attempts. "
<< "This could indicate that the register allocator is not making forward progress, "
<< "which could be caused by prioritizing the wrong live intervals. (Short intervals "
<< "should be prioritized over long ones, because they cannot be split further.)";
// Many data structures are cleared between graph coloring attempts, so we reduce
// total memory usage by using a new scoped arena allocator for each attempt.
ScopedArenaAllocator coloring_attempt_allocator(allocator_->GetArenaStack());
ColoringIteration iteration(this,
&coloring_attempt_allocator,
processing_core_regs,
num_registers);
// (2) Build the interference graph.
ScopedArenaVector<InterferenceNode*>& physical_nodes = processing_core_regs
? physical_core_nodes_
: physical_fp_nodes_;
iteration.BuildInterferenceGraph(intervals, physical_nodes);
// (3) Add coalesce opportunities.
// If we have tried coloring the graph a suspiciously high number of times, give
// up on move coalescing, just in case the coalescing heuristics are not conservative.
// (This situation will be caught if DCHECKs are turned on.)
if (iterative_move_coalescing_ && attempt <= kMaxGraphColoringAttemptsDebug) {
iteration.FindCoalesceOpportunities();
}
// (4) Prune all uncolored nodes from interference graph.
iteration.PruneInterferenceGraph();
// (5) Color pruned nodes based on interferences.
bool successful = iteration.ColorInterferenceGraph();
// We manually clear coalesce opportunities for physical nodes,
// since they persist across coloring attempts.
for (InterferenceNode* node : physical_core_nodes_) {
node->ClearCoalesceOpportunities();
}
for (InterferenceNode* node : physical_fp_nodes_) {
node->ClearCoalesceOpportunities();
}
if (successful) {
// Assign spill slots.
AllocateSpillSlots(iteration.GetPrunableNodes());
// Tell the code generator which registers were allocated.
// We only look at prunable_nodes because we already told the code generator about
// fixed intervals while processing instructions. We also ignore the fixed intervals
// placed at the top of catch blocks.
for (InterferenceNode* node : iteration.GetPrunableNodes()) {
LiveInterval* interval = node->GetInterval();
if (interval->HasRegister()) {
Location low_reg = processing_core_regs
? Location::RegisterLocation(interval->GetRegister())
: Location::FpuRegisterLocation(interval->GetRegister());
codegen_->AddAllocatedRegister(low_reg);
if (interval->HasHighInterval()) {
LiveInterval* high = interval->GetHighInterval();
DCHECK(high->HasRegister());
Location high_reg = processing_core_regs
? Location::RegisterLocation(high->GetRegister())
: Location::FpuRegisterLocation(high->GetRegister());
codegen_->AddAllocatedRegister(high_reg);
}
} else {
DCHECK(!interval->HasHighInterval() || !interval->GetHighInterval()->HasRegister());
}
}
break;
}
} // while unsuccessful
} // for processing_core_instructions
// (6) Resolve locations and deconstruct SSA form.
RegisterAllocationResolver(codegen_, liveness_)
.Resolve(ArrayRef<HInstruction* const>(safepoints_),
reserved_art_method_slots_ + reserved_out_slots_,
num_int_spill_slots_,
num_long_spill_slots_,
num_float_spill_slots_,
num_double_spill_slots_,
catch_phi_spill_slot_counter_,
ArrayRef<LiveInterval* const>(temp_intervals_));
if (kIsDebugBuild) {
Validate(/*log_fatal_on_failure*/ true);
}
}
bool RegisterAllocatorGraphColor::Validate(bool log_fatal_on_failure) {
for (bool processing_core_regs : {true, false}) {
ScopedArenaAllocator allocator(allocator_->GetArenaStack());
ScopedArenaVector<LiveInterval*> intervals(
allocator.Adapter(kArenaAllocRegisterAllocatorValidate));
for (size_t i = 0; i < liveness_.GetNumberOfSsaValues(); ++i) {
HInstruction* instruction = liveness_.GetInstructionFromSsaIndex(i);
LiveInterval* interval = instruction->GetLiveInterval();
if (interval != nullptr && IsCoreInterval(interval) == processing_core_regs) {
intervals.push_back(instruction->GetLiveInterval());
}
}
ScopedArenaVector<InterferenceNode*>& physical_nodes = processing_core_regs
? physical_core_nodes_
: physical_fp_nodes_;
for (InterferenceNode* fixed : physical_nodes) {
LiveInterval* interval = fixed->GetInterval();
if (interval->GetFirstRange() != nullptr) {
// Ideally we would check fixed ranges as well, but currently there are times when
// two fixed intervals for the same register will overlap. For example, a fixed input
// and a fixed output may sometimes share the same register, in which there will be two
// fixed intervals for the same place.
}
}
for (LiveInterval* temp : temp_intervals_) {
if (IsCoreInterval(temp) == processing_core_regs) {
intervals.push_back(temp);
}
}
size_t spill_slots = num_int_spill_slots_
+ num_long_spill_slots_
+ num_float_spill_slots_
+ num_double_spill_slots_
+ catch_phi_spill_slot_counter_;
bool ok = ValidateIntervals(ArrayRef<LiveInterval* const>(intervals),
spill_slots,
reserved_art_method_slots_ + reserved_out_slots_,
*codegen_,
processing_core_regs,
log_fatal_on_failure);
if (!ok) {
return false;
}
} // for processing_core_regs
return true;
}
void RegisterAllocatorGraphColor::ProcessInstructions() {
for (HBasicBlock* block : codegen_->GetGraph()->GetLinearPostOrder()) {
// Note that we currently depend on this ordering, since some helper
// code is designed for linear scan register allocation.
for (HBackwardInstructionIterator instr_it(block->GetInstructions());
!instr_it.Done();
instr_it.Advance()) {
ProcessInstruction(instr_it.Current());
}
for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
ProcessInstruction(phi_it.Current());
}
if (block->IsCatchBlock()
|| (block->IsLoopHeader() && block->GetLoopInformation()->IsIrreducible())) {
// By blocking all registers at the top of each catch block or irreducible loop, we force
// intervals belonging to the live-in set of the catch/header block to be spilled.
// TODO(ngeoffray): Phis in this block could be allocated in register.
size_t position = block->GetLifetimeStart();
BlockRegisters(position, position + 1);
}
}
}
void RegisterAllocatorGraphColor::ProcessInstruction(HInstruction* instruction) {
LocationSummary* locations = instruction->GetLocations();
if (locations == nullptr) {
return;
}
if (locations->NeedsSafepoint() && codegen_->IsLeafMethod()) {
// We do this here because we do not want the suspend check to artificially
// create live registers.
DCHECK(instruction->IsSuspendCheckEntry());
DCHECK_EQ(locations->GetTempCount(), 0u);
instruction->GetBlock()->RemoveInstruction(instruction);
return;
}
CheckForTempLiveIntervals(instruction);
CheckForSafepoint(instruction);
if (instruction->GetLocations()->WillCall()) {
// If a call will happen, create fixed intervals for caller-save registers.
// TODO: Note that it may be beneficial to later split intervals at this point,
// so that we allow last-minute moves from a caller-save register
// to a callee-save register.
BlockRegisters(instruction->GetLifetimePosition(),
instruction->GetLifetimePosition() + 1,
/*caller_save_only*/ true);
}
CheckForFixedInputs(instruction);
LiveInterval* interval = instruction->GetLiveInterval();
if (interval == nullptr) {
// Instructions lacking a valid output location do not have a live interval.
DCHECK(!locations->Out().IsValid());
return;
}
// Low intervals act as representatives for their corresponding high interval.
DCHECK(!interval->IsHighInterval());
if (codegen_->NeedsTwoRegisters(interval->GetType())) {
interval->AddHighInterval();
}
AddSafepointsFor(instruction);
CheckForFixedOutput(instruction);
AllocateSpillSlotForCatchPhi(instruction);
ScopedArenaVector<LiveInterval*>& intervals = IsCoreInterval(interval)
? core_intervals_
: fp_intervals_;
if (interval->HasSpillSlot() || instruction->IsConstant()) {
// Note that if an interval already has a spill slot, then its value currently resides
// in the stack (e.g., parameters). Thus we do not have to allocate a register until its first
// register use. This is also true for constants, which can be materialized at any point.
size_t first_register_use = interval->FirstRegisterUse();
if (first_register_use != kNoLifetime) {
LiveInterval* split = SplitBetween(interval, interval->GetStart(), first_register_use - 1);
intervals.push_back(split);
} else {
// We won't allocate a register for this value.
}
} else {
intervals.push_back(interval);
}
}
void RegisterAllocatorGraphColor::CheckForFixedInputs(HInstruction* instruction) {
// We simply block physical registers where necessary.
// TODO: Ideally we would coalesce the physical register with the register
// allocated to the input value, but this can be tricky if, e.g., there
// could be multiple physical register uses of the same value at the
// same instruction. Furthermore, there's currently no distinction between
// fixed inputs to a call (which will be clobbered) and other fixed inputs (which
// may not be clobbered).
LocationSummary* locations = instruction->GetLocations();
size_t position = instruction->GetLifetimePosition();
for (size_t i = 0; i < locations->GetInputCount(); ++i) {
Location input = locations->InAt(i);
if (input.IsRegister() || input.IsFpuRegister()) {
BlockRegister(input, position, position + 1);
codegen_->AddAllocatedRegister(input);
} else if (input.IsPair()) {
BlockRegister(input.ToLow(), position, position + 1);
BlockRegister(input.ToHigh(), position, position + 1);
codegen_->AddAllocatedRegister(input.ToLow());
codegen_->AddAllocatedRegister(input.ToHigh());
}
}
}
void RegisterAllocatorGraphColor::CheckForFixedOutput(HInstruction* instruction) {
// If an instruction has a fixed output location, we give the live interval a register and then
// proactively split it just after the definition point to avoid creating too many interferences
// with a fixed node.
LiveInterval* interval = instruction->GetLiveInterval();
Location out = interval->GetDefinedBy()->GetLocations()->Out();
size_t position = instruction->GetLifetimePosition();
DCHECK_GE(interval->GetEnd() - position, 2u);
if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
out = instruction->GetLocations()->InAt(0);
}
if (out.IsRegister() || out.IsFpuRegister()) {
interval->SetRegister(out.reg());
codegen_->AddAllocatedRegister(out);
Split(interval, position + 1);
} else if (out.IsPair()) {
interval->SetRegister(out.low());
interval->GetHighInterval()->SetRegister(out.high());
codegen_->AddAllocatedRegister(out.ToLow());
codegen_->AddAllocatedRegister(out.ToHigh());
Split(interval, position + 1);
} else if (out.IsStackSlot() || out.IsDoubleStackSlot()) {
interval->SetSpillSlot(out.GetStackIndex());
} else {
DCHECK(out.IsUnallocated() || out.IsConstant());
}
}
void RegisterAllocatorGraphColor::AddSafepointsFor(HInstruction* instruction) {
LiveInterval* interval = instruction->GetLiveInterval();
for (size_t safepoint_index = safepoints_.size(); safepoint_index > 0; --safepoint_index) {
HInstruction* safepoint = safepoints_[safepoint_index - 1u];
size_t safepoint_position = safepoint->GetLifetimePosition();
// Test that safepoints_ are ordered in the optimal way.
DCHECK(safepoint_index == safepoints_.size() ||
safepoints_[safepoint_index]->GetLifetimePosition() < safepoint_position);
if (safepoint_position == interval->GetStart()) {
// The safepoint is for this instruction, so the location of the instruction
// does not need to be saved.
DCHECK_EQ(safepoint_index, safepoints_.size());
DCHECK_EQ(safepoint, instruction);
continue;
} else if (interval->IsDeadAt(safepoint_position)) {
break;
} else if (!interval->Covers(safepoint_position)) {
// Hole in the interval.
continue;
}
interval->AddSafepoint(safepoint);
}
}
void RegisterAllocatorGraphColor::CheckForTempLiveIntervals(HInstruction* instruction) {
LocationSummary* locations = instruction->GetLocations();
size_t position = instruction->GetLifetimePosition();
for (size_t i = 0; i < locations->GetTempCount(); ++i) {
Location temp = locations->GetTemp(i);
if (temp.IsRegister() || temp.IsFpuRegister()) {
BlockRegister(temp, position, position + 1);
codegen_->AddAllocatedRegister(temp);
} else {
DCHECK(temp.IsUnallocated());
switch (temp.GetPolicy()) {
case Location::kRequiresRegister: {
LiveInterval* interval =
LiveInterval::MakeTempInterval(allocator_, DataType::Type::kInt32);
interval->AddTempUse(instruction, i);
core_intervals_.push_back(interval);
temp_intervals_.push_back(interval);
break;
}
case Location::kRequiresFpuRegister: {
LiveInterval* interval =
LiveInterval::MakeTempInterval(allocator_, DataType::Type::kFloat64);
interval->AddTempUse(instruction, i);
fp_intervals_.push_back(interval);
temp_intervals_.push_back(interval);
if (codegen_->NeedsTwoRegisters(DataType::Type::kFloat64)) {
interval->AddHighInterval(/*is_temp*/ true);
temp_intervals_.push_back(interval->GetHighInterval());
}
break;
}
default:
LOG(FATAL) << "Unexpected policy for temporary location "
<< temp.GetPolicy();
}
}
}
}
void RegisterAllocatorGraphColor::CheckForSafepoint(HInstruction* instruction) {
LocationSummary* locations = instruction->GetLocations();
if (locations->NeedsSafepoint()) {
safepoints_.push_back(instruction);
}
}
LiveInterval* RegisterAllocatorGraphColor::TrySplit(LiveInterval* interval, size_t position) {
if (interval->GetStart() < position && position < interval->GetEnd()) {
return Split(interval, position);
} else {
return interval;
}
}
void RegisterAllocatorGraphColor::SplitAtRegisterUses(LiveInterval* interval) {
DCHECK(!interval->IsHighInterval());
// Split just after a register definition.
if (interval->IsParent() && interval->DefinitionRequiresRegister()) {
interval = TrySplit(interval, interval->GetStart() + 1);
}
// Process uses in the range [interval->GetStart(), interval->GetEnd()], i.e.
// [interval->GetStart(), interval->GetEnd() + 1)
auto matching_use_range = FindMatchingUseRange(interval->GetUses().begin(),
interval->GetUses().end(),
interval->GetStart(),
interval->GetEnd() + 1u);
// Split around register uses.
for (const UsePosition& use : matching_use_range) {
if (use.RequiresRegister()) {
size_t position = use.GetPosition();
interval = TrySplit(interval, position - 1);
if (liveness_.GetInstructionFromPosition(position / 2)->IsControlFlow()) {
// If we are at the very end of a basic block, we cannot split right
// at the use. Split just after instead.
interval = TrySplit(interval, position + 1);
} else {
interval = TrySplit(interval, position);
}
}
}
}
void RegisterAllocatorGraphColor::AllocateSpillSlotForCatchPhi(HInstruction* instruction) {
if (instruction->IsPhi() && instruction->AsPhi()->IsCatchPhi()) {
HPhi* phi = instruction->AsPhi();
LiveInterval* interval = phi->GetLiveInterval();
HInstruction* previous_phi = phi->GetPrevious();
DCHECK(previous_phi == nullptr ||
previous_phi->AsPhi()->GetRegNumber() <= phi->GetRegNumber())
<< "Phis expected to be sorted by vreg number, "
<< "so that equivalent phis are adjacent.";
if (phi->IsVRegEquivalentOf(previous_phi)) {
// Assign the same spill slot.
DCHECK(previous_phi->GetLiveInterval()->HasSpillSlot());
interval->SetSpillSlot(previous_phi->GetLiveInterval()->GetSpillSlot());
} else {
interval->SetSpillSlot(catch_phi_spill_slot_counter_);
catch_phi_spill_slot_counter_ += interval->NumberOfSpillSlotsNeeded();
}
}
}
void RegisterAllocatorGraphColor::BlockRegister(Location location,
size_t start,
size_t end) {
DCHECK(location.IsRegister() || location.IsFpuRegister());
int reg = location.reg();
LiveInterval* interval = location.IsRegister()
? physical_core_nodes_[reg]->GetInterval()
: physical_fp_nodes_[reg]->GetInterval();
DCHECK(interval->GetRegister() == reg);
bool blocked_by_codegen = location.IsRegister()
? codegen_->IsBlockedCoreRegister(reg)
: codegen_->IsBlockedFloatingPointRegister(reg);
if (blocked_by_codegen) {
// We've already blocked this register for the entire method. (And adding a
// range inside another range violates the preconditions of AddRange).
} else {
interval->AddRange(start, end);
}
}
void RegisterAllocatorGraphColor::BlockRegisters(size_t start, size_t end, bool caller_save_only) {
for (size_t i = 0; i < codegen_->GetNumberOfCoreRegisters(); ++i) {
if (!caller_save_only || !codegen_->IsCoreCalleeSaveRegister(i)) {
BlockRegister(Location::RegisterLocation(i), start, end);
}
}
for (size_t i = 0; i < codegen_->GetNumberOfFloatingPointRegisters(); ++i) {
if (!caller_save_only || !codegen_->IsFloatingPointCalleeSaveRegister(i)) {
BlockRegister(Location::FpuRegisterLocation(i), start, end);
}
}
}
void ColoringIteration::AddPotentialInterference(InterferenceNode* from,
InterferenceNode* to,
bool guaranteed_not_interfering_yet,
bool both_directions) {
if (from->IsPrecolored()) {
// We save space by ignoring outgoing edges from fixed nodes.
} else if (to->IsPrecolored()) {
// It is important that only a single node represents a given fixed register in the
// interference graph. We retrieve that node here.
const ScopedArenaVector<InterferenceNode*>& physical_nodes =
to->GetInterval()->IsFloatingPoint() ? register_allocator_->physical_fp_nodes_
: register_allocator_->physical_core_nodes_;
InterferenceNode* physical_node = physical_nodes[to->GetInterval()->GetRegister()];
from->AddInterference(
physical_node, /*guaranteed_not_interfering_yet*/ false, &adjacent_nodes_links_);
DCHECK_EQ(to->GetInterval()->GetRegister(), physical_node->GetInterval()->GetRegister());
DCHECK_EQ(to->GetAlias(), physical_node) << "Fixed nodes should alias the canonical fixed node";
// If a node interferes with a fixed pair node, the weight of the edge may
// be inaccurate after using the alias of the pair node, because the alias of the pair node
// is a singular node.
// We could make special pair fixed nodes, but that ends up being too conservative because
// a node could then interfere with both {r1} and {r1,r2}, leading to a degree of
// three rather than two.
// Instead, we explicitly add an interference with the high node of the fixed pair node.
// TODO: This is too conservative at time for pair nodes, but the fact that fixed pair intervals
// can be unaligned on x86 complicates things.
if (to->IsPair()) {
InterferenceNode* high_node =
physical_nodes[to->GetInterval()->GetHighInterval()->GetRegister()];
DCHECK_EQ(to->GetInterval()->GetHighInterval()->GetRegister(),
high_node->GetInterval()->GetRegister());
from->AddInterference(
high_node, /*guaranteed_not_interfering_yet*/ false, &adjacent_nodes_links_);
}
} else {
// Standard interference between two uncolored nodes.
from->AddInterference(to, guaranteed_not_interfering_yet, &adjacent_nodes_links_);
}
if (both_directions) {
AddPotentialInterference(to, from, guaranteed_not_interfering_yet, /*both_directions*/ false);
}
}
// Returns true if `in_node` represents an input interval of `out_node`, and the output interval
// is allowed to have the same register as the input interval.
// TODO: Ideally we should just produce correct intervals in liveness analysis.
// We would need to refactor the current live interval layout to do so, which is
// no small task.
static bool CheckInputOutputCanOverlap(InterferenceNode* in_node, InterferenceNode* out_node) {
LiveInterval* output_interval = out_node->GetInterval();
HInstruction* defined_by = output_interval->GetDefinedBy();
if (defined_by == nullptr) {
// This must not be a definition point.
return false;
}
LocationSummary* locations = defined_by->GetLocations();
if (locations->OutputCanOverlapWithInputs()) {
// This instruction does not allow the output to reuse a register from an input.
return false;
}
LiveInterval* input_interval = in_node->GetInterval();
LiveInterval* next_sibling = input_interval->GetNextSibling();
size_t def_position = defined_by->GetLifetimePosition();
size_t use_position = def_position + 1;
if (next_sibling != nullptr && next_sibling->GetStart() == use_position) {
// The next sibling starts at the use position, so reusing the input register in the output
// would clobber the input before it's moved into the sibling interval location.
return false;
}
if (!input_interval->IsDeadAt(use_position) && input_interval->CoversSlow(use_position)) {
// The input interval is live after the use position.
return false;
}
HInputsRef inputs = defined_by->GetInputs();
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i]->GetLiveInterval()->GetSiblingAt(def_position) == input_interval) {
DCHECK(input_interval->SameRegisterKind(*output_interval));
return true;
}
}
// The input interval was not an input for this instruction.
return false;
}
void ColoringIteration::BuildInterferenceGraph(
const ScopedArenaVector<LiveInterval*>& intervals,
const ScopedArenaVector<InterferenceNode*>& physical_nodes) {
DCHECK(interval_node_map_.empty() && prunable_nodes_.empty());
// Build the interference graph efficiently by ordering range endpoints
// by position and doing a linear sweep to find interferences. (That is, we
// jump from endpoint to endpoint, maintaining a set of intervals live at each
// point. If two nodes are ever in the live set at the same time, then they
// interfere with each other.)
//
// We order by both position and (secondarily) by whether the endpoint
// begins or ends a range; we want to process range endings before range
// beginnings at the same position because they should not conflict.
//
// For simplicity, we create a tuple for each endpoint, and then sort the tuples.
// Tuple contents: (position, is_range_beginning, node).
ScopedArenaVector<std::tuple<size_t, bool, InterferenceNode*>> range_endpoints(
allocator_->Adapter(kArenaAllocRegisterAllocator));
// We reserve plenty of space to avoid excessive copying.
range_endpoints.reserve(4 * prunable_nodes_.size());
for (LiveInterval* parent : intervals) {
for (LiveInterval* sibling = parent; sibling != nullptr; sibling = sibling->GetNextSibling()) {
LiveRange* range = sibling->GetFirstRange();
if (range != nullptr) {
InterferenceNode* node =
new (allocator_) InterferenceNode(sibling, register_allocator_->liveness_);
interval_node_map_.insert(std::make_pair(sibling, node));
if (sibling->HasRegister()) {
// Fixed nodes should alias the canonical node for the corresponding register.
node->stage = NodeStage::kPrecolored;
InterferenceNode* physical_node = physical_nodes[sibling->GetRegister()];
node->SetAlias(physical_node);
DCHECK_EQ(node->GetInterval()->GetRegister(),
physical_node->GetInterval()->GetRegister());
} else {
node->stage = NodeStage::kPrunable;
prunable_nodes_.push_back(node);
}
while (range != nullptr) {
range_endpoints.push_back(std::make_tuple(range->GetStart(), true, node));
range_endpoints.push_back(std::make_tuple(range->GetEnd(), false, node));
range = range->GetNext();
}
}
}
}
// Sort the endpoints.
// We explicitly ignore the third entry of each tuple (the node pointer) in order
// to maintain determinism.
std::sort(range_endpoints.begin(), range_endpoints.end(),
[] (const std::tuple<size_t, bool, InterferenceNode*>& lhs,
const std::tuple<size_t, bool, InterferenceNode*>& rhs) {
return std::tie(std::get<0>(lhs), std::get<1>(lhs))
< std::tie(std::get<0>(rhs), std::get<1>(rhs));
});
// Nodes live at the current position in the linear sweep.
ScopedArenaVector<InterferenceNode*> live(allocator_->Adapter(kArenaAllocRegisterAllocator));
// Linear sweep. When we encounter the beginning of a range, we add the corresponding node to the
// live set. When we encounter the end of a range, we remove the corresponding node
// from the live set. Nodes interfere if they are in the live set at the same time.
for (auto it = range_endpoints.begin(); it != range_endpoints.end(); ++it) {
bool is_range_beginning;
InterferenceNode* node;
size_t position;
// Extract information from the tuple, including the node this tuple represents.
std::tie(position, is_range_beginning, node) = *it;
if (is_range_beginning) {
bool guaranteed_not_interfering_yet = position == node->GetInterval()->GetStart();
for (InterferenceNode* conflicting : live) {
DCHECK_NE(node, conflicting);
if (CheckInputOutputCanOverlap(conflicting, node)) {
// We do not add an interference, because the instruction represented by `node` allows
// its output to share a register with an input, represented here by `conflicting`.
} else {
AddPotentialInterference(node, conflicting, guaranteed_not_interfering_yet);
}
}
DCHECK(std::find(live.begin(), live.end(), node) == live.end());
live.push_back(node);
} else {
// End of range.
auto live_it = std::find(live.begin(), live.end(), node);
DCHECK(live_it != live.end());
live.erase(live_it);
}
}
DCHECK(live.empty());
}
void ColoringIteration::CreateCoalesceOpportunity(InterferenceNode* a,
InterferenceNode* b,
CoalesceKind kind,
size_t position) {
DCHECK_EQ(a->IsPair(), b->IsPair())
<< "Nodes of different memory widths should never be coalesced";
CoalesceOpportunity* opportunity =
new (allocator_) CoalesceOpportunity(a, b, kind, position, register_allocator_->liveness_);
a->AddCoalesceOpportunity(opportunity, &coalesce_opportunities_links_);
b->AddCoalesceOpportunity(opportunity, &coalesce_opportunities_links_);
coalesce_worklist_.push(opportunity);
}
// When looking for coalesce opportunities, we use the interval_node_map_ to find the node
// corresponding to an interval. Note that not all intervals are in this map, notably the parents
// of constants and stack arguments. (However, these interval should not be involved in coalesce
// opportunities anyway, because they're not going to be in registers.)
void ColoringIteration::FindCoalesceOpportunities() {
DCHECK(coalesce_worklist_.empty());
for (InterferenceNode* node : prunable_nodes_) {
LiveInterval* interval = node->GetInterval();
// Coalesce siblings.
LiveInterval* next_sibling = interval->GetNextSibling();
if (next_sibling != nullptr && interval->GetEnd() == next_sibling->GetStart()) {
auto it = interval_node_map_.find(next_sibling);
if (it != interval_node_map_.end()) {
InterferenceNode* sibling_node = it->second;
CreateCoalesceOpportunity(node,
sibling_node,
CoalesceKind::kAdjacentSibling,
interval->GetEnd());
}
}
// Coalesce fixed outputs with this interval if this interval is an adjacent sibling.
LiveInterval* parent = interval->GetParent();
if (parent->HasRegister()
&& parent->GetNextSibling() == interval
&& parent->GetEnd() == interval->GetStart()) {
auto it = interval_node_map_.find(parent);
if (it != interval_node_map_.end()) {
InterferenceNode* parent_node = it->second;
CreateCoalesceOpportunity(node,
parent_node,
CoalesceKind::kFixedOutputSibling,
parent->GetEnd());
}
}
// Try to prevent moves across blocks.
// Note that this does not lead to many succeeding coalesce attempts, so could be removed
// if found to add to compile time.
const SsaLivenessAnalysis& liveness = register_allocator_->liveness_;
if (interval->IsSplit() && liveness.IsAtBlockBoundary(interval->GetStart() / 2)) {
// If the start of this interval is at a block boundary, we look at the
// location of the interval in blocks preceding the block this interval
// starts at. This can avoid a move between the two blocks.
HBasicBlock* block = liveness.GetBlockFromPosition(interval->GetStart() / 2);
for (HBasicBlock* predecessor : block->GetPredecessors()) {
size_t position = predecessor->GetLifetimeEnd() - 1;
LiveInterval* existing = interval->GetParent()->GetSiblingAt(position);
if (existing != nullptr) {
auto it = interval_node_map_.find(existing);
if (it != interval_node_map_.end()) {
InterferenceNode* existing_node = it->second;
CreateCoalesceOpportunity(node,
existing_node,
CoalesceKind::kNonlinearControlFlow,
position);
}
}
}
}
// Coalesce phi inputs with the corresponding output.
HInstruction* defined_by = interval->GetDefinedBy();
if (defined_by != nullptr && defined_by->IsPhi()) {
ArrayRef<HBasicBlock* const> predecessors(defined_by->GetBlock()->GetPredecessors());
HInputsRef inputs = defined_by->GetInputs();
for (size_t i = 0, e = inputs.size(); i < e; ++i) {
// We want the sibling at the end of the appropriate predecessor block.
size_t position = predecessors[i]->GetLifetimeEnd() - 1;
LiveInterval* input_interval = inputs[i]->GetLiveInterval()->GetSiblingAt(position);
auto it = interval_node_map_.find(input_interval);
if (it != interval_node_map_.end()) {
InterferenceNode* input_node = it->second;
CreateCoalesceOpportunity(node, input_node, CoalesceKind::kPhi, position);
}
}
}
// Coalesce output with first input when policy is kSameAsFirstInput.
if (defined_by != nullptr) {
Location out = defined_by->GetLocations()->Out();
if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
LiveInterval* input_interval
= defined_by->InputAt(0)->GetLiveInterval()->GetSiblingAt(interval->GetStart() - 1);
// TODO: Could we consider lifetime holes here?
if (input_interval->GetEnd() == interval->GetStart()) {
auto it = interval_node_map_.find(input_interval);
if (it != interval_node_map_.end()) {
InterferenceNode* input_node = it->second;
CreateCoalesceOpportunity(node,
input_node,
CoalesceKind::kFirstInput,
interval->GetStart());
}
}
}
}
// An interval that starts an instruction (that is, it is not split), may
// re-use the registers used by the inputs of that instruction, based on the
// location summary.
if (defined_by != nullptr) {
DCHECK(!interval->IsSplit());
LocationSummary* locations = defined_by->GetLocations();
if (!locations->OutputCanOverlapWithInputs()) {
HInputsRef inputs = defined_by->GetInputs();
for (size_t i = 0; i < inputs.size(); ++i) {
size_t def_point = defined_by->GetLifetimePosition();
// TODO: Getting the sibling at the def_point might not be quite what we want
// for fixed inputs, since the use will be *at* the def_point rather than after.
LiveInterval* input_interval = inputs[i]->GetLiveInterval()->GetSiblingAt(def_point);
if (input_interval != nullptr &&
input_interval->HasHighInterval() == interval->HasHighInterval()) {
auto it = interval_node_map_.find(input_interval);
if (it != interval_node_map_.end()) {
InterferenceNode* input_node = it->second;
CreateCoalesceOpportunity(node,
input_node,
CoalesceKind::kAnyInput,
interval->GetStart());
}
}
}
}
}
// Try to prevent moves into fixed input locations.
// Process uses in the range (interval->GetStart(), interval->GetEnd()], i.e.
// [interval->GetStart() + 1, interval->GetEnd() + 1)
auto matching_use_range = FindMatchingUseRange(interval->GetUses().begin(),
interval->GetUses().end(),
interval->GetStart() + 1u,
interval->GetEnd() + 1u);
for (const UsePosition& use : matching_use_range) {
HInstruction* user = use.GetUser();
if (user == nullptr) {
// User may be null for certain intervals, such as temp intervals.
continue;
}
LocationSummary* locations = user->GetLocations();
Location input = locations->InAt(use.GetInputIndex());
if (input.IsRegister() || input.IsFpuRegister()) {
// TODO: Could try to handle pair interval too, but coalescing with fixed pair nodes
// is currently not supported.
InterferenceNode* fixed_node = input.IsRegister()
? register_allocator_->physical_core_nodes_[input.reg()]
: register_allocator_->physical_fp_nodes_[input.reg()];
CreateCoalesceOpportunity(node,
fixed_node,
CoalesceKind::kFixedInput,
user->GetLifetimePosition());
}
}
} // for node in prunable_nodes
}
static bool IsLowDegreeNode(InterferenceNode* node, size_t num_regs) {
return node->GetOutDegree() < num_regs;
}
static bool IsHighDegreeNode(InterferenceNode* node, size_t num_regs) {
return !IsLowDegreeNode(node, num_regs);
}
void ColoringIteration::PruneInterferenceGraph() {
DCHECK(pruned_nodes_.empty()
&& simplify_worklist_.empty()
&& freeze_worklist_.empty()
&& spill_worklist_.empty());
// When pruning the graph, we refer to nodes with degree less than num_regs as low degree nodes,
// and all others as high degree nodes. The distinction is important: low degree nodes are
// guaranteed a color, while high degree nodes are not.
// Build worklists. Note that the coalesce worklist has already been
// filled by FindCoalesceOpportunities().
for (InterferenceNode* node : prunable_nodes_) {
DCHECK(!node->IsPrecolored()) << "Fixed nodes should never be pruned";
if (IsLowDegreeNode(node, num_regs_)) {
if (node->GetCoalesceOpportunities().empty()) {
// Simplify Worklist.
node->stage = NodeStage::kSimplifyWorklist;
simplify_worklist_.push_back(node);
} else {
// Freeze Worklist.
node->stage = NodeStage::kFreezeWorklist;
freeze_worklist_.push_back(node);
}
} else {
// Spill worklist.
node->stage = NodeStage::kSpillWorklist;
spill_worklist_.push(node);
}
}
// Prune graph.
// Note that we do not remove a node from its current worklist if it moves to another, so it may
// be in multiple worklists at once; the node's `phase` says which worklist it is really in.
while (true) {
if (!simplify_worklist_.empty()) {
// Prune low-degree nodes.
// TODO: pop_back() should work as well, but it didn't; we get a
// failed check while pruning. We should look into this.
InterferenceNode* node = simplify_worklist_.front();
simplify_worklist_.pop_front();
DCHECK_EQ(node->stage, NodeStage::kSimplifyWorklist) << "Cannot move from simplify list";
DCHECK_LT(node->GetOutDegree(), num_regs_) << "Nodes in simplify list should be low degree";
DCHECK(!node->IsMoveRelated()) << "Nodes in simplify list should not be move related";
PruneNode(node);
} else if (!coalesce_worklist_.empty()) {
// Coalesce.
CoalesceOpportunity* opportunity = coalesce_worklist_.top();
coalesce_worklist_.pop();
if (opportunity->stage == CoalesceStage::kWorklist) {
Coalesce(opportunity);
}
} else if (!freeze_worklist_.empty()) {
// Freeze moves and prune a low-degree move-related node.
InterferenceNode* node = freeze_worklist_.front();
freeze_worklist_.pop_front();
if (node->stage == NodeStage::kFreezeWorklist) {
DCHECK_LT(node->GetOutDegree(), num_regs_) << "Nodes in freeze list should be low degree";
DCHECK(node->IsMoveRelated()) << "Nodes in freeze list should be move related";
FreezeMoves(node);
PruneNode(node);
}
} else if (!spill_worklist_.empty()) {
// We spill the lowest-priority node, because pruning a node earlier
// gives it a higher chance of being spilled.
InterferenceNode* node = spill_worklist_.top();
spill_worklist_.pop();
if (node->stage == NodeStage::kSpillWorklist) {
DCHECK_GE(node->GetOutDegree(), num_regs_) << "Nodes in spill list should be high degree";
FreezeMoves(node);
PruneNode(node);
}
} else {
// Pruning complete.
break;
}
}
DCHECK_EQ(prunable_nodes_.size(), pruned_nodes_.size());
}
void ColoringIteration::EnableCoalesceOpportunities(InterferenceNode* node) {
for (CoalesceOpportunity* opportunity : node->GetCoalesceOpportunities()) {
if (opportunity->stage == CoalesceStage::kActive) {
opportunity->stage = CoalesceStage::kWorklist;
coalesce_worklist_.push(opportunity);
}
}
}
void ColoringIteration::PruneNode(InterferenceNode* node) {
DCHECK_NE(node->stage, NodeStage::kPruned);
DCHECK(!node->IsPrecolored());
node->stage = NodeStage::kPruned;
pruned_nodes_.push(node);
for (InterferenceNode* adj : node->GetAdjacentNodes()) {
DCHECK_NE(adj->stage, NodeStage::kPruned) << "Should be no interferences with pruned nodes";
if (adj->IsPrecolored()) {
// No effect on pre-colored nodes; they're never pruned.
} else {
// Remove the interference.
bool was_high_degree = IsHighDegreeNode(adj, num_regs_);
DCHECK(adj->ContainsInterference(node))
<< "Missing reflexive interference from non-fixed node";
adj->RemoveInterference(node);
// Handle transitions from high degree to low degree.
if (was_high_degree && IsLowDegreeNode(adj, num_regs_)) {
EnableCoalesceOpportunities(adj);
for (InterferenceNode* adj_adj : adj->GetAdjacentNodes()) {
EnableCoalesceOpportunities(adj_adj);
}
DCHECK_EQ(adj->stage, NodeStage::kSpillWorklist);
if (adj->IsMoveRelated()) {
adj->stage = NodeStage::kFreezeWorklist;
freeze_worklist_.push_back(adj);
} else {
adj->stage = NodeStage::kSimplifyWorklist;
simplify_worklist_.push_back(adj);
}
}
}
}
}
void ColoringIteration::CheckTransitionFromFreezeWorklist(InterferenceNode* node) {
if (IsLowDegreeNode(node, num_regs_) && !node->IsMoveRelated()) {
DCHECK_EQ(node->stage, NodeStage::kFreezeWorklist);
node->stage = NodeStage::kSimplifyWorklist;
simplify_worklist_.push_back(node);
}
}
void ColoringIteration::FreezeMoves(InterferenceNode* node) {
for (CoalesceOpportunity* opportunity : node->GetCoalesceOpportunities()) {
if (opportunity->stage == CoalesceStage::kDefunct) {
// Constrained moves should remain constrained, since they will not be considered
// during last-chance coalescing.
} else {
opportunity->stage = CoalesceStage::kInactive;
}
InterferenceNode* other = opportunity->node_a->GetAlias() == node
? opportunity->node_b->GetAlias()
: opportunity->node_a->GetAlias();
if (other != node && other->stage == NodeStage::kFreezeWorklist) {
DCHECK(IsLowDegreeNode(node, num_regs_));
CheckTransitionFromFreezeWorklist(other);
}
}
}
bool ColoringIteration::PrecoloredHeuristic(InterferenceNode* from,
InterferenceNode* into) {
if (!into->IsPrecolored()) {
// The uncolored heuristic will cover this case.
return false;
}
if (from->IsPair() || into->IsPair()) {
// TODO: Merging from a pair node is currently not supported, since fixed pair nodes
// are currently represented as two single fixed nodes in the graph, and `into` is
// only one of them. (We may lose the implicit connections to the second one in a merge.)
return false;
}
// If all adjacent nodes of `from` are "ok", then we can conservatively merge with `into`.
// Reasons an adjacent node `adj` can be "ok":
// (1) If `adj` is low degree, interference with `into` will not affect its existing
// colorable guarantee. (Notice that coalescing cannot increase its degree.)
// (2) If `adj` is pre-colored, it already interferes with `into`. See (3).
// (3) If there's already an interference with `into`, coalescing will not add interferences.
for (InterferenceNode* adj : from->GetAdjacentNodes()) {
if (IsLowDegreeNode(adj, num_regs_) || adj->IsPrecolored() || adj->ContainsInterference(into)) {
// Ok.
} else {
return false;
}
}
return true;
}
bool ColoringIteration::UncoloredHeuristic(InterferenceNode* from,
InterferenceNode* into) {
if (into->IsPrecolored()) {
// The pre-colored heuristic will handle this case.
return false;
}
// Arbitrary cap to improve compile time. Tests show that this has negligible affect
// on generated code.
if (from->GetOutDegree() + into->GetOutDegree() > 2 * num_regs_) {
return false;
}
// It's safe to coalesce two nodes if the resulting node has fewer than `num_regs` neighbors
// of high degree. (Low degree neighbors can be ignored, because they will eventually be
// pruned from the interference graph in the simplify stage.)
size_t high_degree_interferences = 0;
for (InterferenceNode* adj : from->GetAdjacentNodes()) {
if (IsHighDegreeNode(adj, num_regs_)) {
high_degree_interferences += from->EdgeWeightWith(adj);
}
}
for (InterferenceNode* adj : into->GetAdjacentNodes()) {
if (IsHighDegreeNode(adj, num_regs_)) {
if (from->ContainsInterference(adj)) {
// We've already counted this adjacent node.
// Furthermore, its degree will decrease if coalescing succeeds. Thus, it's possible that
// we should not have counted it at all. (This extends the textbook Briggs coalescing test,
// but remains conservative.)
if (adj->GetOutDegree() - into->EdgeWeightWith(adj) < num_regs_) {
high_degree_interferences -= from->EdgeWeightWith(adj);
}
} else {
high_degree_interferences += into->EdgeWeightWith(adj);
}
}
}
return high_degree_interferences < num_regs_;
}
void ColoringIteration::Combine(InterferenceNode* from,
InterferenceNode* into) {
from->SetAlias(into);
// Add interferences.
for (InterferenceNode* adj : from->GetAdjacentNodes()) {
bool was_low_degree = IsLowDegreeNode(adj, num_regs_);
AddPotentialInterference(adj, into, /*guaranteed_not_interfering_yet*/ false);
if (was_low_degree && IsHighDegreeNode(adj, num_regs_)) {
// This is a (temporary) transition to a high degree node. Its degree will decrease again
// when we prune `from`, but it's best to be consistent about the current worklist.
adj->stage = NodeStage::kSpillWorklist;
spill_worklist_.push(adj);
}
}
// Add coalesce opportunities.
for (CoalesceOpportunity* opportunity : from->GetCoalesceOpportunities()) {
if (opportunity->stage != CoalesceStage::kDefunct) {
into->AddCoalesceOpportunity(opportunity, &coalesce_opportunities_links_);
}
}
EnableCoalesceOpportunities(from);
// Prune and update worklists.
PruneNode(from);
if (IsLowDegreeNode(into, num_regs_)) {
// Coalesce(...) takes care of checking for a transition to the simplify worklist.
DCHECK_EQ(into->stage, NodeStage::kFreezeWorklist);
} else if (into->stage == NodeStage::kFreezeWorklist) {
// This is a transition to a high degree node.
into->stage = NodeStage::kSpillWorklist;
spill_worklist_.push(into);
} else {
DCHECK(into->stage == NodeStage::kSpillWorklist || into->stage == NodeStage::kPrecolored);
}
}
void ColoringIteration::Coalesce(CoalesceOpportunity* opportunity) {
InterferenceNode* from = opportunity->node_a->GetAlias();
InterferenceNode* into = opportunity->node_b->GetAlias();
DCHECK_NE(from->stage, NodeStage::kPruned);
DCHECK_NE(into->stage, NodeStage::kPruned);
if (from->IsPrecolored()) {
// If we have one pre-colored node, make sure it's the `into` node.
std::swap(from, into);
}
if (from == into) {
// These nodes have already been coalesced.
opportunity->stage = CoalesceStage::kDefunct;
CheckTransitionFromFreezeWorklist(from);
} else if (from->IsPrecolored() || from->ContainsInterference(into)) {
// These nodes interfere.
opportunity->stage = CoalesceStage::kDefunct;
CheckTransitionFromFreezeWorklist(from);
CheckTransitionFromFreezeWorklist(into);
} else if (PrecoloredHeuristic(from, into)
|| UncoloredHeuristic(from, into)) {
// We can coalesce these nodes.
opportunity->stage = CoalesceStage::kDefunct;
Combine(from, into);
CheckTransitionFromFreezeWorklist(into);
} else {
// We cannot coalesce, but we may be able to later.
opportunity->stage = CoalesceStage::kActive;
}
}
// Build a mask with a bit set for each register assigned to some
// interval in `intervals`.
template <typename Container>
static std::bitset<kMaxNumRegs> BuildConflictMask(const Container& intervals) {
std::bitset<kMaxNumRegs> conflict_mask;
for (InterferenceNode* adjacent : intervals) {
LiveInterval* conflicting = adjacent->GetInterval();
if (conflicting->HasRegister()) {
conflict_mask.set(conflicting->GetRegister());
if (conflicting->HasHighInterval()) {
DCHECK(conflicting->GetHighInterval()->HasRegister());
conflict_mask.set(conflicting->GetHighInterval()->GetRegister());
}
} else {
DCHECK(!conflicting->HasHighInterval()
|| !conflicting->GetHighInterval()->HasRegister());
}
}
return conflict_mask;
}
bool RegisterAllocatorGraphColor::IsCallerSave(size_t reg, bool processing_core_regs) {
return processing_core_regs
? !codegen_->IsCoreCalleeSaveRegister(reg)
: !codegen_->IsFloatingPointCalleeSaveRegister(reg);
}
static bool RegisterIsAligned(size_t reg) {
return reg % 2 == 0;
}
static size_t FindFirstZeroInConflictMask(std::bitset<kMaxNumRegs> conflict_mask) {
// We use CTZ (count trailing zeros) to quickly find the lowest 0 bit.
// Note that CTZ is undefined if all bits are 0, so we special-case it.
return conflict_mask.all() ? conflict_mask.size() : CTZ(~conflict_mask.to_ulong());
}
bool ColoringIteration::ColorInterferenceGraph() {
DCHECK_LE(num_regs_, kMaxNumRegs) << "kMaxNumRegs is too small";
ScopedArenaVector<LiveInterval*> colored_intervals(
allocator_->Adapter(kArenaAllocRegisterAllocator));
bool successful = true;
while (!pruned_nodes_.empty()) {
InterferenceNode* node = pruned_nodes_.top();
pruned_nodes_.pop();
LiveInterval* interval = node->GetInterval();
size_t reg = 0;
InterferenceNode* alias = node->GetAlias();
if (alias != node) {
// This node was coalesced with another.
LiveInterval* alias_interval = alias->GetInterval();
if (alias_interval->HasRegister()) {
reg = alias_interval->GetRegister();
DCHECK(!BuildConflictMask(node->GetAdjacentNodes())[reg])
<< "This node conflicts with the register it was coalesced with";
} else {
DCHECK(false) << node->GetOutDegree() << " " << alias->GetOutDegree() << " "
<< "Move coalescing was not conservative, causing a node to be coalesced "
<< "with another node that could not be colored";
if (interval->RequiresRegister()) {
successful = false;
}
}
} else {
// Search for free register(s).
std::bitset<kMaxNumRegs> conflict_mask = BuildConflictMask(node->GetAdjacentNodes());
if (interval->HasHighInterval()) {
// Note that the graph coloring allocator assumes that pair intervals are aligned here,
// excluding pre-colored pair intervals (which can currently be unaligned on x86). If we
// change the alignment requirements here, we will have to update the algorithm (e.g.,
// be more conservative about the weight of edges adjacent to pair nodes.)
while (reg < num_regs_ - 1 && (conflict_mask[reg] || conflict_mask[reg + 1])) {
reg += 2;
}
// Try to use a caller-save register first.
for (size_t i = 0; i < num_regs_ - 1; i += 2) {
bool low_caller_save = register_allocator_->IsCallerSave(i, processing_core_regs_);
bool high_caller_save = register_allocator_->IsCallerSave(i + 1, processing_core_regs_);
if (!conflict_mask[i] && !conflict_mask[i + 1]) {
if (low_caller_save && high_caller_save) {
reg = i;
break;
} else if (low_caller_save || high_caller_save) {
reg = i;
// Keep looking to try to get both parts in caller-save registers.
}
}
}
} else {
// Not a pair interval.
reg = FindFirstZeroInConflictMask(conflict_mask);
// Try to use caller-save registers first.
for (size_t i = 0; i < num_regs_; ++i) {
if (!conflict_mask[i] && register_allocator_->IsCallerSave(i, processing_core_regs_)) {
reg = i;
break;
}
}
}
// Last-chance coalescing.
for (CoalesceOpportunity* opportunity : node->GetCoalesceOpportunities()) {
if (opportunity->stage == CoalesceStage::kDefunct) {
continue;
}
LiveInterval* other_interval = opportunity->node_a->GetAlias() == node
? opportunity->node_b->GetAlias()->GetInterval()
: opportunity->node_a->GetAlias()->GetInterval();
if (other_interval->HasRegister()) {
size_t coalesce_register = other_interval->GetRegister();
if (interval->HasHighInterval()) {
if (!conflict_mask[coalesce_register] &&
!conflict_mask[coalesce_register + 1] &&
RegisterIsAligned(coalesce_register)) {
reg = coalesce_register;
break;
}
} else if (!conflict_mask[coalesce_register]) {
reg = coalesce_register;
break;
}
}
}
}
if (reg < (interval->HasHighInterval() ? num_regs_ - 1 : num_regs_)) {
// Assign register.
DCHECK(!interval->HasRegister());
interval->SetRegister(reg);
colored_intervals.push_back(interval);
if (interval->HasHighInterval()) {
DCHECK(!interval->GetHighInterval()->HasRegister());
interval->GetHighInterval()->SetRegister(reg + 1);
colored_intervals.push_back(interval->GetHighInterval());
}
} else if (interval->RequiresRegister()) {
// The interference graph is too dense to color. Make it sparser by
// splitting this live interval.
successful = false;
register_allocator_->SplitAtRegisterUses(interval);
// We continue coloring, because there may be additional intervals that cannot
// be colored, and that we should split.
} else {
// Spill.
node->SetNeedsSpillSlot();
}
}
// If unsuccessful, reset all register assignments.
if (!successful) {
for (LiveInterval* interval : colored_intervals) {
interval->ClearRegister();
}
}
return successful;
}
void RegisterAllocatorGraphColor::AllocateSpillSlots(ArrayRef<InterferenceNode* const> nodes) {
// The register allocation resolver will organize the stack based on value type,
// so we assign stack slots for each value type separately.
ScopedArenaAllocator allocator(allocator_->GetArenaStack());
ScopedArenaAllocatorAdapter<void> adapter = allocator.Adapter(kArenaAllocRegisterAllocator);
ScopedArenaVector<LiveInterval*> double_intervals(adapter);
ScopedArenaVector<LiveInterval*> long_intervals(adapter);
ScopedArenaVector<LiveInterval*> float_intervals(adapter);
ScopedArenaVector<LiveInterval*> int_intervals(adapter);
// The set of parent intervals already handled.
ScopedArenaSet<LiveInterval*> seen(adapter);
// Find nodes that need spill slots.
for (InterferenceNode* node : nodes) {
if (!node->NeedsSpillSlot()) {
continue;
}
LiveInterval* parent = node->GetInterval()->GetParent();
if (seen.find(parent) != seen.end()) {
// We've already handled this interval.
// This can happen if multiple siblings of the same interval request a stack slot.
continue;
}
seen.insert(parent);
HInstruction* defined_by = parent->GetDefinedBy();
if (parent->HasSpillSlot()) {
// We already have a spill slot for this value that we can reuse.
} else if (defined_by->IsParameterValue()) {
// Parameters already have a stack slot.
parent->SetSpillSlot(codegen_->GetStackSlotOfParameter(defined_by->AsParameterValue()));
} else if (defined_by->IsCurrentMethod()) {
// The current method is always at stack slot 0.
parent->SetSpillSlot(0);
} else if (defined_by->IsConstant()) {
// Constants don't need a spill slot.
} else {
// We need to find a spill slot for this interval. Place it in the correct
// worklist to be processed later.
switch (node->GetInterval()->GetType()) {
case DataType::Type::kFloat64:
double_intervals.push_back(parent);
break;
case DataType::Type::kInt64:
long_intervals.push_back(parent);
break;
case DataType::Type::kFloat32:
float_intervals.push_back(parent);
break;
case DataType::Type::kReference:
case DataType::Type::kInt32:
case DataType::Type::kUint16:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kBool:
case DataType::Type::kInt16:
int_intervals.push_back(parent);
break;
case DataType::Type::kUint32:
case DataType::Type::kUint64:
case DataType::Type::kVoid:
LOG(FATAL) << "Unexpected type for interval " << node->GetInterval()->GetType();
UNREACHABLE();
}
}
}
// Color spill slots for each value type.
ColorSpillSlots(ArrayRef<LiveInterval* const>(double_intervals), &num_double_spill_slots_);
ColorSpillSlots(ArrayRef<LiveInterval* const>(long_intervals), &num_long_spill_slots_);
ColorSpillSlots(ArrayRef<LiveInterval* const>(float_intervals), &num_float_spill_slots_);
ColorSpillSlots(ArrayRef<LiveInterval* const>(int_intervals), &num_int_spill_slots_);
}
void RegisterAllocatorGraphColor::ColorSpillSlots(ArrayRef<LiveInterval* const> intervals,
/* out */ size_t* num_stack_slots_used) {
// We cannot use the original interference graph here because spill slots are assigned to
// all of the siblings of an interval, whereas an interference node represents only a single
// sibling. So, we assign spill slots linear-scan-style by sorting all the interval endpoints
// by position, and assigning the lowest spill slot available when we encounter an interval
// beginning. We ignore lifetime holes for simplicity.
ScopedArenaAllocator allocator(allocator_->GetArenaStack());
ScopedArenaVector<std::tuple<size_t, bool, LiveInterval*>> interval_endpoints(
allocator.Adapter(kArenaAllocRegisterAllocator));
for (LiveInterval* parent_interval : intervals) {
DCHECK(parent_interval->IsParent());
DCHECK(!parent_interval->HasSpillSlot());
size_t start = parent_interval->GetStart();
size_t end = parent_interval->GetLastSibling()->GetEnd();
DCHECK_LT(start, end);
interval_endpoints.push_back(std::make_tuple(start, true, parent_interval));
interval_endpoints.push_back(std::make_tuple(end, false, parent_interval));
}
// Sort by position.
// We explicitly ignore the third entry of each tuple (the interval pointer) in order
// to maintain determinism.
std::sort(interval_endpoints.begin(), interval_endpoints.end(),
[] (const std::tuple<size_t, bool, LiveInterval*>& lhs,
const std::tuple<size_t, bool, LiveInterval*>& rhs) {
return std::tie(std::get<0>(lhs), std::get<1>(lhs))
< std::tie(std::get<0>(rhs), std::get<1>(rhs));
});
ArenaBitVector taken(&allocator, 0, true, kArenaAllocRegisterAllocator);
for (auto it = interval_endpoints.begin(), end = interval_endpoints.end(); it != end; ++it) {
// Extract information from the current tuple.
LiveInterval* parent_interval;
bool is_interval_beginning;
size_t position;
std::tie(position, is_interval_beginning, parent_interval) = *it;
size_t number_of_spill_slots_needed = parent_interval->NumberOfSpillSlotsNeeded();
if (is_interval_beginning) {
DCHECK(!parent_interval->HasSpillSlot());
DCHECK_EQ(position, parent_interval->GetStart());
// Find first available free stack slot(s).
size_t slot = 0;
for (; ; ++slot) {
bool found = true;
for (size_t s = slot, u = slot + number_of_spill_slots_needed; s < u; s++) {
if (taken.IsBitSet(s)) {
found = false;
break; // failure
}
}
if (found) {
break; // success
}
}
parent_interval->SetSpillSlot(slot);
*num_stack_slots_used = std::max(*num_stack_slots_used, slot + number_of_spill_slots_needed);
if (number_of_spill_slots_needed > 1 && *num_stack_slots_used % 2 != 0) {
// The parallel move resolver requires that there be an even number of spill slots
// allocated for pair value types.
++(*num_stack_slots_used);
}
for (size_t s = slot, u = slot + number_of_spill_slots_needed; s < u; s++) {
taken.SetBit(s);
}
} else {
DCHECK_EQ(position, parent_interval->GetLastSibling()->GetEnd());
DCHECK(parent_interval->HasSpillSlot());
// Free up the stack slot(s) used by this interval.
size_t slot = parent_interval->GetSpillSlot();
for (size_t s = slot, u = slot + number_of_spill_slots_needed; s < u; s++) {
DCHECK(taken.IsBitSet(s));
taken.ClearBit(s);
}
}
}
DCHECK_EQ(taken.NumSetBits(), 0u);
}
} // namespace art