blob: 07ba95dcfbc55355c8d739d7430dd6e481343b63 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_x86_64.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "gc/accounting/card_table.h"
#include "intrinsics.h"
#include "intrinsics_x86_64.h"
#include "mirror/array-inl.h"
#include "mirror/art_method.h"
#include "mirror/class.h"
#include "mirror/object_reference.h"
#include "thread.h"
#include "utils/assembler.h"
#include "utils/stack_checks.h"
#include "utils/x86_64/assembler_x86_64.h"
#include "utils/x86_64/managed_register_x86_64.h"
namespace art {
namespace x86_64 {
// Some x86_64 instructions require a register to be available as temp.
static constexpr Register TMP = R11;
static constexpr int kCurrentMethodStackOffset = 0;
static constexpr Register kRuntimeParameterCoreRegisters[] = { RDI, RSI, RDX };
static constexpr size_t kRuntimeParameterCoreRegistersLength =
arraysize(kRuntimeParameterCoreRegisters);
static constexpr FloatRegister kRuntimeParameterFpuRegisters[] = { XMM0, XMM1 };
static constexpr size_t kRuntimeParameterFpuRegistersLength =
arraysize(kRuntimeParameterFpuRegisters);
static constexpr Register kCoreCalleeSaves[] = { RBX, RBP, R12, R13, R14, R15 };
static constexpr FloatRegister kFpuCalleeSaves[] = { XMM12, XMM13, XMM14, XMM15 };
static constexpr int kC2ConditionMask = 0x400;
class InvokeRuntimeCallingConvention : public CallingConvention<Register, FloatRegister> {
public:
InvokeRuntimeCallingConvention()
: CallingConvention(kRuntimeParameterCoreRegisters,
kRuntimeParameterCoreRegistersLength,
kRuntimeParameterFpuRegisters,
kRuntimeParameterFpuRegistersLength) {}
private:
DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention);
};
#define __ reinterpret_cast<X86_64Assembler*>(codegen->GetAssembler())->
class NullCheckSlowPathX86_64 : public SlowPathCodeX86_64 {
public:
explicit NullCheckSlowPathX86_64(HNullCheck* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
__ Bind(GetEntryLabel());
__ gs()->call(
Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pThrowNullPointer), true));
codegen->RecordPcInfo(instruction_, instruction_->GetDexPc());
}
private:
HNullCheck* const instruction_;
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86_64);
};
class DivZeroCheckSlowPathX86_64 : public SlowPathCodeX86_64 {
public:
explicit DivZeroCheckSlowPathX86_64(HDivZeroCheck* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
__ Bind(GetEntryLabel());
__ gs()->call(
Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pThrowDivZero), true));
codegen->RecordPcInfo(instruction_, instruction_->GetDexPc());
}
private:
HDivZeroCheck* const instruction_;
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86_64);
};
class DivRemMinusOneSlowPathX86_64 : public SlowPathCodeX86_64 {
public:
explicit DivRemMinusOneSlowPathX86_64(Register reg, Primitive::Type type, bool is_div)
: cpu_reg_(CpuRegister(reg)), type_(type), is_div_(is_div) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
__ Bind(GetEntryLabel());
if (type_ == Primitive::kPrimInt) {
if (is_div_) {
__ negl(cpu_reg_);
} else {
__ movl(cpu_reg_, Immediate(0));
}
} else {
DCHECK_EQ(Primitive::kPrimLong, type_);
if (is_div_) {
__ negq(cpu_reg_);
} else {
__ movq(cpu_reg_, Immediate(0));
}
}
__ jmp(GetExitLabel());
}
private:
const CpuRegister cpu_reg_;
const Primitive::Type type_;
const bool is_div_;
DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86_64);
};
class SuspendCheckSlowPathX86_64 : public SlowPathCodeX86_64 {
public:
explicit SuspendCheckSlowPathX86_64(HSuspendCheck* instruction, HBasicBlock* successor)
: instruction_(instruction), successor_(successor) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorX86_64* x64_codegen = down_cast<CodeGeneratorX86_64*>(codegen);
__ Bind(GetEntryLabel());
codegen->SaveLiveRegisters(instruction_->GetLocations());
__ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pTestSuspend), true));
codegen->RecordPcInfo(instruction_, instruction_->GetDexPc());
codegen->RestoreLiveRegisters(instruction_->GetLocations());
if (successor_ == nullptr) {
__ jmp(GetReturnLabel());
} else {
__ jmp(x64_codegen->GetLabelOf(successor_));
}
}
Label* GetReturnLabel() {
DCHECK(successor_ == nullptr);
return &return_label_;
}
private:
HSuspendCheck* const instruction_;
HBasicBlock* const successor_;
Label return_label_;
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86_64);
};
class BoundsCheckSlowPathX86_64 : public SlowPathCodeX86_64 {
public:
BoundsCheckSlowPathX86_64(HBoundsCheck* instruction,
Location index_location,
Location length_location)
: instruction_(instruction),
index_location_(index_location),
length_location_(length_location) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
__ Bind(GetEntryLabel());
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(
index_location_,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
length_location_,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
__ gs()->call(Address::Absolute(
QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pThrowArrayBounds), true));
codegen->RecordPcInfo(instruction_, instruction_->GetDexPc());
}
private:
HBoundsCheck* const instruction_;
const Location index_location_;
const Location length_location_;
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86_64);
};
class LoadClassSlowPathX86_64 : public SlowPathCodeX86_64 {
public:
LoadClassSlowPathX86_64(HLoadClass* cls,
HInstruction* at,
uint32_t dex_pc,
bool do_clinit)
: cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = at_->GetLocations();
CodeGeneratorX86_64* x64_codegen = down_cast<CodeGeneratorX86_64*>(codegen);
__ Bind(GetEntryLabel());
codegen->SaveLiveRegisters(locations);
InvokeRuntimeCallingConvention calling_convention;
__ movl(CpuRegister(calling_convention.GetRegisterAt(0)), Immediate(cls_->GetTypeIndex()));
x64_codegen->LoadCurrentMethod(CpuRegister(calling_convention.GetRegisterAt(1)));
__ gs()->call(Address::Absolute((do_clinit_
? QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pInitializeStaticStorage)
: QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pInitializeType)) , true));
codegen->RecordPcInfo(at_, dex_pc_);
Location out = locations->Out();
// Move the class to the desired location.
if (out.IsValid()) {
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
x64_codegen->Move(out, Location::RegisterLocation(RAX));
}
codegen->RestoreLiveRegisters(locations);
__ jmp(GetExitLabel());
}
private:
// The class this slow path will load.
HLoadClass* const cls_;
// The instruction where this slow path is happening.
// (Might be the load class or an initialization check).
HInstruction* const at_;
// The dex PC of `at_`.
const uint32_t dex_pc_;
// Whether to initialize the class.
const bool do_clinit_;
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86_64);
};
class LoadStringSlowPathX86_64 : public SlowPathCodeX86_64 {
public:
explicit LoadStringSlowPathX86_64(HLoadString* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorX86_64* x64_codegen = down_cast<CodeGeneratorX86_64*>(codegen);
__ Bind(GetEntryLabel());
codegen->SaveLiveRegisters(locations);
InvokeRuntimeCallingConvention calling_convention;
x64_codegen->LoadCurrentMethod(CpuRegister(calling_convention.GetRegisterAt(1)));
__ movl(CpuRegister(calling_convention.GetRegisterAt(0)),
Immediate(instruction_->GetStringIndex()));
__ gs()->call(Address::Absolute(
QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pResolveString), true));
codegen->RecordPcInfo(instruction_, instruction_->GetDexPc());
x64_codegen->Move(locations->Out(), Location::RegisterLocation(RAX));
codegen->RestoreLiveRegisters(locations);
__ jmp(GetExitLabel());
}
private:
HLoadString* const instruction_;
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86_64);
};
class TypeCheckSlowPathX86_64 : public SlowPathCodeX86_64 {
public:
TypeCheckSlowPathX86_64(HInstruction* instruction,
Location class_to_check,
Location object_class,
uint32_t dex_pc)
: instruction_(instruction),
class_to_check_(class_to_check),
object_class_(object_class),
dex_pc_(dex_pc) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(instruction_->IsCheckCast()
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorX86_64* x64_codegen = down_cast<CodeGeneratorX86_64*>(codegen);
__ Bind(GetEntryLabel());
codegen->SaveLiveRegisters(locations);
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(
class_to_check_,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
object_class_,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
if (instruction_->IsInstanceOf()) {
__ gs()->call(
Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pInstanceofNonTrivial), true));
} else {
DCHECK(instruction_->IsCheckCast());
__ gs()->call(
Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pCheckCast), true));
}
codegen->RecordPcInfo(instruction_, dex_pc_);
if (instruction_->IsInstanceOf()) {
x64_codegen->Move(locations->Out(), Location::RegisterLocation(RAX));
}
codegen->RestoreLiveRegisters(locations);
__ jmp(GetExitLabel());
}
private:
HInstruction* const instruction_;
const Location class_to_check_;
const Location object_class_;
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86_64);
};
#undef __
#define __ reinterpret_cast<X86_64Assembler*>(GetAssembler())->
inline Condition X86_64Condition(IfCondition cond) {
switch (cond) {
case kCondEQ: return kEqual;
case kCondNE: return kNotEqual;
case kCondLT: return kLess;
case kCondLE: return kLessEqual;
case kCondGT: return kGreater;
case kCondGE: return kGreaterEqual;
default:
LOG(FATAL) << "Unknown if condition";
}
return kEqual;
}
void CodeGeneratorX86_64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke,
CpuRegister temp) {
// All registers are assumed to be correctly set up.
// TODO: Implement all kinds of calls:
// 1) boot -> boot
// 2) app -> boot
// 3) app -> app
//
// Currently we implement the app -> app logic, which looks up in the resolve cache.
// temp = method;
LoadCurrentMethod(temp);
if (!invoke->IsRecursive()) {
// temp = temp->dex_cache_resolved_methods_;
__ movl(temp, Address(temp, mirror::ArtMethod::DexCacheResolvedMethodsOffset().SizeValue()));
// temp = temp[index_in_cache]
__ movl(temp, Address(temp, CodeGenerator::GetCacheOffset(invoke->GetDexMethodIndex())));
// (temp + offset_of_quick_compiled_code)()
__ call(Address(temp, mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kX86_64WordSize).SizeValue()));
} else {
__ call(&frame_entry_label_);
}
DCHECK(!IsLeafMethod());
RecordPcInfo(invoke, invoke->GetDexPc());
}
void CodeGeneratorX86_64::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << X86_64ManagedRegister::FromCpuRegister(Register(reg));
}
void CodeGeneratorX86_64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << X86_64ManagedRegister::FromXmmRegister(FloatRegister(reg));
}
size_t CodeGeneratorX86_64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
__ movq(Address(CpuRegister(RSP), stack_index), CpuRegister(reg_id));
return kX86_64WordSize;
}
size_t CodeGeneratorX86_64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
__ movq(CpuRegister(reg_id), Address(CpuRegister(RSP), stack_index));
return kX86_64WordSize;
}
size_t CodeGeneratorX86_64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ movsd(Address(CpuRegister(RSP), stack_index), XmmRegister(reg_id));
return kX86_64WordSize;
}
size_t CodeGeneratorX86_64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ movsd(XmmRegister(reg_id), Address(CpuRegister(RSP), stack_index));
return kX86_64WordSize;
}
static constexpr int kNumberOfCpuRegisterPairs = 0;
// Use a fake return address register to mimic Quick.
static constexpr Register kFakeReturnRegister = Register(kLastCpuRegister + 1);
CodeGeneratorX86_64::CodeGeneratorX86_64(HGraph* graph, const CompilerOptions& compiler_options)
: CodeGenerator(graph,
kNumberOfCpuRegisters,
kNumberOfFloatRegisters,
kNumberOfCpuRegisterPairs,
ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
arraysize(kCoreCalleeSaves))
| (1 << kFakeReturnRegister),
ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
arraysize(kFpuCalleeSaves)),
compiler_options),
block_labels_(graph->GetArena(), 0),
location_builder_(graph, this),
instruction_visitor_(graph, this),
move_resolver_(graph->GetArena(), this) {
AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister));
}
InstructionCodeGeneratorX86_64::InstructionCodeGeneratorX86_64(HGraph* graph,
CodeGeneratorX86_64* codegen)
: HGraphVisitor(graph),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
Location CodeGeneratorX86_64::AllocateFreeRegister(Primitive::Type type) const {
switch (type) {
case Primitive::kPrimLong:
case Primitive::kPrimByte:
case Primitive::kPrimBoolean:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
size_t reg = FindFreeEntry(blocked_core_registers_, kNumberOfCpuRegisters);
return Location::RegisterLocation(reg);
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
size_t reg = FindFreeEntry(blocked_fpu_registers_, kNumberOfFloatRegisters);
return Location::FpuRegisterLocation(reg);
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
}
return Location();
}
void CodeGeneratorX86_64::SetupBlockedRegisters(bool is_baseline) const {
// Stack register is always reserved.
blocked_core_registers_[RSP] = true;
// Block the register used as TMP.
blocked_core_registers_[TMP] = true;
if (is_baseline) {
for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
blocked_core_registers_[kCoreCalleeSaves[i]] = true;
}
for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
}
}
}
void CodeGeneratorX86_64::GenerateFrameEntry() {
__ Bind(&frame_entry_label_);
bool skip_overflow_check = IsLeafMethod()
&& !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86_64);
DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
if (!skip_overflow_check) {
__ testq(CpuRegister(RAX), Address(
CpuRegister(RSP), -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86_64))));
RecordPcInfo(nullptr, 0);
}
if (HasEmptyFrame()) {
return;
}
for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) {
Register reg = kCoreCalleeSaves[i];
if (allocated_registers_.ContainsCoreRegister(reg)) {
__ pushq(CpuRegister(reg));
}
}
__ subq(CpuRegister(RSP), Immediate(GetFrameSize() - GetCoreSpillSize()));
uint32_t xmm_spill_location = GetFpuSpillStart();
size_t xmm_spill_slot_size = GetFloatingPointSpillSlotSize();
for (int i = arraysize(kFpuCalleeSaves) - 1; i >= 0; --i) {
if (allocated_registers_.ContainsFloatingPointRegister(kFpuCalleeSaves[i])) {
__ movsd(Address(CpuRegister(RSP), xmm_spill_location + (xmm_spill_slot_size * i)),
XmmRegister(kFpuCalleeSaves[i]));
}
}
__ movl(Address(CpuRegister(RSP), kCurrentMethodStackOffset), CpuRegister(RDI));
}
void CodeGeneratorX86_64::GenerateFrameExit() {
if (HasEmptyFrame()) {
return;
}
uint32_t xmm_spill_location = GetFpuSpillStart();
size_t xmm_spill_slot_size = GetFloatingPointSpillSlotSize();
for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
if (allocated_registers_.ContainsFloatingPointRegister(kFpuCalleeSaves[i])) {
__ movsd(XmmRegister(kFpuCalleeSaves[i]),
Address(CpuRegister(RSP), xmm_spill_location + (xmm_spill_slot_size * i)));
}
}
__ addq(CpuRegister(RSP), Immediate(GetFrameSize() - GetCoreSpillSize()));
for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
Register reg = kCoreCalleeSaves[i];
if (allocated_registers_.ContainsCoreRegister(reg)) {
__ popq(CpuRegister(reg));
}
}
}
void CodeGeneratorX86_64::Bind(HBasicBlock* block) {
__ Bind(GetLabelOf(block));
}
void CodeGeneratorX86_64::LoadCurrentMethod(CpuRegister reg) {
DCHECK(RequiresCurrentMethod());
__ movl(reg, Address(CpuRegister(RSP), kCurrentMethodStackOffset));
}
Location CodeGeneratorX86_64::GetStackLocation(HLoadLocal* load) const {
switch (load->GetType()) {
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
return Location::DoubleStackSlot(GetStackSlot(load->GetLocal()));
break;
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimFloat:
return Location::StackSlot(GetStackSlot(load->GetLocal()));
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected type " << load->GetType();
}
LOG(FATAL) << "Unreachable";
return Location();
}
void CodeGeneratorX86_64::Move(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegister()) {
if (source.IsRegister()) {
__ movq(destination.AsRegister<CpuRegister>(), source.AsRegister<CpuRegister>());
} else if (source.IsFpuRegister()) {
__ movd(destination.AsRegister<CpuRegister>(), source.AsFpuRegister<XmmRegister>());
} else if (source.IsStackSlot()) {
__ movl(destination.AsRegister<CpuRegister>(),
Address(CpuRegister(RSP), source.GetStackIndex()));
} else {
DCHECK(source.IsDoubleStackSlot());
__ movq(destination.AsRegister<CpuRegister>(),
Address(CpuRegister(RSP), source.GetStackIndex()));
}
} else if (destination.IsFpuRegister()) {
if (source.IsRegister()) {
__ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<CpuRegister>());
} else if (source.IsFpuRegister()) {
__ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
} else if (source.IsStackSlot()) {
__ movss(destination.AsFpuRegister<XmmRegister>(),
Address(CpuRegister(RSP), source.GetStackIndex()));
} else {
DCHECK(source.IsDoubleStackSlot());
__ movsd(destination.AsFpuRegister<XmmRegister>(),
Address(CpuRegister(RSP), source.GetStackIndex()));
}
} else if (destination.IsStackSlot()) {
if (source.IsRegister()) {
__ movl(Address(CpuRegister(RSP), destination.GetStackIndex()),
source.AsRegister<CpuRegister>());
} else if (source.IsFpuRegister()) {
__ movss(Address(CpuRegister(RSP), destination.GetStackIndex()),
source.AsFpuRegister<XmmRegister>());
} else if (source.IsConstant()) {
HConstant* constant = source.GetConstant();
int32_t value = GetInt32ValueOf(constant);
__ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), Immediate(value));
} else {
DCHECK(source.IsStackSlot()) << source;
__ movl(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex()));
__ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP));
}
} else {
DCHECK(destination.IsDoubleStackSlot());
if (source.IsRegister()) {
__ movq(Address(CpuRegister(RSP), destination.GetStackIndex()),
source.AsRegister<CpuRegister>());
} else if (source.IsFpuRegister()) {
__ movsd(Address(CpuRegister(RSP), destination.GetStackIndex()),
source.AsFpuRegister<XmmRegister>());
} else if (source.IsConstant()) {
HConstant* constant = source.GetConstant();
int64_t value = constant->AsLongConstant()->GetValue();
if (constant->IsDoubleConstant()) {
value = bit_cast<double, int64_t>(constant->AsDoubleConstant()->GetValue());
} else {
DCHECK(constant->IsLongConstant());
value = constant->AsLongConstant()->GetValue();
}
__ movq(CpuRegister(TMP), Immediate(value));
__ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP));
} else {
DCHECK(source.IsDoubleStackSlot());
__ movq(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex()));
__ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP));
}
}
}
void CodeGeneratorX86_64::Move(HInstruction* instruction,
Location location,
HInstruction* move_for) {
LocationSummary* locations = instruction->GetLocations();
if (locations != nullptr && locations->Out().Equals(location)) {
return;
}
if (locations != nullptr && locations->Out().IsConstant()) {
HConstant* const_to_move = locations->Out().GetConstant();
if (const_to_move->IsIntConstant() || const_to_move->IsNullConstant()) {
Immediate imm(GetInt32ValueOf(const_to_move));
if (location.IsRegister()) {
__ movl(location.AsRegister<CpuRegister>(), imm);
} else if (location.IsStackSlot()) {
__ movl(Address(CpuRegister(RSP), location.GetStackIndex()), imm);
} else {
DCHECK(location.IsConstant());
DCHECK_EQ(location.GetConstant(), const_to_move);
}
} else if (const_to_move->IsLongConstant()) {
int64_t value = const_to_move->AsLongConstant()->GetValue();
if (location.IsRegister()) {
__ movq(location.AsRegister<CpuRegister>(), Immediate(value));
} else if (location.IsDoubleStackSlot()) {
__ movq(CpuRegister(TMP), Immediate(value));
__ movq(Address(CpuRegister(RSP), location.GetStackIndex()), CpuRegister(TMP));
} else {
DCHECK(location.IsConstant());
DCHECK_EQ(location.GetConstant(), const_to_move);
}
}
} else if (instruction->IsLoadLocal()) {
switch (instruction->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimFloat:
Move(location, Location::StackSlot(GetStackSlot(instruction->AsLoadLocal()->GetLocal())));
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
Move(location,
Location::DoubleStackSlot(GetStackSlot(instruction->AsLoadLocal()->GetLocal())));
break;
default:
LOG(FATAL) << "Unexpected local type " << instruction->GetType();
}
} else if (instruction->IsTemporary()) {
Location temp_location = GetTemporaryLocation(instruction->AsTemporary());
Move(location, temp_location);
} else {
DCHECK((instruction->GetNext() == move_for) || instruction->GetNext()->IsTemporary());
switch (instruction->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
Move(location, locations->Out());
break;
default:
LOG(FATAL) << "Unexpected type " << instruction->GetType();
}
}
}
void LocationsBuilderX86_64::VisitGoto(HGoto* got) {
got->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86_64::VisitGoto(HGoto* got) {
HBasicBlock* successor = got->GetSuccessor();
DCHECK(!successor->IsExitBlock());
HBasicBlock* block = got->GetBlock();
HInstruction* previous = got->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(block) && info->HasSuspendCheck()) {
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return;
}
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
}
if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
__ jmp(codegen_->GetLabelOf(successor));
}
}
void LocationsBuilderX86_64::VisitExit(HExit* exit) {
exit->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86_64::VisitExit(HExit* exit) {
UNUSED(exit);
if (kIsDebugBuild) {
__ Comment("Unreachable");
__ int3();
}
}
void LocationsBuilderX86_64::VisitIf(HIf* if_instr) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(if_instr, LocationSummary::kNoCall);
HInstruction* cond = if_instr->InputAt(0);
if (!cond->IsCondition() || cond->AsCondition()->NeedsMaterialization()) {
locations->SetInAt(0, Location::Any());
}
}
void InstructionCodeGeneratorX86_64::VisitIf(HIf* if_instr) {
HInstruction* cond = if_instr->InputAt(0);
if (cond->IsIntConstant()) {
// Constant condition, statically compared against 1.
int32_t cond_value = cond->AsIntConstant()->GetValue();
if (cond_value == 1) {
if (!codegen_->GoesToNextBlock(if_instr->GetBlock(),
if_instr->IfTrueSuccessor())) {
__ jmp(codegen_->GetLabelOf(if_instr->IfTrueSuccessor()));
}
return;
} else {
DCHECK_EQ(cond_value, 0);
}
} else {
bool materialized =
!cond->IsCondition() || cond->AsCondition()->NeedsMaterialization();
// Moves do not affect the eflags register, so if the condition is
// evaluated just before the if, we don't need to evaluate it
// again.
bool eflags_set = cond->IsCondition()
&& cond->AsCondition()->IsBeforeWhenDisregardMoves(if_instr);
if (materialized) {
if (!eflags_set) {
// Materialized condition, compare against 0.
Location lhs = if_instr->GetLocations()->InAt(0);
if (lhs.IsRegister()) {
__ testl(lhs.AsRegister<CpuRegister>(), lhs.AsRegister<CpuRegister>());
} else {
__ cmpl(Address(CpuRegister(RSP), lhs.GetStackIndex()),
Immediate(0));
}
__ j(kNotEqual, codegen_->GetLabelOf(if_instr->IfTrueSuccessor()));
} else {
__ j(X86_64Condition(cond->AsCondition()->GetCondition()),
codegen_->GetLabelOf(if_instr->IfTrueSuccessor()));
}
} else {
Location lhs = cond->GetLocations()->InAt(0);
Location rhs = cond->GetLocations()->InAt(1);
if (rhs.IsRegister()) {
__ cmpl(lhs.AsRegister<CpuRegister>(), rhs.AsRegister<CpuRegister>());
} else if (rhs.IsConstant()) {
int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
if (constant == 0) {
__ testl(lhs.AsRegister<CpuRegister>(), lhs.AsRegister<CpuRegister>());
} else {
__ cmpl(lhs.AsRegister<CpuRegister>(), Immediate(constant));
}
} else {
__ cmpl(lhs.AsRegister<CpuRegister>(),
Address(CpuRegister(RSP), rhs.GetStackIndex()));
}
__ j(X86_64Condition(cond->AsCondition()->GetCondition()),
codegen_->GetLabelOf(if_instr->IfTrueSuccessor()));
}
}
if (!codegen_->GoesToNextBlock(if_instr->GetBlock(),
if_instr->IfFalseSuccessor())) {
__ jmp(codegen_->GetLabelOf(if_instr->IfFalseSuccessor()));
}
}
void LocationsBuilderX86_64::VisitLocal(HLocal* local) {
local->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86_64::VisitLocal(HLocal* local) {
DCHECK_EQ(local->GetBlock(), GetGraph()->GetEntryBlock());
}
void LocationsBuilderX86_64::VisitLoadLocal(HLoadLocal* local) {
local->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86_64::VisitLoadLocal(HLoadLocal* load) {
// Nothing to do, this is driven by the code generator.
UNUSED(load);
}
void LocationsBuilderX86_64::VisitStoreLocal(HStoreLocal* store) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(store, LocationSummary::kNoCall);
switch (store->InputAt(1)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimFloat:
locations->SetInAt(1, Location::StackSlot(codegen_->GetStackSlot(store->GetLocal())));
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
locations->SetInAt(1, Location::DoubleStackSlot(codegen_->GetStackSlot(store->GetLocal())));
break;
default:
LOG(FATAL) << "Unexpected local type " << store->InputAt(1)->GetType();
}
}
void InstructionCodeGeneratorX86_64::VisitStoreLocal(HStoreLocal* store) {
UNUSED(store);
}
void LocationsBuilderX86_64::VisitCondition(HCondition* comp) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(comp, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
if (comp->NeedsMaterialization()) {
locations->SetOut(Location::RequiresRegister());
}
}
void InstructionCodeGeneratorX86_64::VisitCondition(HCondition* comp) {
if (comp->NeedsMaterialization()) {
LocationSummary* locations = comp->GetLocations();
CpuRegister reg = locations->Out().AsRegister<CpuRegister>();
// Clear register: setcc only sets the low byte.
__ xorq(reg, reg);
Location lhs = locations->InAt(0);
Location rhs = locations->InAt(1);
if (rhs.IsRegister()) {
__ cmpl(lhs.AsRegister<CpuRegister>(), rhs.AsRegister<CpuRegister>());
} else if (rhs.IsConstant()) {
int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
if (constant == 0) {
__ testl(lhs.AsRegister<CpuRegister>(), lhs.AsRegister<CpuRegister>());
} else {
__ cmpl(lhs.AsRegister<CpuRegister>(), Immediate(constant));
}
} else {
__ cmpl(lhs.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), rhs.GetStackIndex()));
}
__ setcc(X86_64Condition(comp->GetCondition()), reg);
}
}
void LocationsBuilderX86_64::VisitEqual(HEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86_64::VisitEqual(HEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86_64::VisitNotEqual(HNotEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86_64::VisitNotEqual(HNotEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86_64::VisitLessThan(HLessThan* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86_64::VisitLessThan(HLessThan* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86_64::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86_64::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86_64::VisitGreaterThan(HGreaterThan* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86_64::VisitGreaterThan(HGreaterThan* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86_64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorX86_64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderX86_64::VisitCompare(HCompare* compare) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
switch (compare->InputAt(0)->GetType()) {
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
break;
}
default:
LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
}
}
void InstructionCodeGeneratorX86_64::VisitCompare(HCompare* compare) {
LocationSummary* locations = compare->GetLocations();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
Location left = locations->InAt(0);
Location right = locations->InAt(1);
Label less, greater, done;
Primitive::Type type = compare->InputAt(0)->GetType();
switch (type) {
case Primitive::kPrimLong: {
__ cmpq(left.AsRegister<CpuRegister>(), right.AsRegister<CpuRegister>());
break;
}
case Primitive::kPrimFloat: {
__ ucomiss(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>());
__ j(kUnordered, compare->IsGtBias() ? &greater : &less);
break;
}
case Primitive::kPrimDouble: {
__ ucomisd(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>());
__ j(kUnordered, compare->IsGtBias() ? &greater : &less);
break;
}
default:
LOG(FATAL) << "Unexpected compare type " << type;
}
__ movl(out, Immediate(0));
__ j(kEqual, &done);
__ j(type == Primitive::kPrimLong ? kLess : kBelow, &less); // ucomis{s,d} sets CF (kBelow)
__ Bind(&greater);
__ movl(out, Immediate(1));
__ jmp(&done);
__ Bind(&less);
__ movl(out, Immediate(-1));
__ Bind(&done);
}
void LocationsBuilderX86_64::VisitIntConstant(HIntConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86_64::VisitIntConstant(HIntConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderX86_64::VisitNullConstant(HNullConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86_64::VisitNullConstant(HNullConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderX86_64::VisitLongConstant(HLongConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86_64::VisitLongConstant(HLongConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderX86_64::VisitFloatConstant(HFloatConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86_64::VisitFloatConstant(HFloatConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderX86_64::VisitDoubleConstant(HDoubleConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86_64::VisitDoubleConstant(HDoubleConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderX86_64::VisitReturnVoid(HReturnVoid* ret) {
ret->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86_64::VisitReturnVoid(HReturnVoid* ret) {
UNUSED(ret);
codegen_->GenerateFrameExit();
__ ret();
}
void LocationsBuilderX86_64::VisitReturn(HReturn* ret) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
switch (ret->InputAt(0)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RegisterLocation(RAX));
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0,
Location::FpuRegisterLocation(XMM0));
break;
default:
LOG(FATAL) << "Unexpected return type " << ret->InputAt(0)->GetType();
}
}
void InstructionCodeGeneratorX86_64::VisitReturn(HReturn* ret) {
if (kIsDebugBuild) {
switch (ret->InputAt(0)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimLong:
DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<CpuRegister>().AsRegister(), RAX);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>().AsFloatRegister(),
XMM0);
break;
default:
LOG(FATAL) << "Unexpected return type " << ret->InputAt(0)->GetType();
}
}
codegen_->GenerateFrameExit();
__ ret();
}
Location InvokeDexCallingConventionVisitor::GetNextLocation(Primitive::Type type) {
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
uint32_t index = gp_index_++;
stack_index_++;
if (index < calling_convention.GetNumberOfRegisters()) {
return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
} else {
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
}
}
case Primitive::kPrimLong: {
uint32_t index = gp_index_;
stack_index_ += 2;
if (index < calling_convention.GetNumberOfRegisters()) {
gp_index_ += 1;
return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
} else {
gp_index_ += 2;
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
}
}
case Primitive::kPrimFloat: {
uint32_t index = fp_index_++;
stack_index_++;
if (index < calling_convention.GetNumberOfFpuRegisters()) {
return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
} else {
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
}
}
case Primitive::kPrimDouble: {
uint32_t index = fp_index_++;
stack_index_ += 2;
if (index < calling_convention.GetNumberOfFpuRegisters()) {
return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
} else {
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
}
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected parameter type " << type;
break;
}
return Location();
}
void LocationsBuilderX86_64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
IntrinsicLocationsBuilderX86_64 intrinsic(GetGraph()->GetArena());
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86_64* codegen) {
if (invoke->GetLocations()->Intrinsified()) {
IntrinsicCodeGeneratorX86_64 intrinsic(codegen);
intrinsic.Dispatch(invoke);
return true;
}
return false;
}
void InstructionCodeGeneratorX86_64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
codegen_->GenerateStaticOrDirectCall(
invoke,
invoke->GetLocations()->GetTemp(0).AsRegister<CpuRegister>());
}
void LocationsBuilderX86_64::HandleInvoke(HInvoke* invoke) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(invoke, LocationSummary::kCall);
locations->AddTemp(Location::RegisterLocation(RDI));
InvokeDexCallingConventionVisitor calling_convention_visitor;
for (size_t i = 0; i < invoke->InputCount(); i++) {
HInstruction* input = invoke->InputAt(i);
locations->SetInAt(i, calling_convention_visitor.GetNextLocation(input->GetType()));
}
switch (invoke->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimLong:
locations->SetOut(Location::RegisterLocation(RAX));
break;
case Primitive::kPrimVoid:
break;
case Primitive::kPrimDouble:
case Primitive::kPrimFloat:
locations->SetOut(Location::FpuRegisterLocation(XMM0));
break;
}
}
void LocationsBuilderX86_64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
IntrinsicLocationsBuilderX86_64 intrinsic(GetGraph()->GetArena());
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
void InstructionCodeGeneratorX86_64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
CpuRegister temp = invoke->GetLocations()->GetTemp(0).AsRegister<CpuRegister>();
size_t method_offset = mirror::Class::EmbeddedVTableOffset().SizeValue() +
invoke->GetVTableIndex() * sizeof(mirror::Class::VTableEntry);
LocationSummary* locations = invoke->GetLocations();
Location receiver = locations->InAt(0);
size_t class_offset = mirror::Object::ClassOffset().SizeValue();
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ movl(temp, Address(CpuRegister(RSP), receiver.GetStackIndex()));
__ movl(temp, Address(temp, class_offset));
} else {
__ movl(temp, Address(receiver.AsRegister<CpuRegister>(), class_offset));
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// temp = temp->GetMethodAt(method_offset);
__ movl(temp, Address(temp, method_offset));
// call temp->GetEntryPoint();
__ call(Address(temp, mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kX86_64WordSize).SizeValue()));
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderX86_64::VisitInvokeInterface(HInvokeInterface* invoke) {
HandleInvoke(invoke);
// Add the hidden argument.
invoke->GetLocations()->AddTemp(Location::RegisterLocation(RAX));
}
void InstructionCodeGeneratorX86_64::VisitInvokeInterface(HInvokeInterface* invoke) {
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
CpuRegister temp = invoke->GetLocations()->GetTemp(0).AsRegister<CpuRegister>();
uint32_t method_offset = mirror::Class::EmbeddedImTableOffset().Uint32Value() +
(invoke->GetImtIndex() % mirror::Class::kImtSize) * sizeof(mirror::Class::ImTableEntry);
LocationSummary* locations = invoke->GetLocations();
Location receiver = locations->InAt(0);
size_t class_offset = mirror::Object::ClassOffset().SizeValue();
// Set the hidden argument.
__ movq(invoke->GetLocations()->GetTemp(1).AsRegister<CpuRegister>(),
Immediate(invoke->GetDexMethodIndex()));
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ movl(temp, Address(CpuRegister(RSP), receiver.GetStackIndex()));
__ movl(temp, Address(temp, class_offset));
} else {
__ movl(temp, Address(receiver.AsRegister<CpuRegister>(), class_offset));
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// temp = temp->GetImtEntryAt(method_offset);
__ movl(temp, Address(temp, method_offset));
// call temp->GetEntryPoint();
__ call(Address(temp, mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kX86_64WordSize).SizeValue()));
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderX86_64::VisitNeg(HNeg* neg) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void InstructionCodeGeneratorX86_64::VisitNeg(HNeg* neg) {
LocationSummary* locations = neg->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
DCHECK(in.IsRegister());
DCHECK(in.Equals(out));
__ negl(out.AsRegister<CpuRegister>());
break;
case Primitive::kPrimLong:
DCHECK(in.IsRegister());
DCHECK(in.Equals(out));
__ negq(out.AsRegister<CpuRegister>());
break;
case Primitive::kPrimFloat: {
DCHECK(in.Equals(out));
CpuRegister constant = locations->GetTemp(0).AsRegister<CpuRegister>();
XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
// Implement float negation with an exclusive or with value
// 0x80000000 (mask for bit 31, representing the sign of a
// single-precision floating-point number).
__ movq(constant, Immediate(INT64_C(0x80000000)));
__ movd(mask, constant);
__ xorps(out.AsFpuRegister<XmmRegister>(), mask);
break;
}
case Primitive::kPrimDouble: {
DCHECK(in.Equals(out));
CpuRegister constant = locations->GetTemp(0).AsRegister<CpuRegister>();
XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
// Implement double negation with an exclusive or with value
// 0x8000000000000000 (mask for bit 63, representing the sign of
// a double-precision floating-point number).
__ movq(constant, Immediate(INT64_C(0x8000000000000000)));
__ movd(mask, constant);
__ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
break;
}
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void LocationsBuilderX86_64::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall);
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
// TODO: We would benefit from a (to-be-implemented)
// Location::RegisterOrStackSlot requirement for this input.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-long' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-long' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `int-to-char' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-float' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-float' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-double' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-double' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void InstructionCodeGeneratorX86_64::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations = conversion->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
if (in.IsRegister()) {
__ movsxb(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>());
} else if (in.IsStackSlot()) {
__ movsxb(out.AsRegister<CpuRegister>(),
Address(CpuRegister(RSP), in.GetStackIndex()));
} else {
DCHECK(in.GetConstant()->IsIntConstant());
__ movl(out.AsRegister<CpuRegister>(),
Immediate(static_cast<int8_t>(in.GetConstant()->AsIntConstant()->GetValue())));
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
if (in.IsRegister()) {
__ movsxw(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>());
} else if (in.IsStackSlot()) {
__ movsxw(out.AsRegister<CpuRegister>(),
Address(CpuRegister(RSP), in.GetStackIndex()));
} else {
DCHECK(in.GetConstant()->IsIntConstant());
__ movl(out.AsRegister<CpuRegister>(),
Immediate(static_cast<int16_t>(in.GetConstant()->AsIntConstant()->GetValue())));
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
if (in.IsRegister()) {
__ movl(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>());
} else if (in.IsDoubleStackSlot()) {
__ movl(out.AsRegister<CpuRegister>(),
Address(CpuRegister(RSP), in.GetStackIndex()));
} else {
DCHECK(in.IsConstant());
DCHECK(in.GetConstant()->IsLongConstant());
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
__ movl(out.AsRegister<CpuRegister>(), Immediate(static_cast<int32_t>(value)));
}
break;
case Primitive::kPrimFloat: {
// Processing a Dex `float-to-int' instruction.
XmmRegister input = in.AsFpuRegister<XmmRegister>();
CpuRegister output = out.AsRegister<CpuRegister>();
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
Label done, nan;
__ movl(output, Immediate(kPrimIntMax));
// temp = int-to-float(output)
__ cvtsi2ss(temp, output, false);
// if input >= temp goto done
__ comiss(input, temp);
__ j(kAboveEqual, &done);
// if input == NaN goto nan
__ j(kUnordered, &nan);
// output = float-to-int-truncate(input)
__ cvttss2si(output, input, false);
__ jmp(&done);
__ Bind(&nan);
// output = 0
__ xorl(output, output);
__ Bind(&done);
break;
}
case Primitive::kPrimDouble: {
// Processing a Dex `double-to-int' instruction.
XmmRegister input = in.AsFpuRegister<XmmRegister>();
CpuRegister output = out.AsRegister<CpuRegister>();
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
Label done, nan;
__ movl(output, Immediate(kPrimIntMax));
// temp = int-to-double(output)
__ cvtsi2sd(temp, output);
// if input >= temp goto done
__ comisd(input, temp);
__ j(kAboveEqual, &done);
// if input == NaN goto nan
__ j(kUnordered, &nan);
// output = double-to-int-truncate(input)
__ cvttsd2si(output, input);
__ jmp(&done);
__ Bind(&nan);
// output = 0
__ xorl(output, output);
__ Bind(&done);
break;
}
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
DCHECK(out.IsRegister());
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
DCHECK(in.IsRegister());
__ movsxd(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>());
break;
case Primitive::kPrimFloat: {
// Processing a Dex `float-to-long' instruction.
XmmRegister input = in.AsFpuRegister<XmmRegister>();
CpuRegister output = out.AsRegister<CpuRegister>();
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
Label done, nan;
__ movq(output, Immediate(kPrimLongMax));
// temp = long-to-float(output)
__ cvtsi2ss(temp, output, true);
// if input >= temp goto done
__ comiss(input, temp);
__ j(kAboveEqual, &done);
// if input == NaN goto nan
__ j(kUnordered, &nan);
// output = float-to-long-truncate(input)
__ cvttss2si(output, input, true);
__ jmp(&done);
__ Bind(&nan);
// output = 0
__ xorq(output, output);
__ Bind(&done);
break;
}
case Primitive::kPrimDouble: {
// Processing a Dex `double-to-long' instruction.
XmmRegister input = in.AsFpuRegister<XmmRegister>();
CpuRegister output = out.AsRegister<CpuRegister>();
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
Label done, nan;
__ movq(output, Immediate(kPrimLongMax));
// temp = long-to-double(output)
__ cvtsi2sd(temp, output, true);
// if input >= temp goto done
__ comisd(input, temp);
__ j(kAboveEqual, &done);
// if input == NaN goto nan
__ j(kUnordered, &nan);
// output = double-to-long-truncate(input)
__ cvttsd2si(output, input, true);
__ jmp(&done);
__ Bind(&nan);
// output = 0
__ xorq(output, output);
__ Bind(&done);
break;
}
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `int-to-char' instruction.
if (in.IsRegister()) {
__ movzxw(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>());
} else if (in.IsStackSlot()) {
__ movzxw(out.AsRegister<CpuRegister>(),
Address(CpuRegister(RSP), in.GetStackIndex()));
} else {
DCHECK(in.GetConstant()->IsIntConstant());
__ movl(out.AsRegister<CpuRegister>(),
Immediate(static_cast<uint16_t>(in.GetConstant()->AsIntConstant()->GetValue())));
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-float' instruction.
__ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), false);
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-float' instruction.
__ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), true);
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
__ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-double' instruction.
__ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), false);
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-double' instruction.
__ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), true);
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
__ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void LocationsBuilderX86_64::VisitAdd(HAdd* add) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
switch (add->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
// We can use a leaq or addq if the constant can fit in an immediate.
HInstruction* rhs = add->InputAt(1);
bool is_int32_constant = false;
if (rhs->IsLongConstant()) {
int64_t value = rhs->AsLongConstant()->GetValue();
if (static_cast<int32_t>(value) == value) {
is_int32_constant = true;
}
}
locations->SetInAt(1,
is_int32_constant ? Location::RegisterOrConstant(rhs) :
Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimDouble:
case Primitive::kPrimFloat: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
}
}
void InstructionCodeGeneratorX86_64::VisitAdd(HAdd* add) {
LocationSummary* locations = add->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Location out = locations->Out();
switch (add->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
__ addl(out.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
} else {
__ leal(out.AsRegister<CpuRegister>(), Address(
first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>(), TIMES_1, 0));
}
} else if (second.IsConstant()) {
if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
__ addl(out.AsRegister<CpuRegister>(),
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ leal(out.AsRegister<CpuRegister>(), Address(
first.AsRegister<CpuRegister>(), second.GetConstant()->AsIntConstant()->GetValue()));
}
} else {
DCHECK(first.Equals(locations->Out()));
__ addl(first.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), second.GetStackIndex()));
}
break;
}
case Primitive::kPrimLong: {
if (second.IsRegister()) {
if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
__ addq(out.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
} else {
__ leaq(out.AsRegister<CpuRegister>(), Address(
first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>(), TIMES_1, 0));
}
} else {
DCHECK(second.IsConstant());
int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
int32_t int32_value = Low32Bits(value);
DCHECK_EQ(int32_value, value);
if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
__ addq(out.AsRegister<CpuRegister>(), Immediate(int32_value));
} else {
__ leaq(out.AsRegister<CpuRegister>(), Address(
first.AsRegister<CpuRegister>(), int32_value));
}
}
break;
}
case Primitive::kPrimFloat: {
__ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
case Primitive::kPrimDouble: {
__ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
}
}
void LocationsBuilderX86_64::VisitSub(HSub* sub) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
switch (sub->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::SameAsFirstInput());
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void InstructionCodeGeneratorX86_64::VisitSub(HSub* sub) {
LocationSummary* locations = sub->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
DCHECK(first.Equals(locations->Out()));
switch (sub->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
__ subl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
} else if (second.IsConstant()) {
Immediate imm(second.GetConstant()->AsIntConstant()->GetValue());
__ subl(first.AsRegister<CpuRegister>(), imm);
} else {
__ subl(first.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), second.GetStackIndex()));
}
break;
}
case Primitive::kPrimLong: {
__ subq(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
break;
}
case Primitive::kPrimFloat: {
__ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
case Primitive::kPrimDouble: {
__ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void LocationsBuilderX86_64::VisitMul(HMul* mul) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
switch (mul->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::SameAsFirstInput());
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorX86_64::VisitMul(HMul* mul) {
LocationSummary* locations = mul->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
DCHECK(first.Equals(locations->Out()));
switch (mul->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
__ imull(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
} else if (second.IsConstant()) {
Immediate imm(second.GetConstant()->AsIntConstant()->GetValue());
__ imull(first.AsRegister<CpuRegister>(), imm);
} else {
DCHECK(second.IsStackSlot());
__ imull(first.AsRegister<CpuRegister>(),
Address(CpuRegister(RSP), second.GetStackIndex()));
}
break;
}
case Primitive::kPrimLong: {
__ imulq(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
break;
}
case Primitive::kPrimFloat: {
__ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
case Primitive::kPrimDouble: {
__ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorX86_64::PushOntoFPStack(Location source, uint32_t temp_offset,
uint32_t stack_adjustment, bool is_float) {
if (source.IsStackSlot()) {
DCHECK(is_float);
__ flds(Address(CpuRegister(RSP), source.GetStackIndex() + stack_adjustment));
} else if (source.IsDoubleStackSlot()) {
DCHECK(!is_float);
__ fldl(Address(CpuRegister(RSP), source.GetStackIndex() + stack_adjustment));
} else {
// Write the value to the temporary location on the stack and load to FP stack.
if (is_float) {
Location stack_temp = Location::StackSlot(temp_offset);
codegen_->Move(stack_temp, source);
__ flds(Address(CpuRegister(RSP), temp_offset));
} else {
Location stack_temp = Location::DoubleStackSlot(temp_offset);
codegen_->Move(stack_temp, source);
__ fldl(Address(CpuRegister(RSP), temp_offset));
}
}
}
void InstructionCodeGeneratorX86_64::GenerateRemFP(HRem *rem) {
Primitive::Type type = rem->GetResultType();
bool is_float = type == Primitive::kPrimFloat;
size_t elem_size = Primitive::ComponentSize(type);
LocationSummary* locations = rem->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Location out = locations->Out();
// Create stack space for 2 elements.
// TODO: enhance register allocator to ask for stack temporaries.
__ subq(CpuRegister(RSP), Immediate(2 * elem_size));
// Load the values to the FP stack in reverse order, using temporaries if needed.
PushOntoFPStack(second, elem_size, 2 * elem_size, is_float);
PushOntoFPStack(first, 0, 2 * elem_size, is_float);
// Loop doing FPREM until we stabilize.
Label retry;
__ Bind(&retry);
__ fprem();
// Move FP status to AX.
__ fstsw();
// And see if the argument reduction is complete. This is signaled by the
// C2 FPU flag bit set to 0.
__ andl(CpuRegister(RAX), Immediate(kC2ConditionMask));
__ j(kNotEqual, &retry);
// We have settled on the final value. Retrieve it into an XMM register.
// Store FP top of stack to real stack.
if (is_float) {
__ fsts(Address(CpuRegister(RSP), 0));
} else {
__ fstl(Address(CpuRegister(RSP), 0));
}
// Pop the 2 items from the FP stack.
__ fucompp();
// Load the value from the stack into an XMM register.
DCHECK(out.IsFpuRegister()) << out;
if (is_float) {
__ movss(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), 0));
} else {
__ movsd(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), 0));
}
// And remove the temporary stack space we allocated.
__ addq(CpuRegister(RSP), Immediate(2 * elem_size));
}
void InstructionCodeGeneratorX86_64::GenerateDivRemIntegral(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
Primitive::Type type = instruction->GetResultType();
DCHECK(type == Primitive::kPrimInt || Primitive::kPrimLong);
bool is_div = instruction->IsDiv();
LocationSummary* locations = instruction->GetLocations();
CpuRegister out_reg = locations->Out().AsRegister<CpuRegister>();
CpuRegister second_reg = locations->InAt(1).AsRegister<CpuRegister>();
DCHECK_EQ(RAX, locations->InAt(0).AsRegister<CpuRegister>().AsRegister());
DCHECK_EQ(is_div ? RAX : RDX, out_reg.AsRegister());
SlowPathCodeX86_64* slow_path =
new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86_64(
out_reg.AsRegister(), type, is_div);
codegen_->AddSlowPath(slow_path);
// 0x80000000(00000000)/-1 triggers an arithmetic exception!
// Dividing by -1 is actually negation and -0x800000000(00000000) = 0x80000000(00000000)
// so it's safe to just use negl instead of more complex comparisons.
if (type == Primitive::kPrimInt) {
__ cmpl(second_reg, Immediate(-1));
__ j(kEqual, slow_path->GetEntryLabel());
// edx:eax <- sign-extended of eax
__ cdq();
// eax = quotient, edx = remainder
__ idivl(second_reg);
} else {
__ cmpq(second_reg, Immediate(-1));
__ j(kEqual, slow_path->GetEntryLabel());
// rdx:rax <- sign-extended of rax
__ cqo();
// rax = quotient, rdx = remainder
__ idivq(second_reg);
}
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderX86_64::VisitDiv(HDiv* div) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall);
switch (div->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RegisterLocation(RAX));
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
// Intel uses edx:eax as the dividend.
locations->AddTemp(Location::RegisterLocation(RDX));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void InstructionCodeGeneratorX86_64::VisitDiv(HDiv* div) {
LocationSummary* locations = div->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
DCHECK(first.Equals(locations->Out()));
Primitive::Type type = div->GetResultType();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
GenerateDivRemIntegral(div);
break;
}
case Primitive::kPrimFloat: {
__ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
case Primitive::kPrimDouble: {
__ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void LocationsBuilderX86_64::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(rem, LocationSummary::kNoCall);
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RegisterLocation(RAX));
locations->SetInAt(1, Location::RequiresRegister());
// Intel uses rdx:rax as the dividend and puts the remainder in rdx
locations->SetOut(Location::RegisterLocation(RDX));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::Any());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::RequiresFpuRegister());
locations->AddTemp(Location::RegisterLocation(RAX));
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void InstructionCodeGeneratorX86_64::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
GenerateDivRemIntegral(rem);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
GenerateRemFP(rem);
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << rem->GetResultType();
}
}
void LocationsBuilderX86_64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::Any());
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorX86_64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
SlowPathCodeX86_64* slow_path =
new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86_64(instruction);
codegen_->AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location value = locations->InAt(0);
switch (instruction->GetType()) {
case Primitive::kPrimInt: {
if (value.IsRegister()) {
__ testl(value.AsRegister<CpuRegister>(), value.AsRegister<CpuRegister>());
__ j(kEqual, slow_path->GetEntryLabel());
} else if (value.IsStackSlot()) {
__ cmpl(Address(CpuRegister(RSP), value.GetStackIndex()), Immediate(0));
__ j(kEqual, slow_path->GetEntryLabel());
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
__ jmp(slow_path->GetEntryLabel());
}
}
break;
}
case Primitive::kPrimLong: {
if (value.IsRegister()) {
__ testq(value.AsRegister<CpuRegister>(), value.AsRegister<CpuRegister>());
__ j(kEqual, slow_path->GetEntryLabel());
} else if (value.IsDoubleStackSlot()) {
__ cmpq(Address(CpuRegister(RSP), value.GetStackIndex()), Immediate(0));
__ j(kEqual, slow_path->GetEntryLabel());
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
__ jmp(slow_path->GetEntryLabel());
}
}
break;
}
default:
LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
}
}
void LocationsBuilderX86_64::HandleShift(HBinaryOperation* op) {
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
switch (op->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
// The shift count needs to be in CL.
locations->SetInAt(1, Location::ByteRegisterOrConstant(RCX, op->InputAt(1)));
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
}
}
void InstructionCodeGeneratorX86_64::HandleShift(HBinaryOperation* op) {
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
LocationSummary* locations = op->GetLocations();
CpuRegister first_reg = locations->InAt(0).AsRegister<CpuRegister>();
Location second = locations->InAt(1);
switch (op->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
CpuRegister second_reg = second.AsRegister<CpuRegister>();
if (op->IsShl()) {
__ shll(first_reg, second_reg);
} else if (op->IsShr()) {
__ sarl(first_reg, second_reg);
} else {
__ shrl(first_reg, second_reg);
}
} else {
Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftValue);
if (op->IsShl()) {
__ shll(first_reg, imm);
} else if (op->IsShr()) {
__ sarl(first_reg, imm);
} else {
__ shrl(first_reg, imm);
}
}
break;
}
case Primitive::kPrimLong: {
if (second.IsRegister()) {
CpuRegister second_reg = second.AsRegister<CpuRegister>();
if (op->IsShl()) {
__ shlq(first_reg, second_reg);
} else if (op->IsShr()) {
__ sarq(first_reg, second_reg);
} else {
__ shrq(first_reg, second_reg);
}
} else {
Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftValue);
if (op->IsShl()) {
__ shlq(first_reg, imm);
} else if (op->IsShr()) {
__ sarq(first_reg, imm);
} else {
__ shrq(first_reg, imm);
}
}
break;
}
default:
LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
}
}
void LocationsBuilderX86_64::VisitShl(HShl* shl) {
HandleShift(shl);
}
void InstructionCodeGeneratorX86_64::VisitShl(HShl* shl) {
HandleShift(shl);
}
void LocationsBuilderX86_64::VisitShr(HShr* shr) {
HandleShift(shr);
}
void InstructionCodeGeneratorX86_64::VisitShr(HShr* shr) {
HandleShift(shr);
}
void LocationsBuilderX86_64::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void InstructionCodeGeneratorX86_64::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void LocationsBuilderX86_64::VisitNewInstance(HNewInstance* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void InstructionCodeGeneratorX86_64::VisitNewInstance(HNewInstance* instruction) {
InvokeRuntimeCallingConvention calling_convention;
codegen_->LoadCurrentMethod(CpuRegister(calling_convention.GetRegisterAt(1)));
__ movq(CpuRegister(calling_convention.GetRegisterAt(0)), Immediate(instruction->GetTypeIndex()));
__ gs()->call(
Address::Absolute(GetThreadOffset<kX86_64WordSize>(instruction->GetEntrypoint()), true));
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
void LocationsBuilderX86_64::VisitNewArray(HNewArray* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(Location::RegisterLocation(RAX));
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
}
void InstructionCodeGeneratorX86_64::VisitNewArray(HNewArray* instruction) {
InvokeRuntimeCallingConvention calling_convention;
codegen_->LoadCurrentMethod(CpuRegister(calling_convention.GetRegisterAt(2)));
__ movq(CpuRegister(calling_convention.GetRegisterAt(0)), Immediate(instruction->GetTypeIndex()));
__ gs()->call(
Address::Absolute(GetThreadOffset<kX86_64WordSize>(instruction->GetEntrypoint()), true));
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
void LocationsBuilderX86_64::VisitParameterValue(HParameterValue* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
if (location.IsStackSlot()) {
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
} else if (location.IsDoubleStackSlot()) {
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
}
locations->SetOut(location);
}
void InstructionCodeGeneratorX86_64::VisitParameterValue(HParameterValue* instruction) {
// Nothing to do, the parameter is already at its location.
UNUSED(instruction);
}
void LocationsBuilderX86_64::VisitNot(HNot* not_) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
}
void InstructionCodeGeneratorX86_64::VisitNot(HNot* not_) {
LocationSummary* locations = not_->GetLocations();
DCHECK_EQ(locations->InAt(0).AsRegister<CpuRegister>().AsRegister(),
locations->Out().AsRegister<CpuRegister>().AsRegister());
Location out = locations->Out();
switch (not_->GetResultType()) {
case Primitive::kPrimInt:
__ notl(out.AsRegister<CpuRegister>());
break;
case Primitive::kPrimLong:
__ notq(out.AsRegister<CpuRegister>());
break;
default:
LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
}
}
void LocationsBuilderX86_64::VisitPhi(HPhi* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
locations->SetInAt(i, Location::Any());
}
locations->SetOut(Location::Any());
}
void InstructionCodeGeneratorX86_64::VisitPhi(HPhi* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorX86_64::GenerateMemoryBarrier(MemBarrierKind kind) {
/*
* According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
* All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
* For those cases, all we need to ensure is that there is a scheduling barrier in place.
*/
switch (kind) {
case MemBarrierKind::kAnyAny: {
__ mfence();
break;
}
case MemBarrierKind::kAnyStore:
case MemBarrierKind::kLoadAny:
case MemBarrierKind::kStoreStore: {
// nop
break;
}
default:
LOG(FATAL) << "Unexpected memory barier " << kind;
}
}
void LocationsBuilderX86_64::HandleFieldGet(HInstruction* instruction) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorX86_64::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
LocationSummary* locations = instruction->GetLocations();
CpuRegister base = locations->InAt(0).AsRegister<CpuRegister>();
Location out = locations->Out();
bool is_volatile = field_info.IsVolatile();
Primitive::Type field_type = field_info.GetFieldType();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
switch (field_type) {
case Primitive::kPrimBoolean: {
__ movzxb(out.AsRegister<CpuRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimByte: {
__ movsxb(out.AsRegister<CpuRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimShort: {
__ movsxw(out.AsRegister<CpuRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimChar: {
__ movzxw(out.AsRegister<CpuRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
__ movl(out.AsRegister<CpuRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimLong: {
__ movq(out.AsRegister<CpuRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimFloat: {
__ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimDouble: {
__ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << field_type;
UNREACHABLE();
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
}
void LocationsBuilderX86_64::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(field_info.GetFieldType(), instruction->InputAt(1));
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
if (needs_write_barrier) {
// Temporary registers for the write barrier.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
}
void InstructionCodeGeneratorX86_64::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
LocationSummary* locations = instruction->GetLocations();
CpuRegister base = locations->InAt(0).AsRegister<CpuRegister>();
Location value = locations->InAt(1);
bool is_volatile = field_info.IsVolatile();
Primitive::Type field_type = field_info.GetFieldType();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
}
switch (field_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte: {
__ movb(Address(base, offset), value.AsRegister<CpuRegister>());
break;
}
case Primitive::kPrimShort:
case Primitive::kPrimChar: {
__ movw(Address(base, offset), value.AsRegister<CpuRegister>());
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
__ movl(Address(base, offset), value.AsRegister<CpuRegister>());
break;
}
case Primitive::kPrimLong: {
__ movq(Address(base, offset), value.AsRegister<CpuRegister>());
break;
}
case Primitive::kPrimFloat: {
__ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>());
break;
}
case Primitive::kPrimDouble: {
__ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>());
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << field_type;
UNREACHABLE();
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister card = locations->GetTemp(1).AsRegister<CpuRegister>();
codegen_->MarkGCCard(temp, card, base, value.AsRegister<CpuRegister>());
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
}
void LocationsBuilderX86_64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorX86_64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderX86_64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction);
}
void InstructionCodeGeneratorX86_64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderX86_64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction);
}
void InstructionCodeGeneratorX86_64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderX86_64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorX86_64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderX86_64::VisitNullCheck(HNullCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
Location loc = codegen_->GetCompilerOptions().GetImplicitNullChecks()
? Location::RequiresRegister()
: Location::Any();
locations->SetInAt(0, loc);
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorX86_64::GenerateImplicitNullCheck(HNullCheck* instruction) {
if (codegen_->CanMoveNullCheckToUser(instruction)) {
return;
}
LocationSummary* locations = instruction->GetLocations();
Location obj = locations->InAt(0);
__ testl(CpuRegister(RAX), Address(obj.AsRegister<CpuRegister>(), 0));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
void InstructionCodeGeneratorX86_64::GenerateExplicitNullCheck(HNullCheck* instruction) {
SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86_64(instruction);
codegen_->AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location obj = locations->InAt(0);
if (obj.IsRegister()) {
__ testl(obj.AsRegister<CpuRegister>(), obj.AsRegister<CpuRegister>());
} else if (obj.IsStackSlot()) {
__ cmpl(Address(CpuRegister(RSP), obj.GetStackIndex()), Immediate(0));
} else {
DCHECK(obj.IsConstant()) << obj;
DCHECK_EQ(obj.GetConstant()->AsIntConstant()->GetValue(), 0);
__ jmp(slow_path->GetEntryLabel());
return;
}
__ j(kEqual, slow_path->GetEntryLabel());
}
void InstructionCodeGeneratorX86_64::VisitNullCheck(HNullCheck* instruction) {
if (codegen_->GetCompilerOptions().GetImplicitNullChecks()) {
GenerateImplicitNullCheck(instruction);
} else {
GenerateExplicitNullCheck(instruction);
}
}
void LocationsBuilderX86_64::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(
1, Location::RegisterOrConstant(instruction->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorX86_64::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
Location index = locations->InAt(1);
switch (instruction->GetType()) {
case Primitive::kPrimBoolean: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
if (index.IsConstant()) {
__ movzxb(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
} else {
__ movzxb(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_1, data_offset));
}
break;
}
case Primitive::kPrimByte: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
if (index.IsConstant()) {
__ movsxb(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
} else {
__ movsxb(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_1, data_offset));
}
break;
}
case Primitive::kPrimShort: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
if (index.IsConstant()) {
__ movsxw(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
} else {
__ movsxw(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_2, data_offset));
}
break;
}
case Primitive::kPrimChar: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
if (index.IsConstant()) {
__ movzxw(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
} else {
__ movzxw(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_2, data_offset));
}
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t));
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
if (index.IsConstant()) {
__ movl(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
} else {
__ movl(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset));
}
break;
}
case Primitive::kPrimLong: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
if (index.IsConstant()) {
__ movq(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset));
} else {
__ movq(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_8, data_offset));
}
break;
}
case Primitive::kPrimFloat: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
if (index.IsConstant()) {
__ movss(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
} else {
__ movss(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset));
}
break;
}
case Primitive::kPrimDouble: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
if (index.IsConstant()) {
__ movsd(out, Address(obj,
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset));
} else {
__ movsd(out, Address(obj, index.AsRegister<CpuRegister>(), TIMES_8, data_offset));
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << instruction->GetType();
UNREACHABLE();
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
void LocationsBuilderX86_64::VisitArraySet(HArraySet* instruction) {
Primitive::Type value_type = instruction->GetComponentType();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
bool needs_runtime_call = instruction->NeedsTypeCheck();
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction, needs_runtime_call ? LocationSummary::kCall : LocationSummary::kNoCall);
if (needs_runtime_call) {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
} else {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(
1, Location::RegisterOrConstant(instruction->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
if (value_type == Primitive::kPrimLong) {
locations->SetInAt(2, Location::RequiresRegister());
} else if (value_type == Primitive::kPrimFloat || value_type == Primitive::kPrimDouble) {
locations->SetInAt(2, Location::RequiresFpuRegister());
} else {
locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2)));
}
if (needs_write_barrier) {
// Temporary registers for the write barrier.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
}
}
void InstructionCodeGeneratorX86_64::VisitArraySet(HArraySet* instruction) {
LocationSummary* locations = instruction->GetLocations();
CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
Location index = locations->InAt(1);
Location value = locations->InAt(2);
Primitive::Type value_type = instruction->GetComponentType();
bool needs_runtime_call = locations->WillCall();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
switch (value_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
if (value.IsRegister()) {
__ movb(Address(obj, offset), value.AsRegister<CpuRegister>());
} else {
__ movb(Address(obj, offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
} else {
if (value.IsRegister()) {
__ movb(Address(obj, index.AsRegister<CpuRegister>(), TIMES_1, data_offset),
value.AsRegister<CpuRegister>());
} else {
__ movb(Address(obj, index.AsRegister<CpuRegister>(), TIMES_1, data_offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
break;
}
case Primitive::kPrimShort:
case Primitive::kPrimChar: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
if (value.IsRegister()) {
__ movw(Address(obj, offset), value.AsRegister<CpuRegister>());
} else {
DCHECK(value.IsConstant()) << value;
__ movw(Address(obj, offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
} else {
DCHECK(index.IsRegister()) << index;
if (value.IsRegister()) {
__ movw(Address(obj, index.AsRegister<CpuRegister>(), TIMES_2, data_offset),
value.AsRegister<CpuRegister>());
} else {
DCHECK(value.IsConstant()) << value;
__ movw(Address(obj, index.AsRegister<CpuRegister>(), TIMES_2, data_offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
if (!needs_runtime_call) {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
if (value.IsRegister()) {
__ movl(Address(obj, offset), value.AsRegister<CpuRegister>());
} else {
DCHECK(value.IsConstant()) << value;
__ movl(Address(obj, offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
} else {
DCHECK(index.IsRegister()) << index;
if (value.IsRegister()) {
__ movl(Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset),
value.AsRegister<CpuRegister>());
} else {
DCHECK(value.IsConstant()) << value;
__ movl(Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset),
Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
if (needs_write_barrier) {
DCHECK_EQ(value_type, Primitive::kPrimNot);
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister card = locations->GetTemp(1).AsRegister<CpuRegister>();
codegen_->MarkGCCard(temp, card, obj, value.AsRegister<CpuRegister>());
}
} else {
DCHECK_EQ(value_type, Primitive::kPrimNot);
__ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAputObject),
true));
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
break;
}
case Primitive::kPrimLong: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
DCHECK(value.IsRegister());
__ movq(Address(obj, offset), value.AsRegister<CpuRegister>());
} else {
DCHECK(value.IsRegister());
__ movq(Address(obj, index.AsRegister<CpuRegister>(), TIMES_8, data_offset),
value.AsRegister<CpuRegister>());
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
break;
}
case Primitive::kPrimFloat: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
DCHECK(value.IsFpuRegister());
__ movss(Address(obj, offset), value.AsFpuRegister<XmmRegister>());
} else {
DCHECK(value.IsFpuRegister());
__ movss(Address(obj, index.AsRegister<CpuRegister>(), TIMES_4, data_offset),
value.AsFpuRegister<XmmRegister>());
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
break;
}
case Primitive::kPrimDouble: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
DCHECK(value.IsFpuRegister());
__ movsd(Address(obj, offset), value.AsFpuRegister<XmmRegister>());
} else {
DCHECK(value.IsFpuRegister());
__ movsd(Address(obj, index.AsRegister<CpuRegister>(), TIMES_8, data_offset),
value.AsFpuRegister<XmmRegister>());
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << instruction->GetType();
UNREACHABLE();
}
}
void LocationsBuilderX86_64::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorX86_64::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = instruction->GetLocations();
uint32_t offset = mirror::Array::LengthOffset().Uint32Value();
CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
__ movl(out, Address(obj, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
void LocationsBuilderX86_64::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
locations->SetInAt(1, Location::RequiresRegister());
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorX86_64::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location index_loc = locations->InAt(0);
Location length_loc = locations->InAt(1);
SlowPathCodeX86_64* slow_path =
new (GetGraph()->GetArena()) BoundsCheckSlowPathX86_64(instruction, index_loc, length_loc);
codegen_->AddSlowPath(slow_path);
CpuRegister length = length_loc.AsRegister<CpuRegister>();
if (index_loc.IsConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
__ cmpl(length, Immediate(value));
} else {
__ cmpl(length, index_loc.AsRegister<CpuRegister>());
}
__ j(kBelowEqual, slow_path->GetEntryLabel());
}
void CodeGeneratorX86_64::MarkGCCard(CpuRegister temp,
CpuRegister card,
CpuRegister object,
CpuRegister value) {
Label is_null;
__ testl(value, value);
__ j(kEqual, &is_null);
__ gs()->movq(card, Address::Absolute(
Thread::CardTableOffset<kX86_64WordSize>().Int32Value(), true));
__ movq(temp, object);
__ shrq(temp, Immediate(gc::accounting::CardTable::kCardShift));
__ movb(Address(temp, card, TIMES_1, 0), card);
__ Bind(&is_null);
}
void LocationsBuilderX86_64::VisitTemporary(HTemporary* temp) {
temp->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86_64::VisitTemporary(HTemporary* temp) {
// Nothing to do, this is driven by the code generator.
UNUSED(temp);
}
void LocationsBuilderX86_64::VisitParallelMove(HParallelMove* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unimplemented";
}
void InstructionCodeGeneratorX86_64::VisitParallelMove(HParallelMove* instruction) {
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}
void LocationsBuilderX86_64::VisitSuspendCheck(HSuspendCheck* instruction) {
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
}
void InstructionCodeGeneratorX86_64::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (block->GetLoopInformation() != nullptr) {
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
// The back edge will generate the suspend check.
return;
}
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
// The goto will generate the suspend check.
return;
}
GenerateSuspendCheck(instruction, nullptr);
}
void InstructionCodeGeneratorX86_64::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
SuspendCheckSlowPathX86_64* slow_path =
new (GetGraph()->GetArena()) SuspendCheckSlowPathX86_64(instruction, successor);
codegen_->AddSlowPath(slow_path);
__ gs()->cmpw(Address::Absolute(
Thread::ThreadFlagsOffset<kX86_64WordSize>().Int32Value(), true), Immediate(0));
if (successor == nullptr) {
__ j(kNotEqual, slow_path->GetEntryLabel());
__ Bind(slow_path->GetReturnLabel());
} else {
__ j(kEqual, codegen_->GetLabelOf(successor));
__ jmp(slow_path->GetEntryLabel());
}
}
X86_64Assembler* ParallelMoveResolverX86_64::GetAssembler() const {
return codegen_->GetAssembler();
}
void ParallelMoveResolverX86_64::EmitMove(size_t index) {
MoveOperands* move = moves_.Get(index);
Location source = move->GetSource();
Location destination = move->GetDestination();
if (source.IsRegister()) {
if (destination.IsRegister()) {
__ movq(destination.AsRegister<CpuRegister>(), source.AsRegister<CpuRegister>());
} else if (destination.IsStackSlot()) {
__ movl(Address(CpuRegister(RSP), destination.GetStackIndex()),
source.AsRegister<CpuRegister>());
} else {
DCHECK(destination.IsDoubleStackSlot());
__ movq(Address(CpuRegister(RSP), destination.GetStackIndex()),
source.AsRegister<CpuRegister>());
}
} else if (source.IsStackSlot()) {
if (destination.IsRegister()) {
__ movl(destination.AsRegister<CpuRegister>(),
Address(CpuRegister(RSP), source.GetStackIndex()));
} else if (destination.IsFpuRegister()) {
__ movss(destination.AsFpuRegister<XmmRegister>(),
Address(CpuRegister(RSP), source.GetStackIndex()));
} else {
DCHECK(destination.IsStackSlot());
__ movl(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex()));
__ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP));
}
} else if (source.IsDoubleStackSlot()) {
if (destination.IsRegister()) {
__ movq(destination.AsRegister<CpuRegister>(),
Address(CpuRegister(RSP), source.GetStackIndex()));
} else if (destination.IsFpuRegister()) {
__ movsd(destination.AsFpuRegister<XmmRegister>(),
Address(CpuRegister(RSP), source.GetStackIndex()));
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
__ movq(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex()));
__ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP));
}
} else if (source.IsConstant()) {
HConstant* constant = source.GetConstant();
if (constant->IsIntConstant() || constant->IsNullConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(constant);
if (destination.IsRegister()) {
if (value == 0) {
__ xorl(destination.AsRegister<CpuRegister>(), destination.AsRegister<CpuRegister>());
} else {
__ movl(destination.AsRegister<CpuRegister>(), Immediate(value));
}
} else {
DCHECK(destination.IsStackSlot()) << destination;
__ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), Immediate(value));
}
} else if (constant->IsLongConstant()) {
int64_t value = constant->AsLongConstant()->GetValue();
if (destination.IsRegister()) {
__ movq(destination.AsRegister<CpuRegister>(), Immediate(value));
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
__ movq(CpuRegister(TMP), Immediate(value));
__ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP));
}
} else if (constant->IsFloatConstant()) {
Immediate imm(bit_cast<float, int32_t>(constant->AsFloatConstant()->GetValue()));
if (destination.IsFpuRegister()) {
__ movl(CpuRegister(TMP), imm);
__ movd(destination.AsFpuRegister<XmmRegister>(), CpuRegister(TMP));
} else {
DCHECK(destination.IsStackSlot()) << destination;
__ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), imm);
}
} else {
DCHECK(constant->IsDoubleConstant()) << constant->DebugName();
Immediate imm(bit_cast<double, int64_t>(constant->AsDoubleConstant()->GetValue()));
if (destination.IsFpuRegister()) {
__ movq(CpuRegister(TMP), imm);
__ movd(destination.AsFpuRegister<XmmRegister>(), CpuRegister(TMP));
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
__ movq(CpuRegister(TMP), imm);
__ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP));
}
}
} else if (source.IsFpuRegister()) {
if (destination.IsFpuRegister()) {
__ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
} else if (destination.IsStackSlot()) {
__ movss(Address(CpuRegister(RSP), destination.GetStackIndex()),
source.AsFpuRegister<XmmRegister>());
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
__ movsd(Address(CpuRegister(RSP), destination.GetStackIndex()),
source.AsFpuRegister<XmmRegister>());
}
}
}
void ParallelMoveResolverX86_64::Exchange32(CpuRegister reg, int mem) {
__ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem));
__ movl(Address(CpuRegister(RSP), mem), reg);
__ movl(reg, CpuRegister(TMP));
}
void ParallelMoveResolverX86_64::Exchange32(int mem1, int mem2) {
ScratchRegisterScope ensure_scratch(
this, TMP, RAX, codegen_->GetNumberOfCoreRegisters());
int stack_offset = ensure_scratch.IsSpilled() ? kX86_64WordSize : 0;
__ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem1 + stack_offset));
__ movl(CpuRegister(ensure_scratch.GetRegister()),
Address(CpuRegister(RSP), mem2 + stack_offset));
__ movl(Address(CpuRegister(RSP), mem2 + stack_offset), CpuRegister(TMP));
__ movl(Address(CpuRegister(RSP), mem1 + stack_offset),
CpuRegister(ensure_scratch.GetRegister()));
}
void ParallelMoveResolverX86_64::Exchange64(CpuRegister reg, int mem) {
__ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem));
__ movq(Address(CpuRegister(RSP), mem), reg);
__ movq(reg, CpuRegister(TMP));
}
void ParallelMoveResolverX86_64::Exchange64(int mem1, int mem2) {
ScratchRegisterScope ensure_scratch(
this, TMP, RAX, codegen_->GetNumberOfCoreRegisters());
int stack_offset = ensure_scratch.IsSpilled() ? kX86_64WordSize : 0;
__ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem1 + stack_offset));
__ movq(CpuRegister(ensure_scratch.GetRegister()),
Address(CpuRegister(RSP), mem2 + stack_offset));
__ movq(Address(CpuRegister(RSP), mem2 + stack_offset), CpuRegister(TMP));
__ movq(Address(CpuRegister(RSP), mem1 + stack_offset),
CpuRegister(ensure_scratch.GetRegister()));
}
void ParallelMoveResolverX86_64::Exchange32(XmmRegister reg, int mem) {
__ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem));
__ movss(Address(CpuRegister(RSP), mem), reg);
__ movd(reg, CpuRegister(TMP));
}
void ParallelMoveResolverX86_64::Exchange64(XmmRegister reg, int mem) {
__ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem));
__ movsd(Address(CpuRegister(RSP), mem), reg);
__ movd(reg, CpuRegister(TMP));
}
void ParallelMoveResolverX86_64::EmitSwap(size_t index) {
MoveOperands* move = moves_.Get(index);
Location source = move->GetSource();
Location destination = move->GetDestination();
if (source.IsRegister() && destination.IsRegister()) {
__ xchgq(destination.AsRegister<CpuRegister>(), source.AsRegister<CpuRegister>());
} else if (source.IsRegister() && destination.IsStackSlot()) {
Exchange32(source.AsRegister<CpuRegister>(), destination.GetStackIndex());
} else if (source.IsStackSlot() && destination.IsRegister()) {
Exchange32(destination.AsRegister<CpuRegister>(), source.GetStackIndex());
} else if (source.IsStackSlot() && destination.IsStackSlot()) {
Exchange32(destination.GetStackIndex(), source.GetStackIndex());
} else if (source.IsRegister() && destination.IsDoubleStackSlot()) {
Exchange64(source.AsRegister<CpuRegister>(), destination.GetStackIndex());
} else if (source.IsDoubleStackSlot() && destination.IsRegister()) {
Exchange64(destination.AsRegister<CpuRegister>(), source.GetStackIndex());
} else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
Exchange64(destination.GetStackIndex(), source.GetStackIndex());
} else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
__ movd(CpuRegister(TMP), source.AsFpuRegister<XmmRegister>());
__ movaps(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>());
__ movd(destination.AsFpuRegister<XmmRegister>(), CpuRegister(TMP));
} else if (source.IsFpuRegister() && destination.IsStackSlot()) {
Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex());
} else if (source.IsStackSlot() && destination.IsFpuRegister()) {
Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex());
} else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) {
Exchange64(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex());
} else if (source.IsDoubleStackSlot() && destination.IsFpuRegister()) {
Exchange64(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex());
} else {
LOG(FATAL) << "Unimplemented swap between " << source << " and " << destination;
}
}
void ParallelMoveResolverX86_64::SpillScratch(int reg) {
__ pushq(CpuRegister(reg));
}
void ParallelMoveResolverX86_64::RestoreScratch(int reg) {
__ popq(CpuRegister(reg));
}
void InstructionCodeGeneratorX86_64::GenerateClassInitializationCheck(
SlowPathCodeX86_64* slow_path, CpuRegister class_reg) {
__ cmpl(Address(class_reg, mirror::Class::StatusOffset().Int32Value()),
Immediate(mirror::Class::kStatusInitialized));
__ j(kLess, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
// No need for memory fence, thanks to the X86_64 memory model.
}
void LocationsBuilderX86_64::VisitLoadClass(HLoadClass* cls) {
LocationSummary::CallKind call_kind = cls->CanCallRuntime()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86_64::VisitLoadClass(HLoadClass* cls) {
CpuRegister out = cls->GetLocations()->Out().AsRegister<CpuRegister>();
if (cls->IsReferrersClass()) {
DCHECK(!cls->CanCallRuntime());
DCHECK(!cls->MustGenerateClinitCheck());
codegen_->LoadCurrentMethod(out);
__ movl(out, Address(out, mirror::ArtMethod::DeclaringClassOffset().Int32Value()));
} else {
DCHECK(cls->CanCallRuntime());
codegen_->LoadCurrentMethod(out);
__ movl(out, Address(out, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value()));
__ movl(out, Address(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex())));
SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86_64(
cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
codegen_->AddSlowPath(slow_path);
__ testl(out, out);
__ j(kEqual, slow_path->GetEntryLabel());
if (cls->MustGenerateClinitCheck()) {
GenerateClassInitializationCheck(slow_path, out);
} else {
__ Bind(slow_path->GetExitLabel());
}
}
}
void LocationsBuilderX86_64::VisitClinitCheck(HClinitCheck* check) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
if (check->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorX86_64::VisitClinitCheck(HClinitCheck* check) {
// We assume the class to not be null.
SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86_64(
check->GetLoadClass(), check, check->GetDexPc(), true);
codegen_->AddSlowPath(slow_path);
GenerateClassInitializationCheck(slow_path,
check->GetLocations()->InAt(0).AsRegister<CpuRegister>());
}
void LocationsBuilderX86_64::VisitLoadString(HLoadString* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kCallOnSlowPath);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86_64::VisitLoadString(HLoadString* load) {
SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86_64(load);
codegen_->AddSlowPath(slow_path);
CpuRegister out = load->GetLocations()->Out().AsRegister<CpuRegister>();
codegen_->LoadCurrentMethod(CpuRegister(out));
__ movl(out, Address(out, mirror::ArtMethod::DeclaringClassOffset().Int32Value()));
__ movl(out, Address(out, mirror::Class::DexCacheStringsOffset().Int32Value()));
__ movl(out, Address(out, CodeGenerator::GetCacheOffset(load->GetStringIndex())));
__ testl(out, out);
__ j(kEqual, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderX86_64::VisitLoadException(HLoadException* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86_64::VisitLoadException(HLoadException* load) {
Address address = Address::Absolute(
Thread::ExceptionOffset<kX86_64WordSize>().Int32Value(), true);
__ gs()->movl(load->GetLocations()->Out().AsRegister<CpuRegister>(), address);
__ gs()->movl(address, Immediate(0));
}
void LocationsBuilderX86_64::VisitThrow(HThrow* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorX86_64::VisitThrow(HThrow* instruction) {
__ gs()->call(
Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pDeliverException), true));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
void LocationsBuilderX86_64::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary::CallKind call_kind = instruction->IsClassFinal()
? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86_64::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary* locations = instruction->GetLocations();
CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
Location cls = locations->InAt(1);
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
Label done, zero;
SlowPathCodeX86_64* slow_path = nullptr;
// Return 0 if `obj` is null.
// TODO: avoid this check if we know obj is not null.
__ testl(obj, obj);
__ j(kEqual, &zero);
// Compare the class of `obj` with `cls`.
__ movl(out, Address(obj, class_offset));
if (cls.IsRegister()) {
__ cmpl(out, cls.AsRegister<CpuRegister>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex()));
}
if (instruction->IsClassFinal()) {
// Classes must be equal for the instanceof to succeed.
__ j(kNotEqual, &zero);
__ movl(out, Immediate(1));
__ jmp(&done);
} else {
// If the classes are not equal, we go into a slow path.
DCHECK(locations->OnlyCallsOnSlowPath());
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86_64(
instruction, locations->InAt(1), locations->Out(), instruction->GetDexPc());
codegen_->AddSlowPath(slow_path);
__ j(kNotEqual, slow_path->GetEntryLabel());
__ movl(out, Immediate(1));
__ jmp(&done);
}
__ Bind(&zero);
__ movl(out, Immediate(0));
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
__ Bind(&done);
}
void LocationsBuilderX86_64::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->AddTemp(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = instruction->GetLocations();
CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
Location cls = locations->InAt(1);
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
SlowPathCodeX86_64* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86_64(
instruction, locations->InAt(1), locations->GetTemp(0), instruction->GetDexPc());
codegen_->AddSlowPath(slow_path);
// TODO: avoid this check if we know obj is not null.
__ testl(obj, obj);
__ j(kEqual, slow_path->GetExitLabel());
// Compare the class of `obj` with `cls`.
__ movl(temp, Address(obj, class_offset));
if (cls.IsRegister()) {
__ cmpl(temp, cls.AsRegister<CpuRegister>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(temp, Address(CpuRegister(RSP), cls.GetStackIndex()));
}
// Classes must be equal for the checkcast to succeed.
__ j(kNotEqual, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderX86_64::VisitMonitorOperation(HMonitorOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorX86_64::VisitMonitorOperation(HMonitorOperation* instruction) {
__ gs()->call(Address::Absolute(instruction->IsEnter()
? QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pLockObject)
: QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pUnlockObject),
true));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
void LocationsBuilderX86_64::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderX86_64::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderX86_64::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderX86_64::HandleBitwiseOperation(HBinaryOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
DCHECK(instruction->GetResultType() == Primitive::kPrimInt
|| instruction->GetResultType() == Primitive::kPrimLong);
locations->SetInAt(0, Location::RequiresRegister());
if (instruction->GetType() == Primitive::kPrimInt) {
locations->SetInAt(1, Location::Any());
} else {
// Request a register to avoid loading a 64bits constant.
locations->SetInAt(1, Location::RequiresRegister());
}
locations->SetOut(Location::SameAsFirstInput());
}
void InstructionCodeGeneratorX86_64::VisitAnd(HAnd* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorX86_64::VisitOr(HOr* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorX86_64::VisitXor(HXor* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorX86_64::HandleBitwiseOperation(HBinaryOperation* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
DCHECK(first.Equals(locations->Out()));
if (instruction->GetResultType() == Primitive::kPrimInt) {
if (second.IsRegister()) {
if (instruction->IsAnd()) {
__ andl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
} else if (instruction->IsOr()) {
__ orl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
}
} else if (second.IsConstant()) {
Immediate imm(second.GetConstant()->AsIntConstant()->GetValue());
if (instruction->IsAnd()) {
__ andl(first.AsRegister<CpuRegister>(), imm);
} else if (instruction->IsOr()) {
__ orl(first.AsRegister<CpuRegister>(), imm);
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegister<CpuRegister>(), imm);
}
} else {
Address address(CpuRegister(RSP), second.GetStackIndex());
if (instruction->IsAnd()) {
__ andl(first.AsRegister<CpuRegister>(), address);
} else if (instruction->IsOr()) {
__ orl(first.AsRegister<CpuRegister>(), address);
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegister<CpuRegister>(), address);
}
}
} else {
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
if (instruction->IsAnd()) {
__ andq(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
} else if (instruction->IsOr()) {
__ orq(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
} else {
DCHECK(instruction->IsXor());
__ xorq(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>());
}
}
}
void LocationsBuilderX86_64::VisitBoundType(HBoundType* instruction) {
// Nothing to do, this should be removed during prepare for register allocator.
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorX86_64::VisitBoundType(HBoundType* instruction) {
// Nothing to do, this should be removed during prepare for register allocator.
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
} // namespace x86_64
} // namespace art