blob: e78cd78aa2527cb8b77eb011a14949cc3cd06d89 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arch/arm/instruction_set_features_arm.h"
#include "code_generator_utils.h"
#include "common_arm.h"
#include "mirror/array-inl.h"
#include "scheduler_arm.h"
namespace art {
namespace arm {
using helpers::Int32ConstantFrom;
using helpers::Uint64ConstantFrom;
void SchedulingLatencyVisitorARM::HandleBinaryOperationLantencies(HBinaryOperation* instr) {
switch (instr->GetResultType()) {
case Primitive::kPrimLong:
// HAdd and HSub long operations translate to ADDS+ADC or SUBS+SBC pairs,
// so a bubble (kArmNopLatency) is added to represent the internal carry flag
// dependency inside these pairs.
last_visited_internal_latency_ = kArmIntegerOpLatency + kArmNopLatency;
last_visited_latency_ = kArmIntegerOpLatency;
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
last_visited_latency_ = kArmFloatingPointOpLatency;
break;
default:
last_visited_latency_ = kArmIntegerOpLatency;
break;
}
}
void SchedulingLatencyVisitorARM::VisitAdd(HAdd* instr) {
HandleBinaryOperationLantencies(instr);
}
void SchedulingLatencyVisitorARM::VisitSub(HSub* instr) {
HandleBinaryOperationLantencies(instr);
}
void SchedulingLatencyVisitorARM::VisitMul(HMul* instr) {
switch (instr->GetResultType()) {
case Primitive::kPrimLong:
last_visited_internal_latency_ = 3 * kArmMulIntegerLatency;
last_visited_latency_ = kArmIntegerOpLatency;
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
last_visited_latency_ = kArmMulFloatingPointLatency;
break;
default:
last_visited_latency_ = kArmMulIntegerLatency;
break;
}
}
void SchedulingLatencyVisitorARM::HandleBitwiseOperationLantencies(HBinaryOperation* instr) {
switch (instr->GetResultType()) {
case Primitive::kPrimLong:
last_visited_internal_latency_ = kArmIntegerOpLatency;
last_visited_latency_ = kArmIntegerOpLatency;
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
last_visited_latency_ = kArmFloatingPointOpLatency;
break;
default:
last_visited_latency_ = kArmIntegerOpLatency;
break;
}
}
void SchedulingLatencyVisitorARM::VisitAnd(HAnd* instr) {
HandleBitwiseOperationLantencies(instr);
}
void SchedulingLatencyVisitorARM::VisitOr(HOr* instr) {
HandleBitwiseOperationLantencies(instr);
}
void SchedulingLatencyVisitorARM::VisitXor(HXor* instr) {
HandleBitwiseOperationLantencies(instr);
}
void SchedulingLatencyVisitorARM::VisitRor(HRor* instr) {
switch (instr->GetResultType()) {
case Primitive::kPrimInt:
last_visited_latency_ = kArmIntegerOpLatency;
break;
case Primitive::kPrimLong: {
// HandleLongRotate
HInstruction* rhs = instr->GetRight();
if (rhs->IsConstant()) {
uint64_t rot = Uint64ConstantFrom(rhs->AsConstant()) & kMaxLongShiftDistance;
if (rot != 0u) {
last_visited_internal_latency_ = 3 * kArmIntegerOpLatency;
last_visited_latency_ = kArmIntegerOpLatency;
} else {
last_visited_internal_latency_ = kArmIntegerOpLatency;
last_visited_latency_ = kArmIntegerOpLatency;
}
} else {
last_visited_internal_latency_ = 9 * kArmIntegerOpLatency + kArmBranchLatency;
last_visited_latency_ = kArmBranchLatency;
}
break;
}
default:
LOG(FATAL) << "Unexpected operation type " << instr->GetResultType();
UNREACHABLE();
}
}
void SchedulingLatencyVisitorARM::HandleShiftLatencies(HBinaryOperation* instr) {
Primitive::Type type = instr->GetResultType();
HInstruction* rhs = instr->GetRight();
switch (type) {
case Primitive::kPrimInt:
if (!rhs->IsConstant()) {
last_visited_internal_latency_ = kArmIntegerOpLatency;
}
last_visited_latency_ = kArmIntegerOpLatency;
break;
case Primitive::kPrimLong:
if (!rhs->IsConstant()) {
last_visited_internal_latency_ = 8 * kArmIntegerOpLatency;
} else {
uint32_t shift_value = Int32ConstantFrom(rhs->AsConstant()) & kMaxLongShiftDistance;
if (shift_value == 1 || shift_value >= 32) {
last_visited_internal_latency_ = kArmIntegerOpLatency;
} else {
last_visited_internal_latency_ = 2 * kArmIntegerOpLatency;
}
}
last_visited_latency_ = kArmIntegerOpLatency;
break;
default:
LOG(FATAL) << "Unexpected operation type " << type;
UNREACHABLE();
}
}
void SchedulingLatencyVisitorARM::VisitShl(HShl* instr) {
HandleShiftLatencies(instr);
}
void SchedulingLatencyVisitorARM::VisitShr(HShr* instr) {
HandleShiftLatencies(instr);
}
void SchedulingLatencyVisitorARM::VisitUShr(HUShr* instr) {
HandleShiftLatencies(instr);
}
void SchedulingLatencyVisitorARM::VisitCondition(HCondition* instr) {
switch (instr->GetLeft()->GetType()) {
case Primitive::kPrimLong:
last_visited_internal_latency_ = 4 * kArmIntegerOpLatency;
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
last_visited_internal_latency_ = 2 * kArmFloatingPointOpLatency;
break;
default:
last_visited_internal_latency_ = 2 * kArmIntegerOpLatency;
break;
}
last_visited_latency_ = kArmIntegerOpLatency;
}
void SchedulingLatencyVisitorARM::VisitCompare(HCompare* instr) {
Primitive::Type type = instr->InputAt(0)->GetType();
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt:
last_visited_internal_latency_ = 2 * kArmIntegerOpLatency;
break;
case Primitive::kPrimLong:
last_visited_internal_latency_ = 2 * kArmIntegerOpLatency + 3 * kArmBranchLatency;
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
last_visited_internal_latency_ = kArmIntegerOpLatency + 2 * kArmFloatingPointOpLatency;
break;
default:
last_visited_internal_latency_ = 2 * kArmIntegerOpLatency;
break;
}
last_visited_latency_ = kArmIntegerOpLatency;
}
void SchedulingLatencyVisitorARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
if (instruction->GetResultType() == Primitive::kPrimInt) {
last_visited_latency_ = kArmIntegerOpLatency;
} else {
last_visited_internal_latency_ = kArmIntegerOpLatency;
last_visited_latency_ = kArmIntegerOpLatency;
}
}
void SchedulingLatencyVisitorARM::HandleGenerateDataProcInstruction(bool internal_latency) {
if (internal_latency) {
last_visited_internal_latency_ += kArmIntegerOpLatency;
} else {
last_visited_latency_ = kArmDataProcWithShifterOpLatency;
}
}
void SchedulingLatencyVisitorARM::HandleGenerateDataProc(HDataProcWithShifterOp* instruction) {
const HInstruction::InstructionKind kind = instruction->GetInstrKind();
if (kind == HInstruction::kAdd) {
last_visited_internal_latency_ = kArmIntegerOpLatency;
last_visited_latency_ = kArmIntegerOpLatency;
} else if (kind == HInstruction::kSub) {
last_visited_internal_latency_ = kArmIntegerOpLatency;
last_visited_latency_ = kArmIntegerOpLatency;
} else {
HandleGenerateDataProcInstruction(/* internal_latency */ true);
HandleGenerateDataProcInstruction();
}
}
void SchedulingLatencyVisitorARM::HandleGenerateLongDataProc(HDataProcWithShifterOp* instruction) {
DCHECK_EQ(instruction->GetType(), Primitive::kPrimLong);
DCHECK(HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind()));
const uint32_t shift_value = instruction->GetShiftAmount();
const HInstruction::InstructionKind kind = instruction->GetInstrKind();
if (shift_value >= 32) {
// Different shift types actually generate similar code here,
// no need to differentiate shift types like the codegen pass does,
// which also avoids handling shift types from different ARM backends.
HandleGenerateDataProc(instruction);
} else {
DCHECK_GT(shift_value, 1U);
DCHECK_LT(shift_value, 32U);
if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
HandleGenerateDataProcInstruction(/* internal_latency */ true);
HandleGenerateDataProcInstruction(/* internal_latency */ true);
HandleGenerateDataProcInstruction();
} else {
last_visited_internal_latency_ += 2 * kArmIntegerOpLatency;
HandleGenerateDataProc(instruction);
}
}
}
void SchedulingLatencyVisitorARM::VisitDataProcWithShifterOp(HDataProcWithShifterOp* instruction) {
const HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
if (instruction->GetType() == Primitive::kPrimInt) {
DCHECK(!HDataProcWithShifterOp::IsExtensionOp(op_kind));
HandleGenerateDataProcInstruction();
} else {
DCHECK_EQ(instruction->GetType(), Primitive::kPrimLong);
if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
HandleGenerateDataProc(instruction);
} else {
HandleGenerateLongDataProc(instruction);
}
}
}
void SchedulingLatencyVisitorARM::VisitIntermediateAddress(HIntermediateAddress* ATTRIBUTE_UNUSED) {
// Although the code generated is a simple `add` instruction, we found through empirical results
// that spacing it from its use in memory accesses was beneficial.
last_visited_internal_latency_ = kArmNopLatency;
last_visited_latency_ = kArmIntegerOpLatency;
}
void SchedulingLatencyVisitorARM::VisitIntermediateAddressIndex(
HIntermediateAddressIndex* ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "IntermediateAddressIndex is not implemented for ARM";
}
void SchedulingLatencyVisitorARM::VisitMultiplyAccumulate(HMultiplyAccumulate* ATTRIBUTE_UNUSED) {
last_visited_latency_ = kArmMulIntegerLatency;
}
void SchedulingLatencyVisitorARM::VisitArrayGet(HArrayGet* instruction) {
Primitive::Type type = instruction->GetType();
const bool maybe_compressed_char_at =
mirror::kUseStringCompression && instruction->IsStringCharAt();
HInstruction* array_instr = instruction->GetArray();
bool has_intermediate_address = array_instr->IsIntermediateAddress();
HInstruction* index = instruction->InputAt(1);
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt: {
if (maybe_compressed_char_at) {
last_visited_internal_latency_ += kArmMemoryLoadLatency;
}
if (index->IsConstant()) {
if (maybe_compressed_char_at) {
last_visited_internal_latency_ +=
kArmIntegerOpLatency + kArmBranchLatency + kArmMemoryLoadLatency;
last_visited_latency_ = kArmBranchLatency;
} else {
last_visited_latency_ += kArmMemoryLoadLatency;
}
} else {
if (has_intermediate_address) {
} else {
last_visited_internal_latency_ += kArmIntegerOpLatency;
}
if (maybe_compressed_char_at) {
last_visited_internal_latency_ +=
kArmIntegerOpLatency + kArmBranchLatency + kArmMemoryLoadLatency;
last_visited_latency_ = kArmBranchLatency;
} else {
last_visited_latency_ += kArmMemoryLoadLatency;
}
}
break;
}
case Primitive::kPrimNot: {
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
last_visited_latency_ = kArmLoadWithBakerReadBarrierLatency;
} else {
if (index->IsConstant()) {
last_visited_latency_ = kArmMemoryLoadLatency;
} else {
if (has_intermediate_address) {
} else {
last_visited_internal_latency_ += kArmIntegerOpLatency;
}
last_visited_internal_latency_ = kArmMemoryLoadLatency;
}
}
break;
}
case Primitive::kPrimLong: {
if (index->IsConstant()) {
last_visited_latency_ = kArmMemoryLoadLatency;
} else {
last_visited_internal_latency_ += kArmIntegerOpLatency;
last_visited_latency_ = kArmMemoryLoadLatency;
}
break;
}
case Primitive::kPrimFloat: {
if (index->IsConstant()) {
last_visited_latency_ = kArmMemoryLoadLatency;
} else {
last_visited_internal_latency_ += kArmIntegerOpLatency;
last_visited_latency_ = kArmMemoryLoadLatency;
}
break;
}
case Primitive::kPrimDouble: {
if (index->IsConstant()) {
last_visited_latency_ = kArmMemoryLoadLatency;
} else {
last_visited_internal_latency_ += kArmIntegerOpLatency;
last_visited_latency_ = kArmMemoryLoadLatency;
}
break;
}
default:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
}
void SchedulingLatencyVisitorARM::VisitArrayLength(HArrayLength* instruction) {
last_visited_latency_ = kArmMemoryLoadLatency;
if (mirror::kUseStringCompression && instruction->IsStringLength()) {
last_visited_internal_latency_ = kArmMemoryLoadLatency;
last_visited_latency_ = kArmIntegerOpLatency;
}
}
void SchedulingLatencyVisitorARM::VisitArraySet(HArraySet* instruction) {
HInstruction* index = instruction->InputAt(1);
Primitive::Type value_type = instruction->GetComponentType();
HInstruction* array_instr = instruction->GetArray();
bool has_intermediate_address = array_instr->IsIntermediateAddress();
switch (value_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt: {
if (index->IsConstant()) {
last_visited_latency_ = kArmMemoryStoreLatency;
} else {
if (has_intermediate_address) {
} else {
last_visited_internal_latency_ = kArmIntegerOpLatency;
}
last_visited_latency_ = kArmMemoryStoreLatency;
}
break;
}
case Primitive::kPrimNot: {
if (instruction->InputAt(2)->IsNullConstant()) {
if (index->IsConstant()) {
last_visited_latency_ = kArmMemoryStoreLatency;
} else {
last_visited_internal_latency_ = kArmIntegerOpLatency;
last_visited_latency_ = kArmMemoryStoreLatency;
}
} else {
// Following the exact instructions of runtime type checks is too complicated,
// just giving it a simple slow latency.
last_visited_latency_ = kArmRuntimeTypeCheckLatency;
}
break;
}
case Primitive::kPrimLong: {
if (index->IsConstant()) {
last_visited_latency_ = kArmMemoryLoadLatency;
} else {
last_visited_internal_latency_ = kArmIntegerOpLatency;
last_visited_latency_ = kArmMemoryLoadLatency;
}
break;
}
case Primitive::kPrimFloat: {
if (index->IsConstant()) {
last_visited_latency_ = kArmMemoryLoadLatency;
} else {
last_visited_internal_latency_ = kArmIntegerOpLatency;
last_visited_latency_ = kArmMemoryLoadLatency;
}
break;
}
case Primitive::kPrimDouble: {
if (index->IsConstant()) {
last_visited_latency_ = kArmMemoryLoadLatency;
} else {
last_visited_internal_latency_ = kArmIntegerOpLatency;
last_visited_latency_ = kArmMemoryLoadLatency;
}
break;
}
default:
LOG(FATAL) << "Unreachable type " << value_type;
UNREACHABLE();
}
}
void SchedulingLatencyVisitorARM::VisitBoundsCheck(HBoundsCheck* ATTRIBUTE_UNUSED) {
last_visited_internal_latency_ = kArmIntegerOpLatency;
// Users do not use any data results.
last_visited_latency_ = 0;
}
void SchedulingLatencyVisitorARM::HandleDivRemConstantIntegralLatencies(int32_t imm) {
if (imm == 0) {
last_visited_internal_latency_ = 0;
last_visited_latency_ = 0;
} else if (imm == 1 || imm == -1) {
last_visited_latency_ = kArmIntegerOpLatency;
} else if (IsPowerOfTwo(AbsOrMin(imm))) {
last_visited_internal_latency_ = 3 * kArmIntegerOpLatency;
last_visited_latency_ = kArmIntegerOpLatency;
} else {
last_visited_internal_latency_ = kArmMulIntegerLatency + 2 * kArmIntegerOpLatency;
last_visited_latency_ = kArmIntegerOpLatency;
}
}
void SchedulingLatencyVisitorARM::VisitDiv(HDiv* instruction) {
Primitive::Type type = instruction->GetResultType();
switch (type) {
case Primitive::kPrimInt: {
HInstruction* rhs = instruction->GetRight();
if (rhs->IsConstant()) {
int32_t imm = Int32ConstantFrom(rhs->AsConstant());
HandleDivRemConstantIntegralLatencies(imm);
} else {
last_visited_latency_ = kArmDivIntegerLatency;
}
break;
}
case Primitive::kPrimFloat:
last_visited_latency_ = kArmDivFloatLatency;
break;
case Primitive::kPrimDouble:
last_visited_latency_ = kArmDivDoubleLatency;
break;
default:
last_visited_internal_latency_ = kArmCallInternalLatency;
last_visited_latency_ = kArmCallLatency;
break;
}
}
void SchedulingLatencyVisitorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGetLatencies(instruction, instruction->GetFieldInfo());
}
void SchedulingLatencyVisitorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSetLatencies(instruction, instruction->GetFieldInfo());
}
void SchedulingLatencyVisitorARM::VisitInstanceOf(HInstanceOf* ATTRIBUTE_UNUSED) {
last_visited_internal_latency_ = kArmCallInternalLatency;
last_visited_latency_ = kArmIntegerOpLatency;
}
void SchedulingLatencyVisitorARM::VisitInvoke(HInvoke* ATTRIBUTE_UNUSED) {
last_visited_internal_latency_ = kArmCallInternalLatency;
last_visited_latency_ = kArmCallLatency;
}
void SchedulingLatencyVisitorARM::VisitLoadString(HLoadString* ATTRIBUTE_UNUSED) {
last_visited_internal_latency_ = kArmLoadStringInternalLatency;
last_visited_latency_ = kArmMemoryLoadLatency;
}
void SchedulingLatencyVisitorARM::VisitNewArray(HNewArray* ATTRIBUTE_UNUSED) {
last_visited_internal_latency_ = kArmIntegerOpLatency + kArmCallInternalLatency;
last_visited_latency_ = kArmCallLatency;
}
void SchedulingLatencyVisitorARM::VisitNewInstance(HNewInstance* instruction) {
if (instruction->IsStringAlloc()) {
last_visited_internal_latency_ = 2 * kArmMemoryLoadLatency + kArmCallInternalLatency;
} else {
last_visited_internal_latency_ = kArmCallInternalLatency;
}
last_visited_latency_ = kArmCallLatency;
}
void SchedulingLatencyVisitorARM::VisitRem(HRem* instruction) {
Primitive::Type type = instruction->GetResultType();
switch (type) {
case Primitive::kPrimInt: {
HInstruction* rhs = instruction->GetRight();
if (rhs->IsConstant()) {
int32_t imm = Int32ConstantFrom(rhs->AsConstant());
HandleDivRemConstantIntegralLatencies(imm);
} else {
last_visited_internal_latency_ = kArmDivIntegerLatency;
last_visited_latency_ = kArmMulIntegerLatency;
}
break;
}
default:
last_visited_internal_latency_ = kArmCallInternalLatency;
last_visited_latency_ = kArmCallLatency;
break;
}
}
void SchedulingLatencyVisitorARM::HandleFieldGetLatencies(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
DCHECK(codegen_ != nullptr);
bool is_volatile = field_info.IsVolatile();
Primitive::Type field_type = field_info.GetFieldType();
bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
switch (field_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt:
last_visited_latency_ = kArmMemoryLoadLatency;
break;
case Primitive::kPrimNot:
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
last_visited_internal_latency_ = kArmMemoryLoadLatency + kArmIntegerOpLatency;
last_visited_latency_ = kArmMemoryLoadLatency;
} else {
last_visited_latency_ = kArmMemoryLoadLatency;
}
break;
case Primitive::kPrimLong:
if (is_volatile && !atomic_ldrd_strd) {
last_visited_internal_latency_ = kArmMemoryLoadLatency + kArmIntegerOpLatency;
last_visited_latency_ = kArmMemoryLoadLatency;
} else {
last_visited_latency_ = kArmMemoryLoadLatency;
}
break;
case Primitive::kPrimFloat:
last_visited_latency_ = kArmMemoryLoadLatency;
break;
case Primitive::kPrimDouble:
if (is_volatile && !atomic_ldrd_strd) {
last_visited_internal_latency_ =
kArmMemoryLoadLatency + kArmIntegerOpLatency + kArmMemoryLoadLatency;
last_visited_latency_ = kArmIntegerOpLatency;
} else {
last_visited_latency_ = kArmMemoryLoadLatency;
}
break;
default:
last_visited_latency_ = kArmMemoryLoadLatency;
break;
}
if (is_volatile) {
last_visited_internal_latency_ += kArmMemoryBarrierLatency;
}
}
void SchedulingLatencyVisitorARM::HandleFieldSetLatencies(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
DCHECK(codegen_ != nullptr);
bool is_volatile = field_info.IsVolatile();
Primitive::Type field_type = field_info.GetFieldType();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
switch (field_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
if (is_volatile) {
last_visited_internal_latency_ = kArmMemoryBarrierLatency + kArmMemoryStoreLatency;
last_visited_latency_ = kArmMemoryBarrierLatency;
} else {
last_visited_latency_ = kArmMemoryStoreLatency;
}
break;
case Primitive::kPrimInt:
case Primitive::kPrimNot:
if (kPoisonHeapReferences && needs_write_barrier) {
last_visited_internal_latency_ += kArmIntegerOpLatency * 2;
}
last_visited_latency_ = kArmMemoryStoreLatency;
break;
case Primitive::kPrimLong:
if (is_volatile && !atomic_ldrd_strd) {
last_visited_internal_latency_ =
kArmIntegerOpLatency + kArmMemoryLoadLatency + kArmMemoryStoreLatency;
last_visited_latency_ = kArmIntegerOpLatency;
} else {
last_visited_latency_ = kArmMemoryStoreLatency;
}
break;
case Primitive::kPrimFloat:
last_visited_latency_ = kArmMemoryStoreLatency;
break;
case Primitive::kPrimDouble:
if (is_volatile && !atomic_ldrd_strd) {
last_visited_internal_latency_ = kArmIntegerOpLatency +
kArmIntegerOpLatency + kArmMemoryLoadLatency + kArmMemoryStoreLatency;
last_visited_latency_ = kArmIntegerOpLatency;
} else {
last_visited_latency_ = kArmMemoryStoreLatency;
}
break;
default:
last_visited_latency_ = kArmMemoryStoreLatency;
break;
}
}
void SchedulingLatencyVisitorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGetLatencies(instruction, instruction->GetFieldInfo());
}
void SchedulingLatencyVisitorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSetLatencies(instruction, instruction->GetFieldInfo());
}
void SchedulingLatencyVisitorARM::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
DCHECK((block->GetLoopInformation() != nullptr) ||
(block->IsEntryBlock() && instruction->GetNext()->IsGoto()));
// Users do not use any data results.
last_visited_latency_ = 0;
}
void SchedulingLatencyVisitorARM::VisitTypeConversion(HTypeConversion* instr) {
Primitive::Type result_type = instr->GetResultType();
Primitive::Type input_type = instr->GetInputType();
switch (result_type) {
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
last_visited_latency_ = kArmIntegerOpLatency; // SBFX or UBFX
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
last_visited_latency_ = kArmIntegerOpLatency; // MOV
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
last_visited_internal_latency_ = kArmTypeConversionFloatingPointIntegerLatency;
last_visited_latency_ = kArmFloatingPointOpLatency;
break;
default:
last_visited_latency_ = kArmIntegerOpLatency;
break;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// MOV and extension
last_visited_internal_latency_ = kArmIntegerOpLatency;
last_visited_latency_ = kArmIntegerOpLatency;
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
// invokes runtime
last_visited_internal_latency_ = kArmCallInternalLatency;
break;
default:
last_visited_internal_latency_ = kArmIntegerOpLatency;
last_visited_latency_ = kArmIntegerOpLatency;
break;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
last_visited_internal_latency_ = kArmTypeConversionFloatingPointIntegerLatency;
last_visited_latency_ = kArmFloatingPointOpLatency;
break;
case Primitive::kPrimLong:
// invokes runtime
last_visited_internal_latency_ = kArmCallInternalLatency;
break;
case Primitive::kPrimDouble:
last_visited_latency_ = kArmFloatingPointOpLatency;
break;
default:
last_visited_latency_ = kArmFloatingPointOpLatency;
break;
}
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
last_visited_internal_latency_ = kArmTypeConversionFloatingPointIntegerLatency;
last_visited_latency_ = kArmFloatingPointOpLatency;
break;
case Primitive::kPrimLong:
last_visited_internal_latency_ = 5 * kArmFloatingPointOpLatency;
last_visited_latency_ = kArmFloatingPointOpLatency;
break;
case Primitive::kPrimFloat:
last_visited_latency_ = kArmFloatingPointOpLatency;
break;
default:
last_visited_latency_ = kArmFloatingPointOpLatency;
break;
}
break;
default:
last_visited_latency_ = kArmTypeConversionFloatingPointIntegerLatency;
break;
}
}
} // namespace arm
} // namespace art