blob: fb6ad30ba7e53e13bc540d696683d6a875825682 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
namespace art {
/*
* This file contains codegen and support common to all supported
* ARM variants. It is included by:
*
* Codegen-$(TARGET_ARCH_VARIANT).c
*
* which combines this common code with specific support found in the
* applicable directory below this one.
*/
/* Track exercised opcodes */
static int opcodeCoverage[kNumPackedOpcodes];
STATIC void setMemRefType(ArmLIR* lir, bool isLoad, int memType)
{
u8 *maskPtr;
u8 mask = ENCODE_MEM;;
DCHECK(EncodingMap[lir->opcode].flags & (IS_LOAD | IS_STORE));
if (isLoad) {
maskPtr = &lir->useMask;
} else {
maskPtr = &lir->defMask;
}
/* Clear out the memref flags */
*maskPtr &= ~mask;
/* ..and then add back the one we need */
switch(memType) {
case kLiteral:
DCHECK(isLoad);
*maskPtr |= ENCODE_LITERAL;
break;
case kDalvikReg:
*maskPtr |= ENCODE_DALVIK_REG;
break;
case kHeapRef:
*maskPtr |= ENCODE_HEAP_REF;
break;
case kMustNotAlias:
/* Currently only loads can be marked as kMustNotAlias */
DCHECK(!(EncodingMap[lir->opcode].flags & IS_STORE));
*maskPtr |= ENCODE_MUST_NOT_ALIAS;
break;
default:
LOG(FATAL) << "Oat: invalid memref kind - " << memType;
}
}
/*
* Mark load/store instructions that access Dalvik registers through r5FP +
* offset.
*/
STATIC void annotateDalvikRegAccess(ArmLIR* lir, int regId, bool isLoad)
{
setMemRefType(lir, isLoad, kDalvikReg);
/*
* Store the Dalvik register id in aliasInfo. Mark he MSB if it is a 64-bit
* access.
*/
lir->aliasInfo = regId;
if (DOUBLEREG(lir->operands[0])) {
lir->aliasInfo |= 0x80000000;
}
}
/*
* Decode the register id.
*/
STATIC inline u8 getRegMaskCommon(int reg)
{
u8 seed;
int shift;
int regId = reg & 0x1f;
/*
* Each double register is equal to a pair of single-precision FP registers
*/
seed = DOUBLEREG(reg) ? 3 : 1;
/* FP register starts at bit position 16 */
shift = FPREG(reg) ? kFPReg0 : 0;
/* Expand the double register id into single offset */
shift += regId;
return (seed << shift);
}
/*
* Mark the corresponding bit(s).
*/
STATIC inline void setupRegMask(u8* mask, int reg)
{
*mask |= getRegMaskCommon(reg);
}
/*
* Set up the proper fields in the resource mask
*/
STATIC void setupResourceMasks(ArmLIR* lir)
{
int opcode = lir->opcode;
int flags;
if (opcode <= 0) {
lir->useMask = lir->defMask = 0;
return;
}
flags = EncodingMap[lir->opcode].flags;
if (flags & NEEDS_FIXUP) {
lir->flags.pcRelFixup = true;
}
/* Set up the mask for resources that are updated */
if (flags & (IS_LOAD | IS_STORE)) {
/* Default to heap - will catch specialized classes later */
setMemRefType(lir, flags & IS_LOAD, kHeapRef);
}
/*
* Conservatively assume the branch here will call out a function that in
* turn will trash everything.
*/
if (flags & IS_BRANCH) {
lir->defMask = lir->useMask = ENCODE_ALL;
return;
}
if (flags & REG_DEF0) {
setupRegMask(&lir->defMask, lir->operands[0]);
}
if (flags & REG_DEF1) {
setupRegMask(&lir->defMask, lir->operands[1]);
}
if (flags & REG_DEF_SP) {
lir->defMask |= ENCODE_REG_SP;
}
if (flags & REG_DEF_LR) {
lir->defMask |= ENCODE_REG_LR;
}
if (flags & REG_DEF_LIST0) {
lir->defMask |= ENCODE_REG_LIST(lir->operands[0]);
}
if (flags & REG_DEF_LIST1) {
lir->defMask |= ENCODE_REG_LIST(lir->operands[1]);
}
if (flags & REG_DEF_FPCS_LIST0) {
lir->defMask |= ENCODE_REG_FPCS_LIST(lir->operands[0]);
}
if (flags & REG_DEF_FPCS_LIST2) {
for (int i = 0; i < lir->operands[2]; i++) {
setupRegMask(&lir->defMask, lir->operands[1] + i);
}
}
if (flags & SETS_CCODES) {
lir->defMask |= ENCODE_CCODE;
}
/* Conservatively treat the IT block */
if (flags & IS_IT) {
lir->defMask = ENCODE_ALL;
}
if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) {
int i;
for (i = 0; i < 4; i++) {
if (flags & (1 << (kRegUse0 + i))) {
setupRegMask(&lir->useMask, lir->operands[i]);
}
}
}
if (flags & REG_USE_PC) {
lir->useMask |= ENCODE_REG_PC;
}
if (flags & REG_USE_SP) {
lir->useMask |= ENCODE_REG_SP;
}
if (flags & REG_USE_LIST0) {
lir->useMask |= ENCODE_REG_LIST(lir->operands[0]);
}
if (flags & REG_USE_LIST1) {
lir->useMask |= ENCODE_REG_LIST(lir->operands[1]);
}
if (flags & REG_USE_FPCS_LIST0) {
lir->useMask |= ENCODE_REG_FPCS_LIST(lir->operands[0]);
}
if (flags & REG_USE_FPCS_LIST2) {
for (int i = 0; i < lir->operands[2]; i++) {
setupRegMask(&lir->useMask, lir->operands[1] + i);
}
}
if (flags & USES_CCODES) {
lir->useMask |= ENCODE_CCODE;
}
/* Fixup for kThumbPush/lr and kThumbPop/pc */
if (opcode == kThumbPush || opcode == kThumbPop) {
u8 r8Mask = getRegMaskCommon(r8);
if ((opcode == kThumbPush) && (lir->useMask & r8Mask)) {
lir->useMask &= ~r8Mask;
lir->useMask |= ENCODE_REG_LR;
} else if ((opcode == kThumbPop) && (lir->defMask & r8Mask)) {
lir->defMask &= ~r8Mask;
lir->defMask |= ENCODE_REG_PC;
}
}
}
/*
* The following are building blocks to construct low-level IRs with 0 - 4
* operands.
*/
STATIC ArmLIR* newLIR0(CompilationUnit* cUnit, ArmOpcode opcode)
{
ArmLIR* insn = (ArmLIR* ) oatNew(cUnit, sizeof(ArmLIR), true, kAllocLIR);
DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & NO_OPERAND));
insn->opcode = opcode;
setupResourceMasks(insn);
insn->generic.dalvikOffset = cUnit->currentDalvikOffset;
oatAppendLIR(cUnit, (LIR*) insn);
return insn;
}
STATIC ArmLIR* newLIR1(CompilationUnit* cUnit, ArmOpcode opcode,
int dest)
{
ArmLIR* insn = (ArmLIR* ) oatNew(cUnit, sizeof(ArmLIR), true, kAllocLIR);
DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_UNARY_OP));
insn->opcode = opcode;
insn->operands[0] = dest;
setupResourceMasks(insn);
insn->generic.dalvikOffset = cUnit->currentDalvikOffset;
oatAppendLIR(cUnit, (LIR*) insn);
return insn;
}
STATIC ArmLIR* newLIR2(CompilationUnit* cUnit, ArmOpcode opcode,
int dest, int src1)
{
ArmLIR* insn = (ArmLIR* ) oatNew(cUnit, sizeof(ArmLIR), true, kAllocLIR);
DCHECK(isPseudoOpcode(opcode) ||
(EncodingMap[opcode].flags & IS_BINARY_OP));
insn->opcode = opcode;
insn->operands[0] = dest;
insn->operands[1] = src1;
setupResourceMasks(insn);
insn->generic.dalvikOffset = cUnit->currentDalvikOffset;
oatAppendLIR(cUnit, (LIR*) insn);
return insn;
}
STATIC ArmLIR* newLIR3(CompilationUnit* cUnit, ArmOpcode opcode,
int dest, int src1, int src2)
{
ArmLIR* insn = (ArmLIR* ) oatNew(cUnit, sizeof(ArmLIR), true, kAllocLIR);
DCHECK(isPseudoOpcode(opcode) ||
(EncodingMap[opcode].flags & IS_TERTIARY_OP))
<< (int)opcode << " "
<< PrettyMethod(cUnit->method_idx, *cUnit->dex_file) << " "
<< cUnit->currentDalvikOffset;
insn->opcode = opcode;
insn->operands[0] = dest;
insn->operands[1] = src1;
insn->operands[2] = src2;
setupResourceMasks(insn);
insn->generic.dalvikOffset = cUnit->currentDalvikOffset;
oatAppendLIR(cUnit, (LIR*) insn);
return insn;
}
#if defined(_ARMV7_A) || defined(_ARMV7_A_NEON)
STATIC ArmLIR* newLIR4(CompilationUnit* cUnit, ArmOpcode opcode,
int dest, int src1, int src2, int info)
{
ArmLIR* insn = (ArmLIR* ) oatNew(cUnit, sizeof(ArmLIR), true, kAllocLIR);
DCHECK(isPseudoOpcode(opcode) ||
(EncodingMap[opcode].flags & IS_QUAD_OP));
insn->opcode = opcode;
insn->operands[0] = dest;
insn->operands[1] = src1;
insn->operands[2] = src2;
insn->operands[3] = info;
setupResourceMasks(insn);
insn->generic.dalvikOffset = cUnit->currentDalvikOffset;
oatAppendLIR(cUnit, (LIR*) insn);
return insn;
}
#endif
/*
* Search the existing constants in the literal pool for an exact or close match
* within specified delta (greater or equal to 0).
*/
STATIC ArmLIR* scanLiteralPool(LIR* dataTarget, int value, unsigned int delta)
{
while (dataTarget) {
if (((unsigned) (value - ((ArmLIR* ) dataTarget)->operands[0])) <=
delta)
return (ArmLIR* ) dataTarget;
dataTarget = dataTarget->next;
}
return NULL;
}
/* Search the existing constants in the literal pool for an exact wide match */
STATIC ArmLIR* scanLiteralPoolWide(LIR* dataTarget, int valLo, int valHi)
{
bool loMatch = false;
LIR* loTarget = NULL;
while (dataTarget) {
if (loMatch && (((ArmLIR*)dataTarget)->operands[0] == valHi)) {
return (ArmLIR*)loTarget;
}
loMatch = false;
if (((ArmLIR*)dataTarget)->operands[0] == valLo) {
loMatch = true;
loTarget = dataTarget;
}
dataTarget = dataTarget->next;
}
return NULL;
}
/*
* The following are building blocks to insert constants into the pool or
* instruction streams.
*/
/* Add a 32-bit constant either in the constant pool or mixed with code */
STATIC ArmLIR* addWordData(CompilationUnit* cUnit, LIR* *constantListP,
int value)
{
/* Add the constant to the literal pool */
if (constantListP) {
ArmLIR* newValue = (ArmLIR* ) oatNew(cUnit, sizeof(ArmLIR), true,
kAllocData);
newValue->operands[0] = value;
newValue->generic.next = *constantListP;
*constantListP = (LIR*) newValue;
return newValue;
} else {
/* Add the constant in the middle of code stream */
newLIR1(cUnit, kArm16BitData, (value & 0xffff));
newLIR1(cUnit, kArm16BitData, (value >> 16));
}
return NULL;
}
/* Add a 64-bit constant to the constant pool or mixed with code */
STATIC ArmLIR* addWideData(CompilationUnit* cUnit, LIR* *constantListP,
int valLo, int valHi)
{
ArmLIR* res;
//NOTE: hard-coded little endian
if (constantListP == NULL) {
res = addWordData(cUnit, NULL, valLo);
addWordData(cUnit, NULL, valHi);
} else {
// Insert high word into list first
addWordData(cUnit, constantListP, valHi);
res = addWordData(cUnit, constantListP, valLo);
}
return res;
}
/*
* Generate an kArmPseudoBarrier marker to indicate the boundary of special
* blocks.
*/
STATIC void genBarrier(CompilationUnit* cUnit)
{
ArmLIR* barrier = newLIR0(cUnit, kArmPseudoBarrier);
/* Mark all resources as being clobbered */
barrier->defMask = -1;
}
} // namespace art